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In order to deal with nonhyperbolic fixed points of a given real
iteration function g, we construct new iteration functions C
which will be called combined. When a nonhyperbolic fixed
point of g becomes a super attractor fixed point of C, the iter-
ation function C is called flat.

Some flat iteration functions are constructed based on New-
ton’s iteration function. Several numerical examples illustrating
the good properties of flat iteration functions are presented.

1. INTRODUCTION

A nonhyperbolic (or neutral) fixed point x∗ of a real it-
eration function g is a point satisfying |gI(x∗)| = 1. The
numerical computation of a nonhyperbolic fixed point x∗

of a given map g using the iterative process xn = g(xn−1)
is, in general, useless in the sense that it will involve a

large number of iterates with a corresponding growth of

computational errors.

The problem of computing nonhyperbolic fixed points

x∗ such that gI(x∗) = 1 is equivalent to the compu-

tation of the solution of the equation f(x) = 0 where

f(x) = x − g(x) and f I(x∗) = 0. The mathematical

study of this sort of problem is called singularity the-

ory. Although the case studied in this work refers only to

real maps, the underlying problem for higher-dimensional

maps is the computation of the solution of a set of non-

linear equations f(x) = 0 where x, f(x) are in Rn and
the Jacobian matrix of f does not have full rank n. The

classical reference for singularity theory is [Golubitsky

and Schaeffer 85] and for its numerical implementation,

see [Govaerts 00], Chapters 6 and 7.

The main aim of this work is to give a general pro-

cedure for the construction of iterative processes able to

compute a nonhyperbolic fixed point of a real iteration

function g in few steps and with high precision. A new

iteration function, C = C(g, h), is constructed by mak-

ing a suitable combination of g with another function h.

The iteration function C will be called combined.
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We will give particular attention to those combined

iteration functions (IF) constructed from an initial iter-

ative process convergent to a nonhyperbolic fixed point,

able to generate iterative processes with order of conver-

gence of at least 2. These combined iteration functions

will be called flat (at x∗).
Any combined iteration function C(g, h) has the prop-

erty of transforming a nonhyperbolic (NH) fixed point x∗

for g satisfying gI(x∗) = 1 into a super-attracting fixed

point for C, that is C I(x∗) = 0. In other words, the

iterative process associated with C will have faster con-

vergence than the process associated with g.

The main underlying idea is to use some iterates of a

computationally inefficient iterative process to construct

another one giving the nonhyperbolic fixed point in a few

iterations. For instance, the iterative process xn+1 =

N(xn) associated with the Newton map N(x) = x −
f(x)/f I(x) for f(x) = x− g(x) is not appropriate for the
computation of a nonhyperbolic fixed point of g since this

point is a singularity of f . However, as we shall show in

Section 3.1, the combined function of g with N is a map

for which x∗ is a super-attracting fixed point.
Although in the present work only real maps are con-

sidered, the definition of our combined iteration function

can be easily adapted to higher-dimensional maps. In

a forthcoming paper, we will generalize the results to

higher dimensions where the applications become more

interesting.

This paper is organized as follows. In Section 2., we

define a combined IF, C, and show that whenever the

nonhyperbolic fixed point x∗ of g is such that gI(x∗) = 1,
then C(g, h) is always flat (Theorem 2.5). In Theorem

2.7, we give explicitly a flat iteration function C(g, h), for

g satisfying some mild hypotheses of differentiability and

having either a hyperbolic or nonhyperbolic fixed point.

In Section 3., we study the flat iteration functions NC
and NH based on Newton’s method for root finding, and

we give some numerical examples illustrating the com-

putational efficiency of our combined iteration functions.

The main result of this section (Theorem 3.2) states that

either for simple or multiple roots of f(x) = 0, the iter-

ative processes generated by NC and NH have order at

least 2, if they are convergent.

Some numerical examples are given to illustrate the

main properties of our combined IF compared to the

given initial IF. In particular, in Examples 1 and 3, we

chose two iteration functions which attracted the atten-

tion of many authors due to the difficulties of getting

good approximations for the respective nonhyperbolic

fixed points. It is shown that combined iteration func-

tions produce highly precise approximations in three or

four iterations.

Newton-like iterators have recently received renewed

attention ([Gilbert 94, Gerlach 94, Epureanu and Green-

side 98]) and their comparison with NC and NH will be

the subject of a forthcoming paper.

