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We study regular and irregular sampling for functions defined on
the Sierpinski Gasket (SG), where we interpret “bandlimited” to
mean the function has a finite expansion in the first dm Dirich-
let eigenfunctions of the Laplacian as defined by Kigami, and
dm is the cardinality of the sampling set. In the regular case, we
take the sampling set to be the nonboundary vertices of the level
m graph approximating SG. We prove that regular sampling is
always possible, and we give an algorithm to compute the sam-
pling functions, based on an extension of the spectral decima-
tion method of Fukushima and Shima to include inner products.
We give experimental evidence that the sampling functions de-
cay rapidly away from the sampling point, in striking contrast to
the classical theory on the line where the sinc function exhibits
excruciatingly slow decay. Similar behavior appears to hold for
certain Dirichlet kernels. We show by example that the sam-
pling formula provides an appealing method of approximating
functions that are not necessarily bandlimited, and so might be
useful for numerical analysis. We give experimental evidence
that reasonable perturbations of one of the regular sampling sets
remains a sampling set. In contrast to what happens on the unit
interval, it is not true that all sets of the correct cardinality are
sampling sets.

1. INTRODUCTION

Sampling is the process of “connecting the dots.” A func-
tion is given at a discrete set of points (the sample val-
ues), and it is assumed that it is bandlimited, meaning
that its natural spectral expansion only lives on a bottom
interval of the spectrum. Then an explicit formula, the
sampling formula, gives the function in terms of its sam-
ple values and certain sampling functions; generically, we
write

f(x) =
∑
y∈S

f(y)ψy(x) for f ∈ B, (1–1)

where S is the sampling set, B is the space of bandlimited
functions, and ψy are the sampling functions.

In the classical Shannon-Whittaker sampling theorem,
the underlying space is the real line, the bandlimited
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functions B are the L2 functions whose Fourier trans-
form is supported in an interval |λ| ≤ b,

f(x) =
∫ b

−b

e−2πiλxf̂(λ)dλ, (1–2)

S is the lattice b−1
Z, and ψy(x) is a translate of the sinc

function (when b = 1),

sinc x =
sin πx

πx
. (1–3)

The sluggish decay of this function means that the sam-
pling formula converges very slowly. In practice, various
strategies are used to deal with this, such as oversam-
pling by taking a tighter lattice, involving redundancy of
the sample data. The book [Benedetto and Ferreira 01]
gives an overview of recent research in this area.

A simple variant of this theorem deals with the unit
interval as the underlying space, and either Fourier sine
or cosine expansions. We describe the situation for sine
series, which means eigenfunctions of the Laplacian (sec-
ond derivative) with Dirichlet boundary conditions, but
the other case is essentially the same. We assume all
functions we deal with vanish on the boundary. Choose
a number m, and define Bm to be the functions of the
form

f(x) =
m∑

k=1

f̂(k) sin πkx. (1–4)

For our regular sampling set Sm, we take the numbers of
the form k/(m + 1), k = 1, . . . , m. It is not hard to see
that

ψ(m)
y (x) =

4
2m + 1

m∑
k=1

sin πky sin πkx for y ∈ Sm

(1–5)
is a function of the form (1–4) that satisfies

ψ(m)
y (x) = δ(x, y) for x, y ∈ Sm (1–6)

so that (1–1) holds, and moreover,

ψ(m)
y (x) =

1
2m + 1

sin π
2 (2m + 1)(x − y)
sin π

2 (x − y)

− 1
2m + 1

sin π
2 (2m + 1)(x + y)
sin π

2 (x + y)
. (1–7)

Note that the first term on the right side of (1–7) is just
1

2m+1Dm(x− y) where Dm is the standard Dirichlet ker-
nel for Fourier series, and the second term is a relatively
small correction term. Results very closely related to this
may be found in [Cauchy 41].

In this paper, we will study the analogous situation
on the Sierpinski gasket (SG), which can be thought of
as a fractal analog of the unit interval. There is a well
developed theory of a Laplacian and related analytic and
stochastic constructs, as described in the books [Kigami
01] and [Barlow 98], and the expository article [Strichartz
99]. For the Laplacian constructed in [Kigami 89], there
is a complete description of its spectrum in [Fukushima
and Shima 92], which was further elaborated in [Dalrym-
ple et al. 99] and [Gibbons et al. 01], so that it is possible
to describe bandlimited functions precisely.

