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We study computational aspects of amoebas associated with
varieties in (C∗)n, both from an exact and from an experimental
point of view. In particular, we give explicit characterizations
for the amoebas of classes of linear and nonlinear varieties and
present homotopy-based techniques to compute the boundary
of two-dimensional amoebas.

1. INTRODUCTION

The notion of amoebas, introduced by GelIfand, Kapra-
nov, and Zelevinsky in 1994 [GelIfand et al. 94], serves to
study the solution set X ⊂ Cn of a system of polynomial

equations. Namely, it addresses this question from the

following viewpoint. Given w ∈ [0,∞)n, does there exist
a vector z ∈ X with |z1| = w1, . . . , |zn| = wn? How can
the subset of all vectors w = (w1, . . . , wn) ∈ [0,∞)n be
characterized for which the answer is “yes”? For reasons

explained below, it is convenient to work in the algebraic

torus C∗ := C \ {0} and look at log |zi| rather than |zi|
itself.

Formally, the amoeba of a subset X ⊂ (C∗)n is the
image of X under the map

Log : (C∗)n → Rn ,
z )→ (log |z1|, . . . , log |zn|) ,

where log denotes the natural logarithm. The restriction

Log|X is called the amoeba map of X. As we will see later
in detail, if X is an algebraic curve in the plane (n =

2), then its amoeba looks like one of those microscopic

animals, embracing convex regions and growing tentacles

towards infinity in various directions (Figure 1).

Amoebas have recently been used in several fields of

mathematics. We mention two examples. In topology,

amoebas were used to provide significant contributions

to Hilbert’s 16th Problem (which is still widely open).

Hilbert’s problem asks for a classification of the topo-

logical types of real algebraic manifolds and has initi-

ated the corresponding branch of mathematics. Recently,

Mikhalkin used amoebas to prove topological uniqueness
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FIGURE 1. Amoeba Log V(f) for f(z1, z2) = 1
2z1 +

1
5z2 − 1.

of real plane algebraic curves maximally arranged with

respect to three lines [Mikhalkin 00].

In the field of dynamical systems, actions of Zn on
compact metric spaces can be characterized in terms of

expansive behavior along the half-spaces of Rn. In [Ein-
siedler et al 01], amoebas have been applied to character-

ize this expansive behavior for algebraic Zn-actions, i.e.,
actions of Zn by automorphisms of a compact abelian
group.

Other mathematical habitats of amoebas include com-

plex analysis [Forsberg et al. 00, Rullg̊ard 01], mirror

symmetry [Ruan 00], and measure theory [Mikhalkin and

Rullg̊ard 01, Passare and Rullg̊ard 00]. The computa-

tional handling of amoebas still involves many difficulties

and unsolved problems.

In the present paper, we study some concrete compu-

tational questions both from an exact and from an exper-

imental point of view. In particular, we will be concerned

with the case where X is a subvariety of the torus (C∗)n
with X = V(I) for some ideal I ⊂ C[z±11 , . . . , z±1n ].

From the exact point of view, we provide explicit char-

acterizations for certain classes of linear varieties, thus

extending the results of [Forsberg et al. 00] on hyper-

plane amoebas. We also give an exact characterization

for a class of nonlinear varieties which includes the Grass-

mannian of lines in 3-space. These characterizations can

be used to answer algorithmic questions, such as mem-

bership of a given point in the amoeba.

For amoebas of plane algebraic curves which do not

fit into these specific classes, we show how the topolog-

ical results of [Mikhalkin 00] can be used to establish

homotopy-based numerical techniques to compute the

boundary of the amoeba. Experimentally, we have used

these techniques and present some results (in terms of

visualizations) illustrating this approach.

The paper is structured as follows. In Section 2, we

review some basic properties and theorems concerning

amoebas, accompanied by experiments visualizing the

shape of amoebas. Then we introduce the relevant algo-

rithmic questions. In Sections 3 and 4, we give new ex-

plicit characterizations for some classes of linear and non-

linear varieties, respectively. We complement these char-

acterizations by some computer-algebraic experiments

investigating some cases not covered by the theorems. Fi-

nally, in Section 5, we study homotopy-based techniques

to draw two-dimensional amoebas.

2. PRELIMINARIES

Let C[z±11 , . . . , z±1n ] denote the ring of complex Lau-

rent polynomials in n variables, i.e., sums of the form

α∈J cαz
α with finite index sets J ⊂ Zn (see, e.g.,

[Cox et al. 98]). For Laurent polynomials f1, . . . , fm,

let V(f1, . . . , fm) denote the set of common zeroes of
f1, . . . , fm in (C∗)n.

2.1 Hypersurface Amoebas

If X is an algebraic hypersurface in (C∗)n, then we call
the amoeba of X a hypersurface amoeba [Forsberg et

al. 00]. We assume that X is the zero set of a single

Laurent polynomial f(z) = α∈J cαz
α.

Example 2.1.
(a) The shaded area in Figure 1 shows the amoeba

Log V(f) for the linear function

f(z1, z2) =
1

2
z1 +

1

5
z2 − 1 .