2. COMBINED AND FLAT ITERATION FUNCTIONS

An iterative process with iteration function g, xn+1 =

g(xn), if convergent to a nonhyperbolic fixed point of

g, converges very slowly. We construct a new iteration

function C based on g, such that a nonhyperbolic fixed

point of g becomes an attractor point for C.

Definition 2.1. (Combined iteration function.) Let g and
h be two differentiable functions in a neighborhood D of

a common fixed point x∗. A combined iteration function
C(g, h) is defined by

C(g, h)(x) = C(x) =
h(x)− g(x)hI(x)

1− hI(x) and

hI(x) W= 1, ∀x ∈ D. (2—1)

Note that C is well-defined on nonhyperbolic fixed

points of g, although it is not always defined at nonhyper-

bolic fixed points of h. This, however, is not restrictive

since for a given iteration function g, one can choose an

h with hI(x∗) W= 1.
The requirement that x∗ be a common fixed point of g

and h in the definition of C implies that x∗ is also a fixed
point of C. Unfortunately, the converse is not true as can

be seen in Example 3.6 of Section 3. where C has fixed

points that are not fixed points for g. In the literature,

these new fixed points are called extraneous (see [Vrscay

and Gilbert 88]).

A hyperbolic fixed point x∗ of a map g is called an
attractor if 0 < |gI(x∗)| < 1, a repeller if |gI(x∗)| > 1,

and a super attractor if gI(x∗) = 0 (see [Holmgren 96]).

Proposition 2.2. A common fixed point x∗ of g and h is a
super-attracting fixed point of C(g, h) whenever gI(x∗) =
1 or hI(x∗) = 0.

Proof: As C I(x∗) =
hI(x∗)

1− hI(x∗) (1 − g
I(x∗)), the result

follows.

Proposition 2.2 gives a good property of the combined

IF, C, showing that the nonhyperbolic fixed points of
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g satisfying gI(x∗) = 1 become super-attracting fixed

points of C. Notice that if h is chosen such that x∗ is
a super attractor, then x∗ is always a super-attracting
fixed point for C(g, h) whenever x∗ is either a hyperbolic
or nonhyperbolic fixed point of g.

It is worth noting that the super-attractivity of the

fixed point x∗ of C given in the last proposition could

also be obtained when gI(x∗) = −1 if one had adopted
the following definition of C:

C(g, h) =
h+ ghI

1 + hI
with hI(x∗) W= −1

.

We now mention a particularly well-behaved combined

iteration function which will be used throughout this

work. Let C(x, g) be the combination of the identity

function with an iteration function g having a hyperbolic

fixed point x∗ (|gI(x∗)| W= 1):

C(x, g) = C(x) =
g(x)− xgI(x)
1− gI(x) , (2—2)

(x∗ is a hyperbolic fixed point of g).

Applying Proposition 2.2 with g = x and h = g, one

has:

Corollary 2.3. Either repelling or attracting fixed points
of g are super-attracting fixed points of C(x, g).

Notice that C(x, g) is just the Newton iteration func-

tion for f(x) = 0, with g(x) = x− f(x), if x∗ is a simple
root of f(x) = 0 (see Section 3.).

Those combined functions for which the common fixed

point x∗ of both g and h is a super-attracting fixed point
of C will be called flat iteration functions. The main

motivation for calling these functions flat at x∗ is the
following geometric argument: While the graph of g in

a neighborhood of (x∗, g(x∗)) is like the graph of the
identity function, the graph of C in the same region looks

like a horizontal line.

Definition 2.4. (Flat iteration function.) Let x∗ be a
common fixed point of g and h. A combined iteration

function H = C(g, h) is called a flat iteration function

at x∗, or flat for short, if H I(x∗) = 0. If H is flat and

H(2)(x∗) = 0, we say that H is a super-flat iteration

function.

A flat iteration function constructed from g has the

property of transforming a slow convergent iterative

process associated to g into an iterative process associ-

ated to H = C(g, h) converging faster.

Hereafter, we assume that g and h are sufficiently dif-

ferentiable and that all the results are local, that is they

are only valid in a neighbourhood of an isolated fixed

point.