We now give a brief outline of the theory. We treat SG
as a limit of graphs Γm with vertices Vm and edge relation
x ∼m y defined inductively as follows. Γ0 is the complete
graph on V0 consisting of the three vertices (q0, q1, q2) of
an equilateral triangle in the plane. We consider V0 to
be the boundary of SG and all the graphs Γm. Let Fi

denote the contractive similarity with fixed point qi and
contraction ratio 1/2. Note that

SG =
2⋃

i=0

Fi(SG), (1–8)

and is, in fact, the unique nonempty compact set satis-
fying (1–8). We then set

Vm =
2⋃

i=0

Fi(Vm−1) (1–9)

and connect x ∼m y if there exist i and x′, y′ ∈ Vm−1

with x′ ∼m−1 y′ and x = Fix
′, y ∈ Fiy

′. Note that
#Vm = 1

2 (3m+1 + 3). We also write Fw = Fw1 · · ·Fwm

for w a word (w1, . . . , wm) of length |w| = m, and call
Fw(SG) a cell of order m. The set V∗ = ∪Vm of all
vertices is dense in SG, so a continuous function on SG
is determined by its values on V∗.

The Laplacian ∆ (strictly speaking, we should call this
the symmetric Laplacian, since there are other possible
choices) may be defined pointwise by

∆u(x) = lim
m→∞

3
2
5m∆mu(x) x ∈ V∗ \ V0, (1–10)

where ∆m denotes the graph Laplacian

∆mu(x) =
∑

y∼mx

(u(y)−u(x)) for x ∈ Vm \V0 (1–11)

(note that there are exactly four points y connected to
a fixed x in Vm \ V0). Here, we require that both u and
∆u be continuous functions and the limit (1–10) be uni-
form. There is also a weak formulation of the Laplacian,
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which explains the factor 3/2 and the renormalization
coefficient 5m in (1–10) (please note that some references
inadvertantly omit the factor 3/2, but this does not ma-
terially affect anything).

The Laplacian is a negative self-adjoint operator on
L2(SG) with respect to the normalized Hausdorff mea-
sure (each cell of order m has measure 3−m) and Dirich-
let boundary conditions (vanishing on V0) and L2(SG)
has an orthonormal basis {ũj(x)} of eigenfunctions of
increasing eigenvalues, although many eigenspaces have
large multiplicities. We postpone a detailed descrip-
tion of the eigenfunctions until Section 2. Also, there
is an analogous theory of Neumann eigenfunctions, but
for simplicity we will deal with the Dirichlet case ex-
clusively. We define the space Bm to be the span
of the first dm eigenfunctions (counting multiplicity),
where dm = 1

2 (3m − 3). This number is chosen because
#(Vm \ V0) = dm, and Vm \ V0 will serve as our regular
sampling set. We will show in Section 2 that a formula
analogous to (1–5) holds in this context. To turn this
into an effective algorithm for computing the sampling
functions, we need to establish a rather technical lemma
(Lemma 2.2) concerning inner products of eigenfunctions
on the graphs Γm. The method of Fukushima and Shima
is called spectral decimation because it relates the spec-
tra of the discrete Laplacians ∆m on the graphs Γm and
the Laplacian ∆ on the fractal limit, both eigenvalues
and eigenfunctions. Our result adds one more chapter to
this story. There is a class of fractals described in [Shima
96] for which the spectral decimation method holds. It is
likely that our result also extends to this class of fractals,
but this has yet to be demonstrated.