Note that this amoeba is a two-dimensional set. When

denoting the coordinates in the amoeba plane by w1 and

w2, the three tentacles have the asympotics w1 = log 2,

w2 = log 5, and w2 = w1 + log(5/2). Note that the

amoeba of a two-dimensional variety V(f) ∈ (C∗)2 is
not always a two-dimensional set. Consider for example,

f(z1, z2) := z1 + z2, where Log V(f) = {(w1, w2) ∈ R2 :
w1 = w2}.
(b) If f ∈ C[z±11 , . . . , z±1n ] is a binomial in n variables,

f(z) = zα − zβ

with α W= β ∈ Zn, then the amoeba Log V(f) is a hyper-
plane in Rn which passes through the origin. To see this,
first note that for any complex solution z of zα = zβ , the

real vector |z| = (|z1|, . . . , |zn|) is a solution as well. So it
suffices to consider vectors z ∈ (0,∞)n. We can rewrite
|z|α = |z|β as |z|α−β = 1, and by using the dot product
of vectors, we obtain

(α− β) · Log z = 0 .
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Since α W= β, this equation defines a hyperplane in the

coordinates log |z1|, . . . , log |zn| which passes through the
origin.

The following basic properties of amoebas have been

stated in [GelIfand et al. 94, Forsberg et al. 00]. They are
the reason why it is often convenient to look at log |zi|
rather than |zi| itself.

Theorem 2.2. The complement of a hypersurface amoeba
Log V(f) consists of finitely many convex regions, and
these regions are in bijective correspondence with the dif-

ferent Laurent expansions of the rational function 1/f .

The shape of the amoeba is also related to the support

supp(f) = {α ∈ Zn : cα W= 0}

of the function f and to the Newton polytope

New(f) = conv(supp(f)) .

Example 2.3. Figure 2 shows the Newton polygon of a
dense quartic polynomial f in two variables. Since we

are not aware of any visualizations of “real-life” amoe-

bas of interesting degree in the literature (in the sense

that the pictures do not only focus on topological cor-

rectness), we present some experiments which illustrate

both the topological and the geometric structure of an

amoeba. Figure 3 depicts a series of amoebas Log V(f)
for dense quartic polynomials f ∈ R[z1, z2]. In the first
picture in this series, f is the product of four linear func-

tions f1, f2, f3, f4. The amoeba of V(f) is the union of
the amoebas of V(f1), V(f2), V(f3), and V(f4). This

polynomial f is perturbed by adding or subtracting to

every coefficient cα of f (with the exception of the coeffi-

cient corresponding to the constant term) independently

a random value in the interval [0, 15 |cα|); see the right
picture in the top row. This perturbation process is then

iterated another four times.

FIGURE 2. Newton polygon of a dense quartic in two

variables.

The series of pictures has been produced with a

Maple program which imposes an appropriate grid on

the complex plane for one of the variables, say z1, then

solving the resulting quartic polynomials for z2.

By Theorem 2.2, the complement cLog V(f) of an
amoeba Log V(f) consists of finitely many components.
This gives rise to the following computational defini-

tion of an order in terms of multidimensional complex

analysis, originating from the computation of multidi-

mensional residues [Forsberg et al. 00].

Definition 2.4. The order of a point w ∈ cLog V(f) is
defined by the vector ν ∈ Zn whose components are

νj =
1

(2πi)n
Log−1(w)

zj∂jf(z)

f(z)

dz1 ∧ · · · ∧ dzn
z1 · · · zn

1 ≤ j ≤ n .

It can be shown that two different points w,wI ∈
cLog V(f) have the same order if and only if they are con-
tained in the same connected component E of cLog V(f).
Hence, ν can also be called the order of the component E.

Moreover, it can be shown that the order ν of any com-

ponent of cLog V(f) is contained in the Newton polytope
New(f). To compute an order, the following description

is useful.

Lemma 2.5. [Forsberg et al. 00] For any vector s ∈ Zn \
{0} and w ∈ cLog V(f), the directional order �s, ν(f, w)X
is equal to the number of zeroes (minus the order of the

pole at the origin) of the one-variable Laurent polynomial

u )→ f(c1u
s1 , . . . , cnu

sn)

inside the unit circle |u| = 1. Here, c ∈ (C∗)n is any
vector with Log(c) = w.

All these results refer to the case where X is an alge-

braic hypersurface. A main difficulty in the treatment of

amoebas of arbitrary varieties comes from the following

simple observation. If X, Y , and Z are subvarieties of

(C∗)n with X ∩ Y = Z, then Log Z ⊂ Log X ∩ Log Y ,
but in general the inclusion is proper.

2.2 Basic Computational Questions

Probably the most natural computational problem on

amoebas is the one of membership which has been raised

by Douglas Lind in connection with [Einsiedler et al 01].
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FIGURE 3. A series of quartic amoebas in two variables. The first picture shows the amoeba of V(f1 · f2 · f3 · f4),
where f1(z1, z2) = 1

30z1 +
1
30z2 − 1 , f2(z1, z2) = 1

5z1 + 4z2 − 1 , f3(z1, z2) = 3z1 +
4
7z2 − 1 , f4(z1, z2) =

30z1 +
1
300z2 − 1 .

Membership:

Instance: Given n, m ∈ N, f1, . . . , fm ∈
C[z±11 , . . . , z±1n ], x ∈ (0,∞)n .

Question: Does there exist z ∈ V(f1, . . . , fm)
with |zk| = xk for 1 ≤ k ≤
n ? (i.e., is (log x1, . . . , log xn) ∈
Log V(f1, . . . , fm) ?)