Theorem 2.5. For any two functions g and h satisfying

g(x∗) = h(x∗) = x∗, g I(x∗) = 1 and h I(x∗) W= 1,
(2—3)

the iteration function H = C(g, h) is flat. Furthermore,

H is super flat if and only if

hI(x∗) g(2)(x∗) + h(2)(x∗) = 0. (2—4)

Proof: By Proposition 2.2, H I(x∗) = 0, that is H is flat

and

H II(x∗) = −h
I(x∗) g(2)(x∗) + h(2)(x∗)

1− h I(x∗) ,

so, the result follows.

Note that for a given iteration function g with a non-

hyperbolic fixed point x∗ such that gI(x∗) = 1, any other
IF h for which x∗ is either a repelling or attracting fixed
point can be used to generate the flat iteration function

H = C(g, h).

The main question now is how to choose h in order

to obtain a flat iteration function from a given iteration

function g, in particular when g has a nonhyperbolic fixed

point x∗. Although from the definition of combined it-

eration function, we can choose h to be any function for

which x∗ is a hyperbolic fixed point, from the computa-

tional viewpoint, the right choice must be one obtained

from the data of the problem, that is from g. So, one

of the first natural choices for h that one can think of

is the iteration function given in Equation (2—2), that is

C(x, g).

In fact, if g has an hyperbolic fixed point x∗, then by
Corollary 2.3, h = C(x, g) is such that hI(x∗) = 0 and

so h can be used in C(g, h). In the case gI(x∗) = −1
Proposition 2.2 applied with g = x gives hI(x∗) = 0. The
main problem in using C(x, g) as h in C(g, h) is when

gI(x∗) = 1; in this case C(x, g) is not defined.
We show that under quite general differentiability as-

sumptions on g a continuous extension of C(x, g) can be

used as h in C(g, h) in order to produce a flat iteration

function.

Consider x∗ to be an isolated fixed point of g such that
gI(x∗) = 1 and h given by

h(x) =


g(x)− xgI(x)
1− gI(x) if x W= x∗

x∗ if x = x∗.
(2—5)
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Let g : D ⊂ R → D be sufficiently many times differ-

entiable such that

g(j)(x∗) = 0, 2 ≤ j ≤ m− 1 and g(m)(x∗) W= 0,
(2—6)

for some integer m, (m ≥ 2).
In order to show that h given by Equation (2—5) can

be combined with g, one needs to show that the fixed

point x∗ is hyperbolic for h.

Lemma 2.6. Let x∗ be a nonhyperbolic fixed point of g
such that gI(x∗) = 1, with g satisfying (2—6) and h as

in (2—5). Then h is differentiable at x∗ and x∗ is an
attracting fixed point of h with

0 < h I(x∗) = 1− 1

m
< 1. (2—7)

The proof of the above lemma follows by using the

Maclaurin series for g and gI in the computation (by de-
finition) of hI(x∗) (see for instance [Traub 64, Isaacson
and Keller 66, Kress 98]).

We have then proved the following theorem.

Theorem 2.7. Let x∗ be an isolated fixed point of g : D ⊂
R → D where g is at least m times differentiable in D

such that

g(j)(x∗) = 0, 2 ≤ j ≤ m− 1 and g(m)(x∗) W= 0.

For the continuous extension h of C(x, g) given in (2—5),

the iteration function H = C(g, h) is flat.

3. APPLICATIONS

Any suitable choice of h can be used in order to obtain

a flat iterator H = C(g, h). Since Newton’s iteration

function, N(x), is the most popular method in the ap-

plications it is natural to choose N as the companion

h to a given nonhyperbolic iterator g. Of course, there

are many other alternatives; namely several operators

(with appropriate modifications) available from the con-

vergence acceleration area.

In Section 3.1, we begin by showing that Newton’s

method can be viewed as a particular combined IF. When

properly applied, the results of Section 2 allow us to re-

cover well-known properties of Newton’s method. We

end this section with several numerical examples which

illustrate some properties of the combined iterators.

3.1 Combined Iteration Functions and
Newton’s Method

As it is well known, Newton’s iteration function N(x) =

x − f(x)/f I(x) is not well-defined at multiple roots of
the equation f(x) = 0, or equivalently at the NH fixed

points of g(x) = x − f(x). This means that the cor-

responding sequence of iterates for N is either slowly

convergent to the fixed point or not convergent at all.

