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We give a global description of the Frobenius for the division
fields of an elliptic curve E that is strictly analogous to the cy-
clotomic case. This is then applied to determine the splitting of
a prime p in a subfield of such a division field. These subfields
include a large class of nonsolvable quintic extensions and our
application provides an arithmetic counterpart to Klein’s ”solu-
tion” of quintic equations using elliptic functions. A central role
is played by the discriminant of the ring of endomorphisms of
the reduced curve modulo p.

1. INTRODUCTION

Given a Galois extension L/K of number fields with Ga-

lois group G, a fundamental problem is to describe the

(unramified) primes p of K whose Frobenius automor-

phisms lie in a given conjugacy class C of G. In par-

ticular, all such primes have the same splitting type in

a subextension of L/K. In general, all that is known

is that the primes have density |C|/|G| in the set of all
primes (the Chebotarev theorem ).

For L/K, an abelian extension, Artin reciprocity de-

scribes such primes by means of their residues in gener-

alized ideal classes of K. In the special case that L is

obtained explicitly by adjoining to K the n-th division

points of the unit circle, we have that G ⊂ GL1(Z/nZ) =
(Z/nZ)∗ and the Frobenius of p is determined by the
norm N(p) modulo n. If K = Q (cyclotomic fields), we

have that G = GL1(Z/nZ) and any abelian extension
of Q occurs as a subfield of such an L for a suitable n

(Kronecker-Weber). Here the Chebotarev theorem re-

duces to the prime number theorem in arithmetic pro-

gressions.

In a similar manner, an elliptic curve E over K gives

rise to its n-th division field Ln by adjoining to K all the

coordinates of the n-torsion points. Now Ln is a (gener-

ally nonabelian) Galois extension of K with Galois group
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G, a subgroup of GL2(Z/nZ) (see [Serre 72]). In this pa-
per, we will give a global description of the Frobenius for

the division fields of an elliptic curve E that is strictly

analogous to the cyclotomic case. This is then applied

to determine the splitting of primes in fields contained in

Ln or, as we shall say, uniformized by E. As observed

by Klein (see [Klein 56]), such fields include a large class

of nonsolvable quintic extensions. Our aim in this appli-

cation is to provide an arithmetic counterpart to Klein’s

“solution” of quintic equations using elliptic functions.

By using CM curves, we may uniformize all abelian

extensions of imaginary quadratic fields. A classical ap-

plication here is the result of Gauss that

x3 − 2

factors completely modulo a prime p > 3 if and only if

p = x2 + 27y2

for integers x and y (see [Cox 89]). One way to derive

this is to determine the Frobenius class of p in the field

obtained by adjoining to Q the x-coordinates of the 3-

division points of the elliptic curve given by

y2 = x3 − 15x+ 22,

which has CM by the quadratic order of discriminant -12.

Analogous results for nonsolvable quintics require non-

CM curves. Consider the quintic

f(x) = x5 + 90x3 + 3645x− 6480,

which has discriminant (2)12(3)16(5)5(7)6. Its splitting

field has Galois group S5 over Q. It follows from the

results of this paper that f(x) factors completely modulo

p > 7 if and only if

p = x2 − 25∆py2

where ∆p is the discriminant of the ring of endomor-

phisms of the elliptic curve

y2 = x(x− 1)(x− 3)

reduced mod p. The first two such primes are 1259 and

1951 for which ∆1259 = −31 and ∆1951 = −51 and where

1259 = (22)2 + 25 · 31 · 12

and

1951 = (26)2 + 25 · 51 · 12.

As may be checked,

f(x) ≡ (x+ 734)(x+ 322)(x+ 26)(x+ 851)(x+ 585)
mod1259

and

f(x) ≡ (x+ 1029)(x+ 1222)(x+ 839)(x+ 1771)
· (x+ 992) mod 1951.

In the non-CM case, ∆p is not determined by arithmetic

progressions in p. A goal of this paper is to complement

that of Shimura [Shimura 66] by pointing out the role of

∆p in such questions.

2. OUTLINE OF RESULTS

Given an elliptic curve E defined over a number field K

and a prime ideal p in OK of good reduction for E, we
shall define an integral matrix σp of determinant N(p)

whose reduction modulo n gives the action of the Frobe-

nius for Ln, the n-th division field of E. Let ap be defined

as usual by

#Ep(k) = N(p)− ap + 1 (2—1)

where Ep is the reduction of E at p and is defined over

k, the residue field of p that satisfies #k = N(p) = pr.