Expressing every complex number zk in the form

zk = uk + ivk with uk, vk ∈ R, the membership problem
is a decision problem over the real numbers. It is known

from Tarski’s results that those problems are decidable

[Tarski 51]. From the complexity-theoretical point of

view, let us recall that in the binary Turing machine

model, the size of the input is defined as the length of

the binary encoding of the input data [Garey and John-

son 79], so these statements refer to rational input vectors

and rational input polynomials (i.e., polynomials with ra-

tional coefficients).

The time complexity is measured in terms of the over-

all input encoding. If the dimension n is fixed, then the

theory of real closed fields can be decided in polynomial

time [Collins 75, Ben-Or et al. 86]. More precisely, the

following holds:
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Theorem 2.6. For fixed dimension n, the following deci-
sion problem can be decided in polynomial time: Given

rational polynomials p1(x1, . . . , xn), . . . , ps(x1, . . . , xn), a

Boolean formula ϕ(x1, . . . , xn) which is a Boolean com-

bination of polynomial equations and inequalities, i.e.,

pi(x1, . . . , xn) = 0 or pi(x1, . . . , xn) ≤ 0, and quantifiers
Q1, . . . , Qn, decide the truth of the statement

Q1(x1 ∈ R) . . . Qn(xn ∈ R) ϕ(x1, . . . , xn) .

We can conclude:

Corollary 2.7. For fixed dimension n, membership of a
point in an amoeba can be solved in polynomial time.

However, despite this (theoretical) fact that for fixed

dimension these problems can be decided in polyno-

mial time, current implementations are only capable to

deal with very small dimensions, up to three real vari-

ables. Generally, there are two approaches towards prac-

tical solutions of decision problems over the reals. One

is based on Collins’ cylindrical algebraic decomposition

(CAD) [Collins 75], and the other one is the critical point

method ([GrigorIev and Vorobjov, Jr.]; for the state of
the art, see [Aubry et al. 02]).

Another natural computational task is to compute (at

least in a numerical sense) the (relative) boundary for the

amoeba of a given ideal, e.g., for visualization purposes.

This will be done in Section 5.

2.3 Known Results on the Membership Problem

The best way to answer questions like the membership

problem is to know an explicit representation of the

amoeba, say, in terms of equalities and inequalities. Ex-

ample 2.1(b) contains a representation of this kind for the

class of binomials. In [Forsberg et al. 00], those represen-

tations have been derived for the case of hypersurface

amoebas Log V(f), where f is a product of linear func-
tions f1, . . . , fm. Since Log V(g·h) = Log V(g)∪Log V(h)
for any Laurent polynomials g, h, all factors of f can be

considered separately; hence, we can assume m = 1.

Let PnR and PnC denote the n-dimensional real projec-
tive space and n-dimensional complex projective space,

respectively. In order to derive an explicit representation

of a hyperplane amoeba, it is helpful to decompose the

logarithmic map into two mappings. Firstly, the moment

map

PnC → ∆n

(z0, . . . , zn) )→ (|z0|, |z1|, . . . , |zn|)
n
i=0 |zi|

,

where ∆n is the regular simplex,

∆n = {(t0, . . . , tn) ∈ Rn : t0, . . . , tn ≥ 0,
n

i=0

ti = 1} .

This moment map can be considered on the whole variety

V(f) in Cn or PnC rather than only on the subvariety of
(C∗)n. The second mapping

int(∆n) → Rn

(t0, . . . , tn) )→ log t1t0 , . . . , log
tn
t0

,

is a homeomorphism from the interior of ∆n to Rn. Fol-
lowing the notation in [GelIfand et al. 94], the image of
a set X under the first mapping is called the compacti-

fied amoeba of X . In particular, the following theorem

from [Forsberg et al. 00] shows that it maps hyperplanes

to polytopes.

Theorem 2.8. [Forsberg et al. 00] The compactified

amoeba of a hyperplane

X = {z ∈ PnC :
n

i=0

aizi = 0} ,

ai ∈ C, is the polytope in ∆n defined by the inequalities

|aj |tj ≤
k W=j

|ak|tk , 0 ≤ j ≤ n .

If no two of the coefficients ai are zero then the polytope

has n+1
2 vertices given by

1

|ai|+ |aj | (|aj |ei + |ai|ej) , 0 ≤ i < j ≤ n ,

where ek denotes the k-th unit vector. In particular, for

n = 2, the compactified amoeba is the triangle in ∆2 with

vertices

1

|a0|+ |a1| (|a1|, |a0|, 0) ,
1

|a0|+ |a2| (|a2|, 0, |a0|) ,
1

|a1|+ |a2| (0, |a2|, |a1|) .

Figure 4 depicts the compactified amoeba of the (pro-

jective closure of the) linear variety V(f) with f(z1, z2) =
z1/2 + z2/5− 1 from Example 2.1.

Hence, in order to check whether a given point w ∈ Rn
is contained in the amoeba Log V(f) of a hyperplane V(f)
we compute the corresponding point t in the compacti-

fied variant by ti = ewi/(
n
i=0 e

wi), 0 ≤ i ≤ n. By
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(1, 0, 0) (0, 1, 0)

(0, 0, 1)

FIGURE 4. Compactified amoeba of f(z1, z2) = 1
2z1 +

1
5z2 − 1.

(a) With hole (b) Without hole

FIGURE 5. Compactified amoeba of plane cubic curves which factor into three linear terms.