The combined iteration functions NH = C(g,N) and

NC = C(x,N) deal with both hyperbolic and nonhy-

perbolic fixed points. Under mild assumptions, the iter-

ative processes associated to NH and NC will converge

faster to a fixed point (if one starts sufficiently close to

it) than the one associated to N since NC and NH are

flat IF. Hereafter when we say, for instance, that NC(x)

converges to x∗, we mean that the associated iterative
process xn = NC(xn−1) will converge to x∗.
Consider the equation f(x) = 0 where f will be as-

sumed to be sufficiently differentiable in a suitable do-

main. A root x∗ of f(x) = 0 is a fixed point of the

iteration function g(x) = x − f(x). Newton’s iteration
function is a particular case of the combined iteration

function (2—2) if x∗ is a simple root (f I(x∗) W= 0):

C(x, g) =
x− f(x)− x (1− f I(x))

f I(x)

=
x f I(x)− f(x)

f I(x)
= N(x).

The notion of order of convergence of an iterative

process (see [Traub 64]) can be rephrased in terms of

the classification of a fixed point as follows: When x∗ is
an attracting or super-attracting fixed point of an itera-

tion function g, the iterative process xn+1 = g(xn) has

order of convergence 1 or at least 2 .

The next proposition states some classical results on

Newton’s method (see [Ostrowski 73, Isaacson and Keller

66, Holmgren 96, Kress 98]), recovered here as straight-

forward applications of the results obtained for combined

iteration functions. We always assume that N is conver-

gent to x∗.

Proposition 3.1. Let x∗ be a root of f(x) = 0 where f

is at least m times continuously differentiable in a neigh-

borhood of x∗.

(i) If x∗ is a simple root, then Newton’s method has
order of convergence at least 2.

(ii) If x∗ is a root of multiplicity m (m ≥ 2), then

Newton’s method has convergence of order 1 and the
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Fixed point x∗ Flat iteration function

|gI(x∗)| W= 1 C(x, g) =
g − x gI
1− gI (Cor. 2.3)

gI(x∗) = 1 and hI(x∗) W= 1 C(g, h) =
h− g hI
1− hI (Thm. 2.5)

gI(x∗) = 1 or hI(x∗) = 0 C(g, h) =
h− g hI
1− hI (Prop. 2.2)

gI(x∗) = −1 C(x, g) =
g − x gI
1− gI (Thm. 2.7)

gI(x∗) = −1 and hI(x∗) W= −1 C(g, h)
def
=
h+ g hI

1 + hI

x∗ simple root for f(x) = 0 C(x, x− f) = x− f

f I
(Prop. 3.1 (i))

x∗ simple or multiple root of NC = C(x,N) =
N − xN I
1−N I

f(x) = 0 or (Thm. 3.2)

NH = C(g,N) =
N−gN
1−N

TABLE 1. Flat iteration functions for specified fixed points.

respective asymptotic convergence factor is

0 < N I(x∗) = 1− 1

m
< 1.

Proof:

(i) A simple root x∗ of f(x) = 0 (f I(x∗) W= 0) is a hyper-
bolic fixed point of g(x) = x−f(x). So, by Corollary
2.3, x∗ is a super attractor for N(x) = C(x, g(x)).

(ii) A root x∗ of multiplicity m of f(x) = 0 satis-

fies f(x∗) = f I(x∗) = . . . = f (m−1)(x∗) = 0 and

f (m) W= 0 (see [Henrici 64], Chap.2). So, the func-

tions g(x) = x − f(x) and the continuous extension
h of N(x) = C(x, g) given by (2—5) satisfy the hy-

potheses of Lemma 2.6, so N I(x∗) = 1− 1/m .

Let us now construct the following iteration functions

based on N :

NC = C(x,N) =
N(x)−xN (x)
1−N (x) ,

NH = C(g,N) =
N(x)−g(x)N (x)

1−N (x) .

It is easy to conclude that NC is just Newton’s itera-

tion function applied to µ(x) = f(x)/f I(x), a well-known
modification of Newton’s method (see [Burden 89]) used

for the computation of multiple roots of the equation

f(x) = 0.

At a (isolated) root x∗, either simple or multiple, of
f(x) = 0 (and g(x) = x − f(x)) both NC and NH are

well-defined at x∗ since N I(x∗) W= 1. From our results

on flat iteration functions, namely Theorem 2.5, both

NC and NH are flat, that is, the corresponding iterative

processes for NC and NH have convergence of order at

least 2.