Once we have in place an effective algorithm for com-
puting the sampling functions, we are able to carry out
some interesting numerical experiments. In Section 3,
we describe some of the results concerning the sampling
functions. The most striking is the apparent strong lo-
calization of these functions: ψ

(m)
y (x) decays very rapidly

as x moves away from y. One of the startling results of
[Fukushima and Shima 92] is the existence of localized
eigenfunctions, a phenomenon that is further developed
in [Barlow and Kigami 97]. Our conjectured result seems
to be one more facet of this localization principle. We
also show the same conjectural localization for the Diri-
clet kernel for the analogous partial sums of the eigen-
function expansions,

Ddm
(x, y) =

dm∑
j=1

ũj(x)ũj(y) (1–12)

(this would be the analog of a lacunary subsequence of
ordinary Dirichlet kernels). Although our results are con-
jectural for all m, they are clearly established for m ≤ 5,
and it should be kept in mind that in sampling theory,
one is not usualy concerned with the limit as m → ∞,
but with rather modest values of m. We also find exper-
imental evidence for a splitting analogous to (1–7) of the
sampling function into an “ideal spike” independent of y

and a correction term.
In Section 4, we discuss the use of the sampling for-

mula as a method of approximation for functions that are
not bandlimited. We give experimental evidence that this
method works quite well. This suggests the possibility of
developing a form of numerical analysis on SG based on
the sampling approximation. It is not clear how well this
would perform in comparison with the spline and finite
element method as developed in [Strichartz and Usher
00] and [Gibbons et al. 01], but it might be worth inves-
tigating in connection with the wave equation, which was
investigated using a rather crude finite difference method
in [Dalrymple et al. 99].

In Section 5, we investigate irregular sampling, where
we keep the bandlimited space Bm, but change the sam-
pling set. The situation is quite different from the unit
interval, where any sampling set of the correct cardinal-
ity will do. We give some experimental evidence that any
reasonably small perturbation of Vm \ V0 can serve as a
sampling set, which is similar to the sitution on the real
line.

The web site, http://www.mathlab.cornell.edu/
∼brian/sampling/, contains all the programs used in
our experiments and more data in both numerical and
graphical form.

2. REGULAR SAMPLING

We begin with a generic observation about sampling for
a finite dimensional space B of functions on a set K and
a finite sampling set S ⊆ K. We assume the dimension d

of B is equal to the cardinality of S, and the functions in
B when restricted to S still form a d dimensional space.
(For simplicity of notation, we deal with real valued func-
tions.) A set of sampling functions ψy ∈ B for each y ∈ S

is a solution to the problem

ψy(x) = δ(y, x) for all x ∈ S. (2–1)

This implies the sampling formula

f(x) =
∑
y∈S

f(y)ψy(x) for all f ∈ B. (2–2)
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Proposition 2.1. Let {uj} be an orthonormal basis for B

with respect to the �2(S) inner product, namely∑
x∈S

uj(x)uk(x) = δj,k. (2–3)

Then

ψy(x) =
d∑

j=1

uj(y)uj(x) for y ∈ S (2–4)

gives a set of sampling functions, and it is unique.

Proof: Regard {uj(x)} as a d × d matrix. Then (2–3) is
orthonormality of (say) rows, and (2–1) for ψy(x) given
by (2–4) is orthonormality of columns. Also it is clear
that existence and uniqueness of solutions of (2–1) are
equivalent by the fundamental theorem of linear algebra.

We now turn to the specific context of regular sam-
pling on SG, when we take the sampling set to be Vm\V0,
of cardinality dm = 1

2 (3m+1 − 3), and the space of func-
tions Bm to be the span of the Dirichlet eigenfunctions
of ∆ for the lowest dm eigenvalues. In the notation of
[Gibbons et al 2001], these are all the eigenvalues up to
5m−2λ

(6)
1 (for m ≥ 2). According to [Fukushima and

Shima 92], every Dirichlet eigenfunction of the discrete
Laplacian ∆m on Vm extends in infinitely many ways
to a Dirichlet eigenfunction on SG, and if we collect
the extensions with lowest eigenvalues, we obtain exactly
Bm. In particular, the hypothesis that the restrictions
of Bm functions to Vm \ V0 have dimension dm is valid.
Moreover, eigenfunctions in Bm corresponding to distinct
eigenvalues of ∆ on SG remain orthogonal with respect to
the �2(Vm) inner product since they are eigenfunctions of
∆m with distinct eigenvalues (the fact that the eigenval-
ues remain distinct is only valid among the eigenfunctions
in Bm, of course).