Theorem 2.8, we just have to check containment of t in a

polytope that is given as an intersection of finitely many

halfspaces.

Figure 5 shows what can happen when considering the

amoeba of a plane cubic curve that factors into three

lines. The amoeba of that curve is the union of the amoe-

bas of each line. For some of these curves, the amoeba

contains a “hole,” i.e., an additional bounded component

in the complement (as in Figure 5(a)), and for some of

these curves, the amoeba does not contain such a hole

(as in Figure 5(b)).

3. AMOEBAS OF LINEAR VARIETIES

In this section, we consider linear varieties in PnC of di-
mension less than n − 1. In general, the compactified
amoeba of a variety of this kind is not a polytope, even if

the variety is defined by linear equations with real coeffi-

cients. A line f ⊂ PnC which is defined by linear equations
with real coefficients is called a real line in PnC. Fig-

ure 6(a) shows the compactified amoeba of a real line in

P3C.
In order to answer membership questions for real

lines in PnC, we consider the following quadratic amoeba

([Ruan 00]) defined by the map

PnC → ∆n

(z0, z1, . . . , zn) )→ (|z0|2, . . . , |zn|2)
|z0|2 + . . .+ |zn|2 . (3—1)

Analogous to Section 2, if we know an explicit represen-

tation of a quadratic amoeba, then we can easily solve

the membership problem.

A line f ⊂ PnC can be represented by its n-dimensional
Plücker coordinate (pij)0≤i<j≤n ∈ P(

n+1
2 )

C as follows (see,

e.g., [Hodge and Pedoe 47, Cox et al. 96]). If a, b ∈ PnC
are two different points on f, then let pij = aibj − ajbi,
0 ≤ i < j ≤ n. It is well-known that the pij satisfy

certain quadratic relations, the Plücker relations. For

example, for n = 3, we have p01p23−p02p13+p03p12 = 0.
The following theorem shows that the quadratic amoeba

of a real line in complex n-space is the convex hull of an

ellipse. See Figure 6(b) for an example.

Remark 3.1. Figures 6(a) and (b) have been produced
with a three-dimensional surface plot in Maple, where

the line f ⊂ P3C is considered as a two-dimensional affine
subspace over the reals.
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(a) Compactified amoeba (b) Quadratic amoeba

FIGURE 6. Amoebas of the line {(0, 1, 2) + λ(1,−1,−1) : λ ∈ C} ⊂ C3.

Theorem 3.2. Let n ≥ 3, and let f be a real line in PnC with
Plücker coordinate (pij)0≤i<j≤n ∈ PnR. Furthermore, let
none of the coefficients pij be zero. A point w ∈ ∆n is
contained in the quadratic amoeba of f if and only if the

following equations and inequality are satisfied:

p12p1jp2jw0 − p02p0jp2jw1 + p01p0jp1jw2
− p01p02p12wj = 0 , 3 ≤ j ≤ n (3—2)

and

2p213p
2
23w1w2 + 2p

2
12p

2
23w1w3 + 2p

2
12p

2
13w2w3

− p423w21 − p413w22 − p412w23 ≥ 0 . (3—3)

Since the theorem assumes that none of the coefficients

pij is zero, the n − 2 equations in (3—2) define a two-
dimensional subspace. Further note that for a line whose

Plücker coefficients are not all nonzero, equations (3—2)

and inequality (3—3) might vanish identically (e.g., for

f = {(0, 0, 0) + λ(1, 2, 3) : λ ∈ C}. However, all these
special cases can be treated separately.

Proof: Consider the points A = (p01, 0,−p12,−p13,
. . . ,−p1n) and B = (−p02,−p12, 0, p23, . . . , p2n) on f.

Then f can be written in the parameterized form λA+µB

with λ, µ ∈ C, (λ, µ) W= (0, 0). Without loss of generality,
we can assume λ ∈ R.
In order to prove that the image of every point z ∈

f under the quadratic amoeba mapping satisfies (3—2)

and (3—3), let z have the form λA + µB. To simplify

notation, let w denote only the numerator of the image

defined in (3—1). Then we have

w0 = |λp01 − µp02|2 , (3—4)

w1 = |µ|2p212 , (3—5)

w2 = λ2p212 , (3—6)

wj = |− λp1j + µp2j |2 , 3 ≤ j ≤ n . (3—7)
We expand the sum on the left-hand side of (3—2) via

(3—4)—(3—7) and |a|2 = aa, and separately consider the

coefficients of λ2, |µ|2, and λ(µ + µ) in this expansion.

The coefficient of λ2 is

−p01p12p1j(p01p2j − p02p1j + p0jp12) .
The expression in the brackets evaluates to zero by the

Plücker relations. Since the coefficients of |µ|2 and of
λ(µ + µ) vanish as well, Equation (3—2) is satisfied for

3 ≤ j ≤ n.
Expanding the sum on the left-hand side of (3—3), the

coefficients of λ4, λ3(µ+µ), λ|µ|2(µ+µ), and |µ|4 vanish.
With regard to terms of degree 2 in both variables, there

are terms both containing λ2|µ|2 and terms containing
λ2(µ+ µ)2. Namely, we obtain the expression

4p212p
2
13p

4
23λ

2|µ|2 − p212p213p423λ2(µ+ µ)2 .
Since pij ∈ R, λ ∈ R and (µ + µ)2 = 4(Re µ)2 ≤ 4|µ|2,
inequality (3—3) is fulfilled.