Theorem 3.2. If x∗ is either a simple or multiple root of
f(x) = 0 and both NC(x), NH(x) converge to x

∗, then
the corresponding iterative processes have convergence of

order at least 2.

Theorem 2.5 also gives conditions for a flat iterative

process to have convergence of order at least 3, that is,

when the respective flat iteration function is super flat

(see Example 3.5(b)). Although NC and NH are both

flat, one of them can perform better than the other on the

computation of a nonhyperbolic fixed point of the initial

function. For instance, in Example 3.3 (see Section 3.2),

NC gives exactly the fixed point in only one iteration

while NH is only flat.

Table 1 summarizes some flat iterators to choose de-

pending on the assumptions made about the respective

fixed point to be computed.

3.2 NUMERICAL EXPERIMENTS

The examples were chosen to illustrate the behavior of

several combined iteration functions for nonhyperbolic

fixed points of the input function g, namely H = C(g, h),

C(x, g), NH = C(g,N) and NC = C(x,N). The results

of the previous sections predict that a flat IF will allow

us to pass from a slow iterative process to a fast one. For

instance, in Example 3.3, utilizing only three iterations

we compute a nonhyperbolic fixed point for certain it-

eration functions studied in [Sablonnière 87, Sablonnière

91] obtaining a very high precision approximation of the
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fixed point with our combined iteration function NH or

even such fixed point in one iteration using NC .

Example 3.4 shows a flat iteration function H =

C(g, h) for a given IF, g, with a nonhyperbolic fixed

point. In Example 3.5, an initial slow iterative process

having first order of convergence leads to a process of

order 3 obtained by means of NH .

Example 3.6(a) shows the appearance of extraneous

fixed points at points where Newton’s IF is not defined.

This is just the natural consequence of NC being always

well-defined in these points. Moreover, as can be seen in

Example 3.6(b), extraneous fixed points can also appear

at points where the initial IF is well-defined.

In Examples 3.4—3.6, we graph both the initial IF and

a combined one. Graphing the IF allows one, by sim-

ple inspection, to get a quick overview of the dynamics

involved.

Tables for the first iterates are also given illustrating

the numerical behavior of the initial iterator and of the

corresponding combined one. In all examples, only a few

iterates are sufficient to obtain the fixed points with high

accuracy, although the number of iterations should not,

in general, be increased too much since numerical insta-

bility can occur.

The following numerical examples have been obtained

using Mathematica [Wolfram 96]. Computations were

carried out with 40 digits of precision.

Example 3.3. Fixed point sequences generated by a

process xn+1 = g(xn) converging to a nonhyperbolic

fixed point x∗ are also designated as logarithmic se-

quences in the sense that limn→∞ en+1/en = 1, where

en = x∗ − xn. The set of logarithmic sequences whose
errors have an asymptotic expansion of the form

en+1 = en +

∞3
k≥1

αk e
1+kr
n , α1 < 0 and integer r ≥ 1,

has been extensively used as a standard for assessing the

quality of several sequence-to-sequence transformations

used to accelerate the convergence of such a process.

In [Sablonnière 87, Sablonnière 91] and subsequent pa-

pers, the author studied the logarithmic sequences ob-

tained by iterating

g(x) = x− xr, 1 ≤ r ≤ 6, x0 = 0.5 where x∗ = 0.
(3—1)

The best accelerator found by Sablonnière shows a

precision of about 10−10 after 19 iterations, the higher
precision being obtained for the lower values of r.

r = 1 r = 10 r = 20

0.5 0.5 0.5
0 0.0087891 0.0000181198
0 2.4755 10−20 2.7658 10−94

0 7.7790 10−196 1.3041 10−1870

TABLE 2. First three iterations of NH = C(g,N), where
g(x) = x− xr.