So our primary problem in computing the sampling
functions is to find an orthonormal basis within each
eigenspace for the �2(Vm) inner product. We are also in-
terested in the relation between the �2(Vm) and L2(SG)
inner products. It turns out that they are simply scalar
multiples of each other, and we can compute the scalar
more or less explicitly. This is significant because many
of the eigenspaces have high multiplicity.

We now briefly recapitulate the results of [Fukushima
and Shima 92], as elaborated in [Dalrymple et al. 99].
For each Dirichlet eigenvalue λ of ∆ on SG, there is a
number k ≥ 1, the “generation of birth,” such that every
eigenfunction f in the λ-eigenspace Eλ, when restricted

to Vk, is an eigenfunction of ∆k with eigenvalue 2, 5,
or 6. There is the additional restriction that 2 occurs
only for k = 1, while 6 occurs only for k > 1. There-
after, the restrictions of f to Vm are determined by the
restriction to Vm−1 by a simple local linear extension al-
gorithm. These algorithms are controlled by the choice of
a sequence (ε1, ε2, . . .) where each εj is ±1, and all but a
finite number are −1 (in addition, if the initial eigenvalue
is 6, then ε1 = +1 only). The restriction of f to Vm for
m > k becomes an eigenfunction of ∆m with eigenvalue
λm given by

λm =
1
2
(5 + εm−k

√
25 − 4λm−1). (2–5)

Note that this means

λm−1 = λm(5 − λm), (2–6)

and εm−k simply chooses one of the roots of the
quadradic equation (2–6). The eigenvalue λ on SG is
related to these values by

λ =
3
2

lim
m→∞ 5mλm, (2–7)

the condition that all but a finite number of εj equal −1
guaranteeing that the limit exists.

To describe the extension algorithm, we adopt the fol-
lowing flexible notation. Let v be a vertex in Vm that is
not in Vm−1. Then v belongs to a cell of level m−1, and
we denote by v0 and v1 the vertices of this cell closest to
v, and v2 the vertex opposite v. Then

f(v) =
(4 − λm)

(2 − λm)(5 − λm)
(f(v0) + f(v1))

+
2

(2 − λm)(5 − λm)
f(v2) (2–8)

(see [Dalrymple et al. 99, Algorithm 2.4]).
Let ‖f‖m and 〈f, g〉m denote the �2(Vm) norm and

inner product. Since the cardinality of Vm grows on the
order of 3m, we would expect ‖f‖2

m to grow roughly the
same. It is easy to see that

‖f‖2 =
2
3

lim
m→∞ 3−m‖f‖2

m for continuous f, (2–9)

where ‖f‖ and 〈f, g〉 denote the L2(SG) norm and inner
product.

Lemma 2.2. For f in Eλ,

‖f‖2
m =

(6 − λm)(5 − 2λm)
(5 − λm)(2 − λm)

‖f‖2
m−1 for m > k.

(2–10)
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Remark 2.3. The coefficient in (2–10) is always positive,
since 0 < λm < 5 and either λm < 2 or λm > 5/2. Also,
the coefficient tends to 3 as m → ∞ because λm → 0.

Proof of Lemma 2.2: Clearly,

‖f‖2
m = ‖f‖2

m−1 +
∑

x∈Vm\Vm−1

|f(x)|2. (2–11)

We substitute (2–8) into the last sum. Let

a =
4 − λm

(2 − λm)(5 − λm)

and

b =
2

(2 − λm)(5 − λm)
.

Then we have

∑
x∈Vm\Vm−1

|f(x)|2 = 2(2a2 + b2)‖f‖2
m−1

+ 2(a2 + 2ab)
∑

x∼m−1y

f(x)f(y)

(2–12)

because each x ∈ Vm−1 \ V0 belongs to two cells of level
m − 1.