Let R be the ring of those endomorphisms of E that

are rational polynomial expressions in the Frobenius en-

domorphism φp. If φp is multiplication by an integer,

then R = Z and we define ∆p = 1 and bp = 0. Otherwise
the ring R is the centralizer of the Frobenius endomor-

phism in the endomorphism ring of Ep over k and is an

imaginary quadratic order whose discriminant we denote

by ∆p. We shall see that p does not divide the conductor

m of ∆p and that there is a unique positive integer bp so

that

4N(p) = a2p − ∆p b
2
p. (2—2)

We associate to p the following integral matrix of deter-

minant N(p):

σp =

}
(ap + bpδp)/2 bp
bp(∆p − δp)/4 (ap − bpδp)/2

]
(2—3)

where for a discriminant ∆ we have δ = 0, 1 according

to whether ∆ ≡ 0, 1 mod 4. We shall show that σp gives
a global representation of the Frobenius class over p for

each n-th division field of E by reducing it modulo n,

provided p is prime to n.

Theorem 2.1. Let E be an elliptic curve defined over a

number field K and n > 1 an integer. Let Ln be the n-th
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division field of E with Galois group G over K. Let p be

a prime of good reduction for E with N(p) prime to n.

Then p is unramified in Ln and the integral matrix σp
defined in (2—3), when reduced modulo n, represents the

class of the Frobenius of p in G.

The proof we give of this uses the theory of canonical

lifts of endomorphisms due originally to Deuring.

In analogy to the cyclotomic case, we have associated

to each curve a sequence of prime power matrices, de-

fined in terms of arithmetic data from the reduced elliptic

curve that give the Frobenius in all of the division fields.

Let C be a conjugacy class of G and let πE(X;n,C) be

the number of primes p of good reduction with N(p) ≤ X
such that σp ≡ C0 mod n for some C0 ∈ C. By the Cheb-
otarev theorem [Chebotarov 95], we derive the following

strict analogue of the prime number theorem in progres-

sions for the sequence σp :

πE(X;n,C) ∼ |C||G|πK(X)

as X → ∞, where πK(X) counts all primes of K with

N(p) ≤ X.
Of more interest for us here is the fact that the split-

ting type of p in any field betweenK and the n-th division

field Ln is determined by σp mod n. For example, we get

immediately a criterion for complete splitting in the full

division field in terms of the invariants ap and bp modulo

n, provided n is odd.

Corollary 2.2. Let E be an elliptic curve defined over

a number field K and n > 1 an odd integer. Then p,

a prime of good reduction for E with N(p) prime to n,

splits completely in Ln if and only if ap ≡ 2 mod n and
bp ≡ 0 mod n.

For a discriminant ∆, let

Q∆(x, y) = x
2 + δxy − ((∆− δ)/4)y2

be the principal form where δ = 0, 1 according to whether

∆ ≡ 0, 1 mod 4. For p a prime of good reduction for E
we get a representation

N(p) = Q∆p
(x, y) (2—4)

with integral x, y upon using the change of variables

x = (ap − bpδp)/2 y = bp (2—5)

in (2-2). This representation is primitive if p is ordinary.

Let L+n be the extension of K obtained by adjoining only

the Weber functions of the n-th division points, that is

the x-coordinates unless j(E) = 0 or j(E) = 1728, in

which case we must first cube or square the coordinates,

respectively. By Theorem 2.1, we may determine which

sufficiently large ordinary primes split completely in L+n
from any such primitive representation.

Corollary 2.3. Let E be an elliptic curve defined over a

number field K as above and n ≥ 1 an integer. Then

there is a constant C0 depending only on E and n so that

for every ordinary prime p of K with N(p) > C0 we have

that p splits completely in L+n if and only if x ≡ ±1 mod n
and y ≡ 0 mod n in any primitive representation

N(p) = Q∆p
(x, y).

If E has CM by the ring of integers in an imaginary

quadratic field of discriminant ∆, then the splitting com-

pletely condition in L+n becomes simply

N(p) = Q∆(x, y)

with integers x ≡ ±1 mod n and y ≡ 0 mod n. Actually,
suppose we take for E the elliptic curve with lattice given

by the ring of integers of an imaginary quadratic field F of

discriminant ∆ and take K = F (j(E)), the Hilbert class

field of F . It follows from Corollary 2.3 that a sufficiently

large rational prime p splits in L+n iff p = Q∆(x, y) with

integers x ≡ ±1 mod n and y ≡ 0 mod n. This is a well-
known result of CM theory.

Another simple consequence in the CM case, this time

of Corollary 2.2, is that the conditions

#Ep(k) ≡ 0 mod n2 and N(p) ≡ 1 mod n,

which are clearly necessary for p of good reduction to

split completely in Ln, are also sufficient, at least when

n is odd.