Conversely, assume that a point w ∈ ∆n satisfies

(3—2) and (3—3). We will explicitly compute the parame-

ters λ ∈ R and µ ∈ C of a point z ∈ f with n
i=0 |zi|2 = 1

such that w is the image of z under the quadratic amoeba

mapping.
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Since none of the Plücker coefficients pij is zero, the

representations (3—5) and (3—6) of w in terms of λ, µ

imply |µ|2 = w1/p
2
12 and λ2 = w2/p

2
12. Furthermore,

since the case w1 = w2 = 0 would lead to a contradiction,

we have |µ|2 > 0 or λ2 > 0. Equation (3—7) for j = 3

implies

−λ(µ+ µ) = w3 − λ2p213 − |µ|p223
p23p13

. (3—8)

In case λ W= 0, squaring this equation and substituting

the expressions for |µ|2 and λ2 yields

(Re µ)2 =
(p212w3 − p213w2 − p223w1)2

4p212p
2
13p

2
23w2

.

This equation together with the equation for |µ|2 give a
solution for µ if and only if the right-hand side is less

than or equal to |µ|2, which yields the condition

(p212w3 − p213w2 − p223w1)2 ≤ 4p213p223w1w2 .

However, the latter condition is equivalent to inequal-

ity (3—3). Hence, there exists a solution for λ and µ sat-

isfying (3—5), (3—6), and (3—7) for j = 3. It remains to

show that this solution also satisfies (3—4) and (3—7) for

4 ≤ j ≤ n. With regard to (3—4), substituting λ(µ + µ)
in (3—4) by (3—8) and substituting λ2, |µ|2 in the resulting
equation gives the linear equation in w,

(p202p13p23 − p01p02p223)w1 + (p201p13p23 − p213p01p02)w2
+ p01p02p

2
12w3 = p

2
12p13p23w0 .

By applying the Plücker relations on the terms in the

brackets, this equation is equivalent to (3—2). Anal-

ogously, it can be checked that (3—7) is satisfied for

4 ≤ j ≤ n. Finally, the case λ = 0 implies w2 = 0

and can be checked directly.

The following corollaries express the quadratic amoeba

directly in terms of the defining inequalities of a real line

f in 3- or 2-space.

Corollary 3.3. Let f be a line in P3C given as the solution
of the system of linear equations

a0z0 + a1z1 + a2z2 + a3z3 = 0 ,

b0z0 + b1z1 + b2z2 + b3z3 = 0

with real coefficients ai, bi. Further, let q =

(q01, . . . , q23) ∈ P5R, qij = aibj − ajbi, denote the

dual Plücker coordinate of f, and let none of the dual

Plücker coefficients qij be zero. Then the quadratic

amoeba of f is given by the set of points w ∈ ∆3 sat-
isfying

q01q02q03w0 − q01q12q13w1 + q02q12q23w2
− q03q13q23w3 = 0 (3—9)

and

2q201q
2
02w1w2 + 2q

2
01q

2
03w1w3 + 2q

2
02q

2
03w2w3 − q401w21

− q402w22 − q403w23 ≥ 0 . (3—10)

Proof: The statement follows immediately from Theo-

rem 3.2 and the well-known relation that the vectors

(p01, . . . , p23) and (q23,−q13, q12, q03,−q02, q01) coincide
in P5 (see, e.g., [Hodge and Pedoe 47]).

Similar to Theorem 3.2 it can be shown:

Corollary 3.4. Let f be a line in P2C given as the solution
of the linear equation

a0z0 + a1z1 + a2z2 = 0

with real coefficients ai. Then the quadratic amoeba of f

is given by the inequality

2a20a
2
1w0w1 + 2a

2
0a
2
2w0w2 + 2a

2
1a
2
2w1w2 −

2

i=0

a4iw
2
i ≥ 0 .

The following statement gives a partial answer to the

question of how the quadratic amoebas of hyperplanes

look.

Theorem 3.5. The quadratic amoeba of a hyperplane

X = {z ∈ PnC :
n

i=0

aizi = 0} ,

ai ∈ C, has a boundary which is contained in a hyper-
surface of degree 2n−1. For n = 3 this surface is given

by

W2W3(8W1 + 4(W0 −W1 −W2 −W3))
2

− (−4W1(W2 +W3) + (W0 −W1 −W2 −W3)
2

+ 4W2W3)
2 = 0 ,

where Wi := |ai|wi.
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Proof: According to Theorem 2.8, the facets of the poly-

tope of the compactified amoeba are given by equations

of the form

|a0|t0 =
n

i=1

|ai|ti (3—11)

in the variables t0, . . . , tn.

By passing over to the quadratic amoeba, described in

the variables w0, . . . , wn, we obtain instead

|a0|w0 =
n

i=1

|ai|wi. (3—12)

Without loss of generality, we assume n ≥ 2. By n − 1
squaring steps, we can eliminate the square roots of

w0, . . . , wn−2. Since the original equation is homoge-

neous, this gives an equation in which the only square

root is
√
wn−1wn. This square root can be removed by

another squaring operation. In particular, for n = 3, the

squaring operations are applied on Equation (3—12),

W1 ·2( W2+ W3) = W0−W1−W2−W3−2 W2W3 ,

and on

W2W3(8W1 + 4(W0 −W1 −W2 −W3))

= −4W1(W2 +W3) + (W0 −W1 −W2 −W3)
2 + 4W2W3.