Compared to the results of Sablonnière, it is quite im-

pressive to see that our flat iteration NH , applied to g in

(3—1) for 1 ≤ r ≤ 20, achieves a much higher precision
after only three iterations. The reason for our good nu-

merical results is thatNH is a superflat iteration function

for this kind of sequence;

N(x) =
r − 1
r

x, N I(x) = 1− 1
r
,

so

NH(x) =
N(x)− g(x)N I(x)

1−N I(x) = (r − 1)xr.
Thus for xn+1 = NH(xn) = (r − 1) xrn, we get

limn→∞
xn+1
xrn

= r− 1, so this sequence has order of con-
vergence r for r > 1 and x∗ = 0 is obtained in only one
iteration for r = 1. Table 2 shows the first three iterates

for NH = C(g,N) where g(x) = x−xr and r = 1, 10, 20.
For this example, NC is optimal in the sense that the

fixed point is obtained exactly in one iteration:

NC = C(x,N) =
N − xN I
1−N I = (r − 1)x− x (r − 1) = 0.

Example 3.4. (See Figure 1 and Table 3.) In this ex-

ample, the initial IF g is compared with H = C(g, h),

where h = C(x, g). In part (a), x∗ is a nonhyperbolic
fixed point with gI(x∗) = 1 whereas in (b), gI(x∗) = −1.
(a) Let g(x) = 1 + ln(x). This function has the NH

fixed point x∗ = 1 with gI(1) = 1. Let h be the continu-
ous extension of C(x, g):

h(x) =
x ln(x)

x− 1 , if x W= 1 and h(1) = 1.

The iteration function H = C(g, h) is

H(x) =
1− x+ (2− 2x+ x2) ln(x) + ln2(x)

2− 3x+ x2 + ln(x)
for x W= 1 and H(1) = 1.

By Theorem 2.5, the iteration function H is flat since

hI(1) = 1/2 W= 1 (by Lemma 2.6).
(b) Let g(x) = x − ln(x2). This IF has the NH fixed

point x∗ = 1 with gI(1) = −1. Let h be C(x, g):

h(x) = x− x ln(x
2)

2
,
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(a)

(xn) (yn)
1.5 1.5
1.4054651081081643820 1.10142617280551354
1.3403682858041913949 1.00717661432426
1.2929444163535657425 1.00004235

(b)

(xn) (yn)
0.9 0.9
1.1107210313156525753 0.9811754777692121664
0.9007022669120995963 0.9994466194247491503
1.1098633136359449272 0.9999995401177632299
0.9013895798894140186 0.9999999999996827622
1.1090250373113361886 1.0000000000000000000

TABLE 3. (a) x0 = y0 = 1.5, xn = 1 + ln(xn−1),
yn = H(yn−1), n = 1 : 3; x∗ = 1 (see Figure 1(a));

(b) x0 = y0 = 0.9, xn = xn−1− ln(x2n−1), yn = H(yn−1),
n = 1 : 5 (see Figure 1(b)).

and H = C(g, h),

H(x) =
2x− ln2(x2)
2 + ln(x2)

for x W= 0.

Both h and H are flat since hI(1) = H I(1) = 0.
For the same initial point x0 = y0 = 1.5, the left-hand

side of Table 3(a) shows the first 3 iterates for xn =

g(xn−1) when g(x) = 1 + ln(x), and the right-hand side
displays the corresponding iterates for yn = H(yn−1). In
the left-hand side of Table 3(b), the first 5 iterations of

xn = g(xn−1) when g(x) = x − ln (x2) are given, and
the right-hand side displays the corresponding iterates

yn = H(yn−1). In this case, the initial points are x0 =
y0 = 0.9.

(a) (b)

FIGURE 1. In the figure, g is plotted thinner than H =

C(g, h). The fixed point is x∗ = 1: (a) g(x) = 1 +

ln(x), gI(x∗) = 1; (b) g(x) = x− ln(x2), gI(x∗) = −1.

Example 3.5. (See Figure 2 and Table 4.) In this ex-

ample, we compare N with NH for the iteration func-

tion g(x) = sin(x). In [Brezinski and Redivo Zaglia 91,

page 325], there are numerical results for nine sequence-

to-sequence transformations for the computation of the

fixed point x∗ = 0 of g. The number of exact digits ob-
tained by the application of the referred sequence trans-

(a)

(xn) (yn)
1.0 1.0
0.8414709848078965067 0.6551450720424305085
0.7456241416655578889 0.4335903683634929531
0.6784304773607402290 0.28814840089250120018
0.6275718320491591389 0.19183231215063892737

(b)

(xn) (yn)
1.0 1.0
0.6551450720424305085 0.3361766585172519082
0.4335903683634929531 0.014905130258776021077
0.28814840089250120018 1.3244963884992977546 10−6
0.19183231215063892737 0. 10−17

TABLE 4. g(x) = sin(x) and x∗ = 0: (a) x0 = y0 = 1,

xn = g(xn−1), yn = h(yn−1), n = 1 : 4; (b) x0 = y0 =
1, xn = h(xn−1), yn = H(yn−1) n = 1 : 4.

formations, using 15 iterations and x0 = 0.5 as starting

point, ranges from 0.82 to 6.20 for the best one. In Table

4(b) we show that only 4 iterations of NH are necessary

for obtaining 17 exact digits.