Our main application is to describe the primes that

split completely in certain nonsolvable quintic extensions

M/K. Suppose M is given by adjoining to K a solution

of a principal quintic over K:

f(x) = x5 + ax2 + bx+ c = 0

and that the discriminant of f is D. Suppose further that

the Galois group of the normal closure L of M is S5 and

that
√
5D ∈ K.

Theorem 2.4. Let M/K be a nonsolvable quintic exten-

sion as above. There exists an elliptic curve E defined
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over K so that a prime p of K that has good reduction

for E and is prime to 5 splits completely in M if and

only if

bp ≡ 0 mod 5
where bp is associated to the elliptic curve E.

In general, we have the following determination of the

splitting type of p:

Splitting type

of p in M

X
a2p − 4N(p)

5

~ w
N(p)

5

W
(1)(2)2 1 1

(1)(4) 1 −1
(1)2(3) −1 1

(1)3(2) −1 −1 if 5|ap
(2)(3) −1 −1 if 5 W |ap
(5) 0 if 5 W |bp
(1)5 0 if 5|bp

Concerning the determination of E from f , it is enough

to find the j-invariant of E. Explicit computations are

provided below. We remark that it is also possible to

formulate a similar result for A5 extensions of K under

otherwise identical assumptions. Furthermore, by allow-

ing the elliptic curve to be defined over a quadratic or a

biquadratic extension of K one may uniformize all non-

solvable quintic extensions.

It is also possible to explicitly uniformize certain de-

gree 7 extensions whose normal closure have Galois group

simple of order 168 by using the seventh division fields

of elliptic curves (see [Radford 1898] and the references

cited there.) By Theorem 2.1, one may similarly char-

acterize the primes with a given splitting type in such

extensions.

3. A GLOBAL REPRESENTATION OF THE FROBENIUS

In this section, we will prove Theorem 2.1 and its corol-

laries using an approach that compares the action of the

Frobenius on the prime-to p division points with the ac-

tion of the matrix (2—3) on Z2.

Proof of Theorem 2.1: Let E be an elliptic curve defined

over a number field K. Let p be a prime ideal in OK with
residue field k Ep, the reduction of E mod p (it is assumed

that E has good reduction at p). That p is unramified

in the field Ln is well known, see e.g., [Silverman 86,

VII.§4]. Also note that there is nothing to prove when

φp ∈ Z, so we will assume throughout that this is not the
case. The idea of the proof is that modulo p the curve E

can be replaced by a curve Ẽ with complex multiplication

so that the following diagram commutes:

E[n]
red−−−−→ Ep[n]

red←−−−− Ẽ[n]

FP

' φp

' φ̃p

'
E[n]

red−−−−→ Ep[n]
red←−−−− Ẽ[n]

(3—1)

where as usual [n] stands for the n-division points on the

curves in the algebraic closures of the appropriate fields.

We now explain this diagram in detail. To simplify

matters, we fix a Weierstrass equation for E as in [?]Sil-

verman. Let K, k be the algebraic closures of K, k. To

specify the horizontal maps red, we choose an embedding

of K into the algebraic closure Kp of Kp, the completion

of K at the valuation arising from p. We call the sub-

group of torsion points whose orders are relatively prime

to p the pI-torsion. Then the pI-torsion points on E(K)
are mapped into the pI-torsion of E(Kp) and this being

defined over an unramified extension, reduction modulo

a prime P above p maps this latter group into the pI-
torsion of E(k). Both of these maps are isomorphisms on

pI torsion. This is the map red for reduction, though as
explained above it depends on many choices. Note, that

after these choices are made, there is a unique element

Fp ∈ Gal(Kunram
p /Kp) that satisfies Fp(t) ≡ t#k mod P,

for all t ∈ Kunram
p .

We are interested in the action of the Frobenius au-

tomorphism φp ∈ Gal(k/k) on the k-valued points. In
terms of the Weierstrass equation for E, this action on

the coordinates is simply (x, y) )→ (x#k, y#k). By abuse

of notation we also denote this action and the restriction

of it to the n-division points by φp.

Now the commutativity of the left half of the diagram

is merely a restatement of the choices made above.

By Deuring’s lifting theorem ([Deuring 41],[Lang 73,

page 184]), there exists an elliptic curve Ẽ defined over

Kp and an endomorphism φ̃p of Ẽ so that Ẽ reduces to

Ep modulo pOp and that φ̃p ∈ End(Ẽ) reduces to φp ∈
End(Ep). If E is super-singular, φ̃p will be defined over

a ramified extension. Reduction still makes sense since

φ̃p is an endomorphism and not a Galois automorphism.

This shows the commutativity of the right half of di-

agram (3—1).