To eliminate the last term in (2–12), we use the fact
that f is an eigenfunction for ∆m−1 with eigenvalue
λm−1. In the weak formulation, this means

∑
x∼m−1y

|f(x) − f(y)|2 = 4‖f‖2
m−1 − 2

∑
x∼m−1y

f(x)f(y)

= λm−1‖f‖2
m−1,

and so

∑
x∼m−1y

f(x)f(y) =
1
2
(4 − λm−1)‖f‖2

m−1. (2–13)

Combining (2–11), (2–12), and (2–13), we obtain

‖f‖2
m = (1+2(2a2 + b2)+ (4−λm−1)(a2 +2ab))‖f‖2

m−1.

(2–14)
It remains to identify the coefficient in (2–14) with the

coefficient in (2–10). Using (2–6), we have 4 − λm−1 =
(1 − λm)(4 − λm), so the coefficient in (2–14) becomes

1 + 2(2a2 + b2) + (1 − λm)(4 − λm)a(a + 2b), (2–15)

an expression involving λm alone. The rest is algebra.
Note that

2(2a2 + b2) + (1 − λm)(4 − λm)a(a + 2b)

=
72 − 32λm + 4λ2

m

(2 − λm)2(5 − λm)2

+
(128 − 208λm + 96λ2

m − 17λ3
m + λ4

m)
(2 − λm)2(5 − λm)2

=
200 − 240λm + 100λ2

m − 17λ3
m + λ4

m

(2 − λm)2(5 − λ2
m)

=
20 − 10λm + λ2

m

(2 − λm)(5 − λm)
.

Thus, (2–15) becomes

10 − 7λm + λ2
m + (20 − 10λm + λ2

m)
(2 − λm)(5 − λm)

=

30 − 17λm + 2λ2
m

(2 − λm)(5 − λm)
=

(6 − λm)(5 − 2λm)
(2 − λm)(5 − λm)

as desired.

To simplify the notation, we define

b(t) =
(1 − 1

6 t)(1 − 2
5 t)

(1 − 1
5 t)(1 − 1

2 t)
. (2–16)

Note that

b(t) = 1 +
2
15

t + O(t2) as t → 0. (2–17)

Then (2–10) can be written

‖f‖2
m = 3b(λm)‖f‖2

m−1 for m > k. (2–18)

Corollary 2.4. Let k be the generation of birth of λ. For
f, g ∈ Eλ, and m > k,

〈f, g〉m = 3m−k
( m∏

j=k+1

b(λj)
)
〈f, g〉k. (2–19)

Also

〈f, g〉 = 2 · 3−k−1
( ∞∏

j=k+1

b(λj)
)
〈f, g〉k. (2–20)

Proof: Equation (2–19) follows from (2–18) by polariza-
tion and iteration. Using (2–9), we may take the limit
as m → ∞ to obtain (2–20). Note that the convergence
of the infinite product in (2–20) is guaranteed by (2–17)
and the estimate λn = O(5−n) for large n, a consequence
of (2–7).
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We can now describe an algorithm for finding an or-
thonormal basis for Eλ with respect to the �2(Vm) inner
product, assuming k ≤ m (this holds for the first dm

eigenvalues, the only ones in which we are interested).

Step 1. Find an orthonormal basis for the �2(Vk) inner
product.

Step 2. Multiply each basis element by the factor

(
3m−k

m∏
j=k+1

b(λj)
)−1/2

.

Step 1 is essentially an ad hoc procedure. Start with any
basis and apply Gram-Schmidt. The important point to
note is that, for each fixed k, there are only two such
computations, λ1 = 2 or 5 and λk = 5 or 6 for k ≥ 2.
When λ1 = 2, the eigenspace is simple, but for λk = 5
or 6, the multiplicity grows exponentially in k. Explicit
bases are given in [Dalrymple et al 1999]. An implemen-
tation of this algorithm may be found on the web site.
For our computations, we were able to take values up to
m = 5, and computed values on V8.