We obtain the equation stated in the theorem. Since

the equations of the other facets in Theorem 2.8 differ

from (3—11) just by various signs (which become irrele-

vant within the squaring process), they lead to the same

equation.

The same method for computing the hypersurface

equation can be used for any n ≥ 2.

For all the classes of varieties treated in this section,

we observe: If the quadratic amoeba is defined by equa-

tions with real coefficients, then the relative boundary of

the amoeba is given by the images of real points in the

variety V . In particular, for a point w in the amoeba with

a real preimage in V , the inequalities (3—3) and (3—10)

become equalities. If we neglect the common denomi-

nator of all components, then for the real points in V ,

the quadratic amoeba mapping is a Veronese mapping

PnC → PnC, z )→ (z20 , . . . , z
2
n). So the problem to charac-

terize the quadratic amoeba images for the real points

of a d-dimensional linear subspace in PnC corresponds to
finding the algebraic relations of the squares of n + 1

homogeneous linear forms on a d-dimensional projective

space. From this point of view, Corollary 3.3 implies that

the squares of four homogeneous linear forms (in general

position) on a one-dimensional projective space satisfy a

linear and a quadratic relation.

In order to investigate these algebraic relations for

higher dimensions, we can apply computer algebra sys-

tems, such as Macaulay 2 [Grayson and Stillman 01]

(see, e.g., [Eisenbud 01, page 19] for a related treatment

of the twisted cubic curve). In this computer experiment,

we work over the finite field F := Z32749, taking into ac-
count the experience that for these kind of computations,

we obtain the same qualititative results we would get in

characteristic 0.

The Macaulay 2 program shown below

chooses n + 1 random homogeneous linear forms

L0(z0, . . . , zd), . . . , Ln(z0, . . . , zd) in d + 1 homogeneous

variables,

PdF → PnF ,
(z0, . . . , zd) )→ (L0(z0, . . . , zd), . . . , Ln(z0, . . . , zd)) .

Assuming that the linear forms are generic, the image

of this map defines a d-dimensional subspace of an n-

dimensional projective space. The kernel of the map de-

fines an ideal I ⊂ Z32749[y0, . . . , yn] which consists of the
algebraic relations among the elements in the image (for

the algorithmic techniques underlying the computation

of this ideal see [Burundu and Stillman 93]).

d = 1

n = 3

R = ZZ/32749[z_0..z_d]

S = ZZ/32749[y_0..y_n]

I = kernel( map( R, S, apply(toList(0..n),

i -> (random(1,R))^2 )));

d, n, dim I, degree I,

apply(first entries mingens I, f -> degree f)

Besides the values of d, n, the dimension of I, and the

degree of I, the last line prints the degrees of a minimal

set of generators of I. The output is

(1, 3, 2, 2, {{1}, {2}})

The degrees {1, 2} of a minimal set of generators corre-
spond to the linear and the quadratic relation of Corol-

lary 3.3. For amoebas of planes in 4-space we have to con-

sider d = 2 and n = 4. The corresponding Macaulay 2

computation shows that the homogeneous ideal of alge-

braic relations for the squares of the five linear forms is

generated by seven cubics:

(2, 4, 3, 4, {{3}, {3}, {3}, {3}, {3}, {3}, {3}})

So these computations give some indication how the

quadratic amoeba images of the real points in the lin-

ear variety can be characterized. However, we do not
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know in how far these techniques can be exploited to find

good characterizations also of the images of the complex

points.

4. AMOEBAS OF NONLINEAR VARIETIES

In this section, we explain the computation of an amoeba

when the defining equations of the variety have a sim-

pler expression in terms of algebraically independent

monomials. Let φ1, . . . ,φd be d Laurent monomials in

n variables, say, φi = zai = zai11 zai22 · · · zainn , where

ai = (ai1, . . . , ain) ∈ Zn. They define a homomorphism
φ of algebraic groups from (C∗)n to (C∗)d. Let V be any
subvariety of (C∗)d. Then its inverse image φ−1(V ) is
a subvariety of (C∗)n. Our objective is to compute the
amoeba of φ−1(V ) in terms of the amoeba of V .

Lemma 4.1. The following three conditions are equiva-
lent:

(i) The map φ is onto.

(ii) The monomials φ1, . . . ,φd are algebraically indepen-

dent.

(iii) The vectors a1, . . . , ad are linearly independent.

Proof: Equivalence of (ii) and (iii) is stated, e.g., in the

proof of [Sturmfels 96, Lemma 4.2]: Every Z-linear re-
lation among a1, . . . , an translates into an algebraic re-

lation of the form φd1i1 · · ·φdrir − φe1j1 · · ·φesjs = 0 with

d1, . . . , dr, e1, . . . , es ∈ N. The ideal of all algebraic rela-
tions among our monomials is generated by such binomi-

als.

In order to show that (iii) implies (i), for a given y ∈
(C∗)d, choose x ∈ Cd with exi = yi, 1 ≤ i ≤ d. If

a1, . . . , ad are linearly independent, then there exists z ∈
Cn with ai1z1 + . . . + ainzn = xi for 1 ≤ i ≤ d; hence
φ(ez1 , . . . , ezn) = y.