To prove our theorem we need to determine the endo-

morphism ring S of Ẽ. Recall that the ring Rp defined

in the introduction is the centralizer of φp in the endo-

morphism ring of Ep and is a quadratic order. We claim
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that S is isomorphic to R. Since R ⊂ S, Deuring’s re-
duction theorem implies equality if we can show that the

conductor of R is prime to N(p), a fact that is trivial

in the ordinary case and follows from [Waterhouse 69] in

the super-singular case.

Let ∆p be the discriminant of Rp. By choosing a com-

plex square root of ∆p, we identify Rp with a lattice in C.
After this identification φp corresponds to some complex

number φ = (ap+bp
0
∆p)/2. Clearly the lattice R is pre-

served by multiplication by φ and leads to the integral

matrix (2-3), where we may choose bp ≥ 0. Instead of R
one could, in fact, use any lattice whose endomorphism

ring is R.

To finish the proof of Theorem 2.1, consider an embed-

ding α of the algebraic closure of Kp into C. It allows us
to view Ẽ as an elliptic curve over the complex numbers,

that we denote Eα. Since Eα has complex multiplication

by R and Gal(C/Q) acts transitively on the set of elliptic
curves with R as its endomorphism ring, we may and will

assume the j(Eα) = j(R).

By choosing a nontrivial holomorphic differential ω

on Ẽα appropriately the lattice of periods {
$
γ
ω : γ ∈

H1(Ẽα,Z} = R. Then the period mapping Π : Ẽα →
C/R is a biholomorphic isomorphism of complex analytic
manifolds. The action of φ̃p on Ẽ defines an endomor-

phism of Ẽα and gives rise to a map φ∗ on R. Since the
Frobenius automorphism φp satisfies a quadratic equa-

tion

φ2p − ap φp +N(p) = 0. (3—2)

φ∗ can be identified with multiplication by one of the
complex roots of this equation i.e., multiplication by

φ : R → R (viewed as complex numbers). Getting back

to the n-division points we can again summarize the sit-

uation in the following diagram:

Ẽp[n]
α−−−−→ Ẽα[n]

n×Π−−−−→ R/nR

φ̃p

' φα

' 'φ∗
Ẽp[n]

α−−−−→ Ẽα[n]
n×Π−−−−→ R/nR

(3—3)

where n×Π is the period map followed by multiplication
by n. This proves Theorem 2.1.

Remark 3.1. If E is replaced by an Abelian variety V ,

then p is still unramified [Shimura and Taniyama 61] and

the left square of diagram (3—1) makes sense. If in addi-

tion V has ordinary reduction at p, then the right square

in diagram (3—1) generalizes as shown by Deligne [Deligne

69] (and therefore the whole proof works). However the

general case leads to substantial difficulties [Oort 85].

Corollary 2.2 is an immediate consequence of Theorem

2.1.

We now prove Corollary 2.3.

Proof of Corollary 2.3: Let E be an elliptic curve defined

over a number field K as above and n ≥ 1 an integer.

Let p be a prime of ordinary reduction for E. Given a

primitive representation

pr = Q∆p
(x, y),

we know that x and y are uniquely determined up to

(proper or improper) automorphs of Q∆p . If −∆p > 4

and x ≡ ±1 mod n and y ≡ 0 mod n, then it follows that

σp ≡
}

x+ δy y
y(∆p − δp)/4 x

]
mod n (3—4)

and hence that p splits completely in L+n . If j = j(E)

is not 0 or 1728, then for p with N(p) sufficiently large,

we have that −∆p > 4. To see this, write j = α/β for

α,β ∈ OK. We know that j ≡ j(Rp) mod p. If j(Rp) = 0
or 1728, then assuming that j − j(Rp) W= 0, we have

N(p) ≤ max(|N(α)|, |N(α− 1728β)|).

In case j = 0 or j = 1728, the altered definition of L+n
leads again to the result.

Finally, we prove the consequence of Corollary 2.2

mentioned below Corollary 2.3 that, in the CM case,

a prime of good reduction p splits completely in Ln if

ap ≡ N(p) + 1 mod n2 and N(p) ≡ 1 mod n, provided n
is odd.

Proof: Since these conditions immediately imply that

ap ≡ 2 mod n, by Corollary 2.2, we only must show that
n | bp. By our assumption

a2p ≡ (N(p)− 1)2 + 4N(p) ≡ 4N(p) mod n2

we get, using

4N(p) = a2p − ∆p b
2
p,

that

n2 | ∆pb2p.
For a CM curve with fundamental ∆, the only possible

prime dividing the square part of∆p is 2. In fact,∆p = ∆

for ordinary p and for super-singular p, we have ∆p = −p
or ∆p = −4p, where N(p) = pr. Since n is odd this

implies that n | bp.
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4. QUNITICS

In this section, we prove Theorem 2.4 and justify the gen-

eral splitting criteria given after it as well as the example

given in the introduction.