Using Corollary 2.3, it is not hard to transform an or-
thonormal basis for Bm with respect to the �2(Vm) inner
product into an orthonormal basis with respect to the
L2(SG) inner product. This is significant because if we
use such a basis on the right side of (2–4), we obtain the
Dirichlet kernel Ddm

(x, y) for finding the partial sums (of
order dm) of the Dirichlet eigenfunction expansion of an
arbitrary function f as∫

SG

Ddm
(x, y)f(y)dµ(y). (2–21)

In fact, once we have computed an orthonormal basis for
Eλ with respect to �2(Vm), we just have to multiply each
basis element by the factor

(
2 · 3−m−1

∞∏
j=m+1

b(λj)
)−1/2

. (2–22)

Note that the infinite product in (2–22) is a function of
λm alone,

b̃(λm) =
∞∏

j=m+1

b(λj), (2–23)

because each λj for j > m is given by

λj =
1
2
(5 − √

25 − 4λj−1), (2–24)

the choice ε = −1 in (2–5). An approximation to b̃ is
easily computed; see Figure 1.

1

1.1

1.2

1.3

1.4

1.5

1.6

0 1 2 3 4 5

FIGURE 1. An approximate graph of the function b̃.

3. PROPERTIES OF THE SAMPLING FUNCTIONS
AND DIRICHLET KERNELS

Using the algorithms described in the previous section,
we computed all the sampling functions ψ

(m)
y for 1 ≤

m ≤ 5. In Figure 2, we display the graphs for m = 2
(although there are a total of 12 points in V2 \ V0, the
sampling functions fall into just three orbits under the
symmetry group D3, so it suffices to show just 3 graphs).
In Figure 3, we display the sequence of graphs ψ

(m)
y for

a fixed y ∈ V1 \ V0 and m = 1, . . . , 5. In Figure 4, we
display ψ

(5)
y for several choices of y ∈ V5. It is easy to

locate the point y visually on the graphs since it is the
unique point in Vm where ψy is nonzero (ψy(y) = 1), and
the function assumes its maximum value close to y. Our
data indicate a maximum value of about 1.04 for some
choices of y, attained at a point quite close to y.

Since ψ
(m)
y (x) = 0 for x ∈ Vm, x �= y, it is possi-

ble for ψ
(m)
y to “change sign” in a neighborhood of such

points. An ideal manifestation of this phenomenon would
be if ψ

(m)
y had a constant sign on each component of

(SG\Vm)∪{y}, with opposite signs on neighboring com-
ponents. Our data shows that this does not hold exactly,
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(a) (b) (c)

FIGURE 2. The graphs of ψ
(2)
y for three different choices of y ∈ V2.

(a) (b) (c)

(d) (e)

FIGURE 3. The graphs of ψ
(m)
y for m = 1, 2, 3, 4, 5 for y fixed in V1 \ V0.

but is approximately true. In Figure 5, we display the
regions where ψ

(5)
y is positive and negative for several

choices of y. This confirms the “sinusoidal oscillation” of
the sampling functions, in analogy with the sinc function.

The most striking feature of our data is the rapid decay
of ψ

(m)
y (x) as x moves away from y. Figure 6 shows

the graph of the restriction of ψ
(5)
y to a line segment in

SG passing through y. To get a better understanding of
what is going on, we have to examine the numerical data.
We measure a crude distance dm(x, y) of x to y by the
minimum number of cells of level m needed to connect
x to y. In Table 1, we report the maximum (in absolute
value) values of ψ

(m)
y over all x of a given distance to

y, for one choice of y for m = 4. We want to stress

that the very small values that occur in Table 1 are the
result of cancellation, as the individual summands in (2–
4) are not themselves very small. The data, available in
considerably finer detail on the web site, shows the same
behavior for all y and m ≤ 5.

Conjecture 3.1. There exist constants c and α < 1 (about
1/3) such that

|ψ(m)
y (x)| ≤ cαdm(x,y) (3–1)

for all y ∈ Vm \ V0, all x ∈ SG, and all m.

There is a natural metric dR(x, y), called the resistance
metric (see [Kigami 01] for the precise definition) that is
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(a) (b) (c)

(d) (e)

FIGURE 4. The graphs of ψ
(5)
y for five choices of y in V5.