Finally, in order to show that (i) implies (iii), it suf-

fices to show that the integer vectors a1, . . . , ad are lin-

early independent over R. For a given x ∈ Rd, let z
be the preimage of (ex1 , . . . , exd) under φ. We can as-

sume z ∈ (0,∞)n because otherwise we can pass over to
(|z1|, . . . , |zn|). Since ai1z1 + . . .+ ainzn = xi, 1 ≤ i ≤ d,
we can conclude the linear independence.

Let φI denote the restriction of φ to the multiplicative
subgroup (0,∞)n. Consider the following commutative
diagram of multiplicative abelian groups:

(C∗)n φ−→ (C∗)d
↓ ↓

(0,∞)n φI−→ (0,∞)d
The vertical maps are taking coordinate-wise absolute

value. For vectors p = (p1, . . . , pn) in (C∗)n, we write
|p| = (|p1|, . . . , |pn|) ∈ (0,∞)n, and similarly for vectors
of length d. Further, for V ⊂ (C∗)n let |V | := {|p| : p ∈
V }.

Lemma 4.2. Suppose that the three equivalent conditions
in Lemma 4.1 hold. Then |φ−1(V )| = φI−1(|V |).

Proof: It is straightforward to check, without any as-

sumptions on φ, that φI maps |φ−1(V )| into |V |. In other
words, |φ−1(V )| is always a subset of φI−1(|V |). What we
must prove is φI−1(|V |) ⊂ |φ−1(V )|. Let u ∈ φI−1(|V |).
Then φI(u) ∈ |V |. Fix any point ξ in the subvariety V
of (C∗)d such that |ξ| = φI(u). Now use the assumption
that φ is surjective: We choose any preimage η of ξ under

φ. Thus η is a point in the subvariety φ−1(V ) of (C∗)n.
Consider now the point η · u · (|η|)−1 in the algebraic
group (C∗)n. We have

φ η · u · (|η|)−1 = φ(η) · φ(u) · |φ(η)|−1
= ξ · φI(u) · |ξ|−1 = ξ ∈ V.

Thus η · u · (|η|)−1 lies in φ−1(V ). Its image under the
absolute value map equals

η · u · (|η|)−1 = |η| · |u| · (|η|)−1 = |u| ,

and we conclude that u lies in |φ−1(V )|, as desired.

Lemma 4.2 applies to the logarithmic amoeba, the

compactified amoeba, and the quadratic amoeba of

φ−1(V ), since all of these amoebas are images of

|φ−1(V )|.

Corollary 4.3. Let f =
d
i=1 ci · zai11 · · · zainn be a

Laurent polynomial with algebraically independent terms.

Then the compactified (respectively, quadratic) amoeba

of V(f) is the inverse image under φI of the compact-
ified (respectively, quadratic) amoeba of the hyperplane

d
i=1 ciyi = 0. The logarithmic amoeba Log V(f) is the

inverse image of the logarithmic hyperplane amoeba un-

der the linear map defined by the matrix (aij).

Example 4.4. The Grassmann variety G1,3 of lines in
3-space is the variety in P5C defined by

p01p23 − p02p13 + p03p12 = 0 .
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Here, we consider G1,3 as a subvariety of (C∗)6. The

three terms in this quadratic equation involve distinct

variables and are hence algebraically independent. Note

that G1,3 equals φ−1(V ) where

φ : (C∗)6 → (C∗)3 ,
(p01, p02, p03, p12, p13, p23) )→ (p01p23, p02p13, p03p12)

and V denotes the plane in 3-space defined by the linear

equation

x − y + z = 0 .

As we saw earlier in Corollary 3.4, the quadratic amoeba

of V is defined by the inequality

X2 + Y 2 + Z2 ≤ 2XY + 2XZ + 2Y Z .

Corollary 4.3 implies that the quadratic amoeba of G1,3
is defined by

P 201P
2
23 + P 202P

2
13 + P 203P

2
12 ≤

2P01P02P13P23 + 2P01P03P12P23 + 2P02P03P12P13 .

5. DRAWING TWO-DIMENSIONAL AMOEBAS

After having investigated specific classes of varieties, we

now want to “compute” the geometry of an arbitrary

two-dimensional amoeba in the sense of drawing it. As

already seen in Section 2, the main task is to understand

the boundary structure and topology of the amoeba.

In [Mikhalkin 00], the logarithmic Gauss map was used to

investigate the border of two-dimensional amoebas from

a topological point of view. Here, we will use these ideas

to establish a homotopy-based numerical algorithm for

drawing an amoeba. For general references on homotopy-

based numerical techniques in solving systems of polyno-

mial equations we refer to [Cox et al. 98, Verschelde 99].

Let f ∈ C[z1, z2] and assume z ∈ (C∗)2 is a non-
singular point in V(f). We fix a small neighborhood U
around z and one branch of the holomorphic logarithm

function for this neighborhood. The image of this local

logarithm function log applied to U ∩V(f) defines a one-
dimensional complex manifold in C2. In particular, the
normal direction of this manifold at w = log z is given by

the logarithmic Gauss map γ : U ∩ V(f)→ P1C,

γ(z) =
d(f ◦ ew)
dw w=log z

=
∂f

∂z1
(ew),

∂f

∂z2
(ew) · diag(ew1 , ew2)

w=log z

= z1
∂f

∂z1
(z1, z2) , z2

∂f

∂z2
(z1, z2) .