Proof of Theorem 2.4: Let M be given by adjoining to

K a root of a principal quintic

f(x) = x5 + ax2 + bx+ c = 0

defined over K. If the discriminant of f is 5 times a

square then, by means of a Tschirnhausen transforma-

tion ([Dickson 26, page 218]), we may assume that M is

determined by a Brioschi quintic

ft(x) = x
5 − 10tx3 + 45t2x− t2

for some t ∈ K with t W= 0, 1
1728 . It was shown by

Kiepert [Kiepert 1878] already in 1879 (see [King 96] for

an exposition) that M is contained in L+5 for any elliptic

curve E over K with j-invariant 1728− t−1. Recall that
L+5 is, in this case, obtained by adjoining to K the x-

coordinates of the 5 division points. One may take, for

instance, the curve Et given by

Et : y
2 + xy = x3 + 36tx+ t. (4—1)

If the splitting field of f over K is an S5 extension then

it must be the fixed field of the subgroup of scalars of G

since PGL2(F5) l S5. Theorem 2.4 now follows easily

from Theorem 2.1.

A calculation of conjugacy classes based on the iden-

tification of S5 with PGL2(F5) leads to the determina-
tion of the splitting type of a prime p of good reduction

for Et that is prime to 5. Recall that A ∈ GL2(F5) is
called regular if it has different eigenvalues. Clearly A is

regular if the discriminant of the characteristic equation

tr(A)2 − 4 det(A) is nonzero. Given such A, its conju-
gacy class is determined by its trace and determinant. It

is clear that the values of the following Legendre symbols

σ =

w
det(A)

5

W
and ρ =

w
tr(A)2 − 4 det(A)

5

W
are determined by the conjugacy class of A in PGL2(F5).
Now in case the characteristic polynomial ofA splits, that

is ρ = 1, the matrix A is conjugate to a diagonal matrix

in GL2(F5) and so the value of σ already determines the
cycle type of such matrices. When ρ = −1, one must take
into account whether tr(A) ≡ 0 or W≡ 0 mod 5. For A

nonregular, tr(A)2−4 det(A) = 0 and one needs to know
if A is semisimple or unipotent. This information cannot

be extracted from the trace and determinant alone, but

it is determined by the value of bp. All that remains to be

done is to identify each conjugacy classes with its cycle

type.

The example in the introduction is obtained by taking

K = Q and t = −32
2852 . Here we observe that since E has

four 2-torsion points over Q, both ap and bp will be even
for p with good reduction. Thus the representation

4p = a2p − ∆p b
2
p

yields

p = x2 − ∆p y
2

and the condition for splitting completely is that y ≡
0 mod 5, since x and y are determined uniquely up to

sign.

5. SOME COMPUTATIONAL ISSUES

In this section, we discuss some of the computational

issues that arise when considering examples.

First, given a principal quintic (slightly modified from

above)

f(x) = x5 + 5ax2 + 5bx+ c = 0 (5—1)

defined over K with discriminant D such that
√
5D ∈ K,

we must determine t so that the Brioschi quintic

ft(x) = x
5 − 10tx3 + 45t2x− t2 (5—2)

determines the same extension. This is done using a

Tschirnhausen transformation and is described in detail

in [King 96, page 103], (see also [Dickson 26, page 128])

Here we will simply record the result in the case a W= 0.
One determines t,λ and µ in the map

x )→ λ+ µx

(x2/t)− 3 (5—3)

in order to transform the general principal quintic (5—1)

to the Brioschi quintic (5—2).

An analysis using invariant polynomials for the icosa-

hedral group acting on the Riemann sphere leads even-

tually to the quadratic equation for λ given by

(a4+abc−b3)λ2−(11a3−ac2+2b2c)λ+64a2b2−27a3c−bc2 = 0.