(a) g(x) = sin(x) for which x∗ = 0 is a nonhyperbolic
fixed point. We compare g with the continuous extension

of C(x, g):

C(x, g) = h(x) =
x cos(x)− sin(x)
cos(x)− 1 ,

if x W= 0, and h(0) = 0.

As g(2)(0) = 0 and g(3)(0) = −1 W= 0, then by Lemma 2.6,
x∗ = 0 is an attracting fixed point for h. The correspond-
ing iterative process for h has asymptotic convergence

factor hI(0) = 2/3.

(b) Now compare the function h obtained in (a) with

H = C(g, h). We know from Theorem 2.5 that H is

flat. In fact, H is super-flat since H(2)(0) = 0. Since

H(3)(0) = 12/5, the iterative process associated to H

has convergence of order 3.

(a) (b)
FIGURE 2. g(x) = sin(x). (a) The plot of g is thinner
than the plot of h = C(x, g). The fixed point x∗ = 0 is

nonhyperbolic for g; (b) Plots for h (thinner) and the
flat IF H = C(g, h).
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Example 3.6. (See Figure 3 and Tables 5 and 6.) In this
example, we compare in (a) the iteration function N and

NC = C(x,N), and in (b) the iteration functions N and

NH = C(g,N). The test function for both cases (a) and

(b) is the polynomial

p(x) = −3 (x− 2)4 (x− 1)3 x5,

which has three roots x∗ = 0, 1, 2 of multiplicities 5, 3,

and 4, respectively.

(a) We compare the behavior of the iteration function

N(x) = x − p(x)/pI(x) and NC(x) = C(x,N(x)) having
the following expression

NC(x) =
x2 (20− 28x+ 11x2)

20− 60x+ 81x2 − 50x3 + 12x4 .

Table 5 shows the values of the derivatives of N and NC
at the respective fixed points. This table confirms that

Newton’s process has convergence of order 1, while the

iterative process associated to NC is of order 2. Extra-

neous fixed points of NC occur at points of discontinuity

of N .

(b) We compare N(x) and NH(x) = C(g(x), N(x))

where g(x) = x − p(x). In this case, we will not display
the expression of NH(x) since it is too long. The iterative

process associated to NH is, as in (a), of order 2 (for any

of the roots of p(x) = 0). As one can see from Figure

3(b), NH has extraneous fixed points.

(a) (b)

FIGURE 3. p(x) = −3(x − 2)4(x− 1)3x5: (a) N thinner

than NC = C(x,N); (b) g(x) = x − p(x) thinner than
NH .

x∗ N I(x∗) N IC(x
∗) N

(2)
C (x∗)

0 4/5 0 2

1 2/3 0 −2/3
2 3/4 0 −11/4

TABLE 5. Derivatives for N and NC for Example 3.6(a).

(a)

(xn) (yn)
0.2 0.2
0.14744525547445256183 0.05466332694857817110
0.11202555417067730826 0.003260926997125556906
0.08647332273470264775 0.000010689272708733296725
0.06740643461577624390 1.1426250523814647032 10−10

(b)

(xn) (yn)
0.2 0.2
0.19484021964800001001 0.06377257819031443284
0.19017122775166904930 0.004624878730215735896
0.18591940778245240134 0.000021548768367953577176
0.18202560991039300755 4.643654283098012547 10−10

TABLE 6. p(x) = −3(x− 2)4(x− 1)3x5 and x∗ = 0: (a)

x0 = 0.2, xn = N(xn−1), yn = NC(yn−1), n = 1 : 4;

(b) x0 = 0.2, xn = xn−1 − p(xn−1), yn = NH(yn−1),
n = 1 : 4.
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