Let critLog(f) denote the critical points of the amoeba

mapping, i.e., the points z where the differential map-

ping of the amoeba mapping is not surjective. In order

to exhibit the geometric relationships, let us review the

following theorem from [Mikhalkin 00].

Theorem 5.1. Let f ∈ C[z1, z2] be a polynomial with real
coefficients, and V(f) be nowhere singular. Further, let
γ : V(f) → P1C be its logarithmic Gauss map. Then the
set of critical points of the amoeba mapping is given by

critLog(f) = γ−1(P1R).

Proof: A point z is a critical point of the amoeba mapping

if and only if the hypersurface defined by f contains a

tangent direction (t1, t2) ∈ C2 \ {0} such that tk = ickzk
for some real constants ck, k ∈ {1, 2}. Combining this
with the tangent condition,

t1
∂f

∂z1
(z) + t2

∂f

∂z2
(z) = 0 ,

we obtain the condition

c1γ1(z) + c2γ2(z) = 0 .

This equation has a nonzero real solution for (c1, c2) if

and only if γ(z) ∈ P1R ⊂ P1C.

FIGURE 7. Critical points of the amoeba of a cubic function.

Every boundary point of the amoeba is a critical point

of the amoeba mapping. Quite interestingly, we can also

have a look at what happens in the situations when there

are fewer holes than the maximum possible number given

by the number of lattice points in the Newton polygon.

Figure 7 shows an amoeba and its critical points for a

cubic polynomial whose amoeba does not have a hole.

We observe that the critical points bound a nonconvex

region.
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FIGURE 9. The two traces of the set of critical points

However, Figure 7 also shows that besides the bound-

ary points and the critical points bounding a noncon-

vex region, there are even more critical points. In order

to extract useful boundary information from the critical

points, we propose to use a homotopy-based method to

trace the different branches within the set of all critical

points separately. To illustrate this idea, consider the

parabola V(f) in C2 defined by f(z1, z2) = z2 − z21 +
2z1 − 5.

–2

2

4

6

–10 –8 –6 –4 –2 2 4

FIGURE 8. The critical points of the amoeba map for the
function z2 − z21 + 2z1 − 5.

Figure 8 shows the critical points of this function. By

Theorem 5.1, they can be computed as follows. For all

real s ∈ R, we want to solve

f(z1, z2) = 0 , (5—1)

g(z1, z2, s) := z1
∂f

∂z1
(z1, z2)− sz2 ∂f

∂z2
(z1, z2) = 0 (5—2)

for z1 and z2. In order to avoid solving many systems

of polynomial equations from scratch, we can apply the

following numerical homotopy technique. If we know a

solution z to the system of equations for a given start-

ing parameter s, then we can trace the corresponding

one-dimensional branch of solutions by successively per-

turbing s and numerically computing the new preimage

znew.

For the parabola, we obtain the two traces depicted

in Figure 9. Note that these two traces coincide in the

lower right part. The two points in which the two traces

split are singular points for these curves; these points are

also depicted in Figure 8. Since there does not exist a

unique tangent direction in these two points, they satisfy

(5—1), (5—2), as well as the equation

det

∂f
∂z1
(z1, z2)

∂f
∂z2
(z1, z2)

∂g
∂z1
(z1, z2, s)

∂g
∂z2
(z1, z2, s)

= 0 .

Namely, in case of a nonzero determinant, the Implicit

Function Theorem would guarantee a unique tangent di-

rection. Altogether, this gives a system of three polyno-

mial equations in the variables x, y, s for computing the

candidates of the splitting points.

Since the set of critical points is a superset of the

amoeba boundary, they decompose the amoeba into

smaller regions. The next task is to decide algorithmi-

cally which of the regions in the whole plane belong to

the amoeba and which of them are the complement com-

ponents. Numerically, we can proceed as follows. For

every critical point z which we compute during the ho-

motopy method, we sample the neighborhood of z on the

complex variety V(f) by numerically computing several
points z(1), . . . , z(r) ∈ V(f) close to z. For any of these
points z(i), we compute and draw the image Log z(i). Fig-

ure 10 shows the images of the sampling points in grey

color. By definition, these additional points lie inside the

amoeba. Hence, every region which contains at least one

image of a sampling point belongs to the amoeba.

Note that in Figure 10, sampling the neighborhood of

those critical points whose images are contained in the

interior of the amoeba only gives image points towards
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FIGURE 10. Numerically drawing the boundary

the lower-right side. Hence, they do not give a certificate

that the upper-left region is part of the amoeba. How-

ever, this certificate is established by the critical points

on the upper-left boundary. For related topological in-

vestigations compare [Mikhalkin 00]. (For example, the

nonsingular critical points which are contained in both

curves of Figure 9 stem from nonreal preimages. The

nonsingular critical points which appear in only one curve

stem from a real preimage.)

Now, assuming an underlying grid on the whole plane

R2, techniques from computer graphics like filling algo-

rithms can be applied to fill all the regions in which a

noncritical point exists.

We remark that for the distinction of amoeba regions

from the complement regions, it would also be helpful to

have good algorithmic characterizations of the tentacle

directions. Those characterizations in terms of univer-

sal Gröbner bases are currently investigated by Bernd

Sturmfels [Sturmfels 02].
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