The discriminant of this quadratic is

5−5a2D

and so λ ∈ K. Choose either solution and let

j =
(aλ2 − 3bλ− 3c)3
a2(λac− λb2 − bc) .
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t=1 t=2 t=3 t=4
p ∆p ap bp ∆p ap bp ∆p ap bp ∆p ap bp
2 -7 -1 1 - - - -7 -1 1 - - -

3 -8 -2 1 -11 1 1 - - - -8 -2 1

5 -11 3 1 - - - -16 2 1 -19 -1 1

7 -24 2 1 -12 -4 1 -19 -3 1 -24 -2 1

11 - - - -43 1 1 -28 4 1 -40 -2 1

13 -12 2 2 -13 0 1 -27 5 1 -51 1 1

17 -8 -6 2 -59 -3 1 -52 4 1 -43 -5 1

19 -60 -4 1 -67 3 1 -15 4 2 -72 2 1

23 -76 -4 1 -56 -6 1 -56 6 1 -56 -6 1

29 -28 -2 2 -29 0 1 -100 -4 1 -35 -9 1

31 -24 10 1 -24 10 1 -31 0 1 -88 -6 1

37 -123 5 1 -84 -8 1 -139 3 1 -147 1 1

41 -8 -6 4 -139 -5 1 -128 6 1 -83 -9 1

43 -156 4 1 -39 4 2 -7 12 2 -72 -10 1

47 -172 -4 1 -152 6 1 -184 2 1 -152 6 1

53 -211 -1 1 -176 -6 1 -176 6 1 -52 -2 2

59 -232 2 1 -211 -5 1 -172 8 1 -40 14 1

61 -75 13 1 -61 0 1 -36 -10 2 -36 -10 2

67 -232 -6 1 -147 11 1 -187 9 1 -264 -2 1

71 -140 12 1 -248 -6 1 - - - -248 6 1

73 -123 -13 1 -123 -13 1 - - - -291 -1 1

79 -300 -4 1 -300 4 1 -291 -5 1 -252 8 1

83 -83 0 1 -331 1 1 -136 -14 1 -316 4 1

89 -187 -13 1 -355 -1 1 -89 0 1 -80 -6 2

97 -88 -6 2 -43 -1 3 -363 -5 1 -96 -2 2

TABLE 1. The invariants for the elliptic curves Et for the first 25 primes (− indicates that the curve has bad reduction).

Then, provided j W= 0, 1728 we may take

t = 1/(1728− j)

in (5—2) and choose for the elliptic curve, any curve with

this j invariant, say

Et : y
2 + xy = x3 + 36tx+ t

as in (4—1). Also, one may determine µ in (5—3) to be

given by

µ =
ja2 − 8λ3a− 72λ2b− 72λc

λ2a+ λb+ c
.

Note that the discriminant of ft is

Dt = 5
5t8(1728t− 1)2

while that of Et is

−t(1728t− 1)2.
Another issue is to compute the invariants ∆p and bp

in the rational case. An important study of ∆p was made

by Schoof in [Schoof 89]. The most straightforward way

to determine bp and to find the order R that appears

in Deuring’s theorem is to check all the possible singular

invariants until we find one that is congruent to the given

j-value modulo p. (Note that the discriminant of R must

divide a2p − 4p.) We assume that our input is an elliptic
curve E, given in the Weierstrass equation, and p is a

prime number that does not divide the discriminant of

E. After computing ap, we find ∆p for an ordinary curve

as follows; we first compute the square-free part D of

a2p − 4p and then create a vector whose values are all
possible discriminants

∆ = b2D|(a2p − 4p).
For a possible conductor ∆, we find the class group C(∆)
of the proper ideal classes (using quadratic forms) and

compute the integer

X∆ =
�

Λ∈C(∆)
(j(E)− j(Λ)).

Note that the canonical lift Ẽ is distinguished by the

fact that its endomorphism ring is R and that j(E) ≡
j(Ẽ) mod P for some prime P dividing p. Therefore, for

any complex embedding α : Qp → C,

α(j(Ẽ)) ∈ {j(C/Λ) : Λ ∈ C∆p},
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t=1 t=2 t=3 t=4
p ∆p ap bp ∆p ap bp ∆p ap bp ∆p ap bp
541 -492 14 2 -1680 -22 1 -1539 25 1 -2115 7 1

547 -2088 -10 1 -1827 19 1 -351 -28 2 -1992 -14 1

557 -1939 -17 1 -2224 2 1 -464 42 1 -532 10 2

563 -563 0 1 -419 24 2 -2188 -8 1 -1676 24 1

569 -1051 35 1 -2107 13 1 -1792 -22 1 -1835 21 1

571 -2184 -10 1 -2275 -3 1 -375 -28 2 -168 46 1

577 -528 14 2 -576 2 2 -2139 13 1 -496 18 2

587 -2204 -12 1 -551 12 2 -1324 32 1 -584 42 1

593 -1283 33 1 -2203 13 1 -1076 36 1 -152 -42 2

599 -2392 -2 1 -2296 10 1 -2140 -16 1 -1240 -34 1

601 -2115 17 1 -2379 -5 1 -376 30 2 -227 19 3

607 -984 38 1 -2412 4 1 -607 0 1 -984 -38 1

613 -147 10 4 -1876 24 1 -1723 -27 1 -324 -34 2

617 -2107 19 1 -88 -46 2 -164 48 1 -88 46 2

619 -1032 -38 1 -955 39 1 -47 -28 6 -1800 -26 1

631 -924 40 1 -1228 -36 1 -2235 -17 1 -1368 34 1

641 -2483 -9 1 -632 -6 2 -2420 12 1 -560 -18 2

643 -1416 34 1 -2563 -3 1 -1611 -31 1 -2536 -6 1

647 -2264 18 1 -2444 -12 1 -284 -48 1 -2188 -20 1

653 -2603 -3 1 -2036 -24 1 -2608 -2 1 -652 -2 2

659 -2440 14 1 -623 12 2 -2312 -18 1 -1736 -30 1

661 -2619 5 1 -2640 2 1 -1419 -35 1 -1915 -27 1

673 -39 -14 8 -1851 -29 1 -2571 -11 1 -2643 -7 1

677 -2179 23 1 -1808 30 1 -2224 22 1 -2267 -21 1

683 -2056 -26 1 -2563 -13 1 -428 -48 1 -2156 24 1

691 -300 8 3 - - - -495 -28 2 -2620 12 1

TABLE 2. The invariants for the elliptic curves Et for the primes from p100 = 541 to p125 = 691.

t=1 t=2 t=3 t=4
p ∆p ap bp ∆p ap bp ∆p ap bp ∆p ap bp

7927 -236 172 3 -14284 -132 1 -5991 88 2 -31608 -10 1

7933 -28011 61 1 -16848 -122 1 -12411 -139 1 -116 166 6

7937 -7888 14 2 -18979 113 1 -28148 60 1 -31387 19 1

7949 -22771 95 1 -17872 -118 1 -6196 -160 1 -31627 -13 1

7951 -23340 92 1 -14380 132 1 -26179 75 1 -29868 44 1

7963 -31276 -24 1 -3063 -140 2 -31491 -19 1 -16476 -124 1

7993 -3539 -11 3 -1888 42 4 -876 134 4 -23323 -93 1

8009 -5408 -102 2 -27811 -65 1 -19040 114 1 -28315 61 1

8011 -21228 -104 1 -17403 -121 1 -8019 155 1 -21640 102 1

8017 -16443 -125 1 -6648 -74 2 -24843 -85 1 -31779 -17 1

8039 -7192 158 1 -28556 60 1 -31672 22 1 -22940 -96 1

8053 -6964 -66 2 -32176 6 1 -25651 81 1 -22011 101 1

8059 -30636 -40 1 -24315 89 1 -7995 16 2 -31080 -34 1

8069 -32267 -3 1 -32020 16 1 -9776 150 1 -1807 58 4

8081 -22123 -101 1 -30115 47 1 -32128 14 1 -1520 162 2

8087 -31772 24 1 -32344 2 1 -21112 106 1 -31324 -32 1

8089 -29331 55 1 -8947 -153 1 -7360 54 2 -896 -10 6

8093 -31147 35 1 -32228 12 1 -20708 -108 1 -32363 3 1

8101 -275 -173 3 -11668 -144 1 -30003 49 1 -3612 134 2

8111 -30680 42 1 -1240 -38 5 -11708 -144 1 -31148 36 1

8117 -10859 147 1 -31684 -28 1 -27284 72 1 -7948 -26 2

8123 -26716 -76 1 -10291 -149 1 -32488 2 1 -32236 16 1

8147 -32104 -22 1 -26659 -77 1 -30824 42 1 -24844 -88 1

8161 -32 -62 30 -9235 -153 1 -29163 -59 1 -984 130 4

8167 -2236 -112 3 -20124 -112 1 -30267 49 1 -32632 -6 1

TABLE 3. The invariants for the elliptic curves Et for the primes from p1001 = 7927 to p1025 = 8167.
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t 1 2 3 4 5 6 7 8 9 10 11

∆23 -76 -56 -56 -56 -83 -56 -91 - -28 -23 -19

a23 -4 -6 6 -6 3 -6 -1 - -8 0 4

b23 1 1 1 1 1 1 1 - 1 1 2

t 12 13 14 15 16 17 18 19 20 21 22

∆23 -88 -76 -83 -7 -76 -11 -88 -43 -67 -83 -91

a23 2 4 3 -8 4 -9 2 -7 5 -3 1

b23 1 1 1 2 1 1 1 1 1 1 1

TABLE 4. For the prime 23, the invariants of the curve Et, (at t = 8, Et is singular).

t bp = 1 2 3 4 5 6 7 8 9 10 11 12

1 77 10 6 3 0 1 0 2 0 0 0 1

2 74 15 5 1 1 0 1 2 0 0 0 0

3 80 15 1 2 0 1 1 0 0 0 0 0

4 78 14 2 4 0 1 0 0 0 0 0 1

5 82 11 5 1 1 0 0 0 0 0 0 0

6 78 14 5 2 0 1 0 0 0 0 0 0

7 81 12 4 2 1 0 0 0 0 0 0 0

8 76 13 4 5 0 0 0 1 0 0 0 0

9 79 16 2 2 1 0 0 0 0 0 0 0

10 88 6 2 2 0 0 1 0 0 0 0 1

11 75 15 3 5 1 0 0 1 0 0 0 0

12 75 16 6 1 1 0 0 1 0 0 0 0

13 73 15 6 1 2 1 0 1 0 0 0 0

14 79 11 7 2 1 0 0 0 0 0 0 0

15 80 12 3 0 3 1 0 0 0 0 0 0

16 79 12 1 4 0 3 0 0 0 0 0 0

17 84 9 1 2 2 1 0 1 0 0 0 0

18 83 12 3 0 2 0 0 0 0 0 0 0

19 77 16 3 3 1 0 0 0 0 0 0 0

20 81 15 2 1 0 0 0 0 1 0 0 0

21 81 17 2 0 0 0 0 0 0 0 0 0

22 77 17 6 0 0 0 0 0 0 0 0 0

23 73 18 4 3 0 0 0 1 0 0 0 0

24 84 8 3 2 3 0 0 0 0 0 0 0

25 76 10 4 6 1 0 1 2 0 0 0 0

TABLE 5. For a given t, the table shows the number of primes in the range p101 = 547 ≤ p ≤ p200 = 1223, for which the
invariant bp of Et is 1, 2...,.

where ∆p is the actual discriminant of R. Also note that

if ΛI ∈ C∆I for ∆I W= ∆p, then the corresponding elliptic

curve reduces to a curve whose endomorphism ring has

discriminant ∆I for any place above p.
Therefore, ∆p is uniquely characterized by the fact

that

X∆p ≡ 0 mod p.

Occasionally the computation of X∆ involves complex

numbers of rather large size. To make the algorithm

efficient, one needs to determine the needed precision in

advance.

Assume that the lattices are given in the form Z+Zτi,
with τi in the upper half plane. Then the number of

significant digits one must use is approximately3
τi

log(j(E)) + 2πIm(τi)

log(10)
.

It follows from Lemma 2.2 of [Schoof 89] that the required

precision is approximately of size
√
p.
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p bp = 1 2 3 4 5 6 7 8 9 10 11 12

233 187 34 0 8 0 0 1 1 0 0 0 0

239 201 31 0 0 3 0 1 0 0 1 0 0

241 175 33 16 6 3 3 0 3 0 0 0 0

251 206 38 0 0 4 0 0 0 0 0 1 0

257 206 39 0 8 0 0 0 2 0 0 0 0

263 223 37 0 0 0 0 1 0 0 0 0 0

269 209 43 0 11 4 0 0 0 0 0 0 0

271 208 35 18 0 4 4 0 0 0 0 0 0

277 207 35 19 10 0 2 1 0 0 0 0 1

281 219 43 0 9 3 0 2 2 0 1 0 0

283 216 42 19 0 0 3 0 0 1 0 0 0

293 235 44 0 12 0 0 0 0 0 0 0 0

307 235 45 20 0 0 4 0 0 1 0 0 0

311 263 41 0 0 4 0 0 0 0 1 0 0

313 235 40 20 9 0 3 0 2 1 0 0 1

317 257 43 0 13 0 0 2 0 0 0 0 0

331 247 49 22 0 5 4 1 0 1 0 0 0

337 253 42 22 10 0 4 1 2 0 0 0 1

347 288 54 0 0 0 0 1 0 0 0 0 0

349 255 45 23 14 4 4 0 0 1 1 0 0

353 285 51 0 12 0 0 0 2 0 0 1 0

359 300 49 0 0 6 0 1 0 0 0 0 0

367 283 51 25 0 0 5 0 0 0 0 1 0

373 278 48 25 14 0 3 1 0 1 0 0 1

379 284 53 25 0 4 5 1 0 1 2 1 0

TABLE 6. Given p, the table shows the number of t in the range 1 ≤ t ≤ p− 1 for which the invariant bp of Et takes the
value 1, 2,... .

Tables 1—5 give information about the invariants of

the family of elliptic curves

Et : y
2 + xy = x3 + 36tx+ t

associated as above to the quintic

ft(x) = x
5 − 10tx3 + 45t2x− t2.

We made use of pari-gp in these computations.
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