(a) (b) (c)

(d) (e)

FIGURE 5. For each of the functions ψ
(5)
y graphed in Figure 4, the regions where it is nonnegative (dark) and negative

(light).
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FIGURE 6. The graph of the restriction to a line segment
of ψ

(5)
y for y a point in V1 \ V0.

related to dm(x, y) by

dm(x, y) ≈
((5

3

)m

dR(x, y)
) log 2

log(5/3)
. (3–2)

In terms of this metric, (3–1) becomes

|ψ(m)
y (x)| ≤ c1 exp

(
− c2

((5
3

)m

dR(x, y)
) log 2

log(5/3)
)
.

(3–3)
Another way we can attempt to describe the sampling

functions ψ
(m)
y is as a sum of two terms, a main term that

is independent of y, and a correction term that depends
on y. Of course the different points y ∈ Vm are not
even locally isometric, so we can’t exactly realize this
goal. But it does appear that if we fix any y and then
increase m, the behavior of ψ

(m)
y in a neighborhood of

y does approach, after appropriate rescaling, a function
that might be called an ideal spike. In order to describe
this function, we introduce the fractal blow-ups

S̃Gi =
∞⋃

i=0

F−n
i (SG)

distance to y largest value (in absolute value)

1 1
2 −2.97983 × 10−1

3 1.32806 × 10−1

4 −4.38523 × 10−2

5 1.36440 × 10−2

6 −5.73710 × 10−3

7 2.05985 × 10−3

8 −2.69386 × 10−4

9 9.43078 × 10−5

10 −3.03346 × 10−5

11 1.31507 × 10−5

12 −3.78674 × 10−6

13 1.34664 × 10−6

14 −4.13866 × 10−7

15 1.84896 × 10−7

TABLE 1.

(increasing union). These are noncompact fractals with
a single boundary point qi (see [Strichartz 99]) and a
reflection symmetry Ri that fixes qi and interchanges qi−1

and qi+1. Note that for x ∈ (S̃G)i, Fn
i x ∈ SG for all

large enough n.

Conjecture 3.2. Let y ∈ Fwqi ∈ Vm, |w| = m. Then the
following limit

lim
n→∞ψ(m+n)

y (FwFn
i x) = ψi(x) for x ∈ (S̃G)i

exists and is independent of y. The ideal spikes ψi are Ri

invariant and are equal under the obvious isomorphisms
of (S̃G)i.

We also computed the Dirichlet kernel Ddm
(x, y) given

by (1–12) for 1 ≤ m ≤ 5. Note that these functions are
defined on SG × SG, so it is not sufficient to restrict y

to Vm. It makes sense to fix one of the variables, say y,
and study the behavior of Ddm

as a function of x. By
abuse of notation, we will refer to Ddm

(·, y) as a Dirichlet
kernel. We know that as m → ∞, Ddm

(·, y) approaches
the delta function at y in a weak sense. Our evidence
indicates that Ddm

(·, y) resembles a delta function in a
very strong sense, and that the choice y ∈ Vm is very
atypical (as explained below). In fact, we see the same
sort of localization as for the sampling function. Figure 7
shows the graph of the Dirichlet kernel for m = 5 for two
choices of y, one in V5 and one not in V5. Figure 8 shows
the graph of the restriction of the first Dirichlet kernel
from Figure 7 to a line passing through y. In Table 2, we
report the same data as in Table 1 for a Dirichlet kernel
with m = 4 for a particular choice of y. Note that the
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(a) (b)

FIGURE 7. The graph of two Dirichlet kernels for m = 5: (a) y in V1 \ V0, (b) y not in V5.
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FIGURE 8. The graph of the restriction to a line segment
of the Dirichlet kernel from Figure 7(a).

values at points near y are large, as we would expect for
a delta function.

For each Dirichlet kernel, we computed three integrals:∫
|Ddm

(x, y)|2dµ(x) (3–4)∫
|Ddm

(x, y)|dµ(x) (3–5)∫
Ddm

(x, y)dµ(x), (3–6)

which we refer to as the square of the L2 norm, the
L1 norm, and the integral, respectively. We know from

distance to y largest value (in absolute value)

1 127.915
2 −35.0002
3 23.1213
4 −14.1982
5 1.85918
6 −1.38444
7 3.79040 × 10−1

8 −1.47526 × 10−1

9 3.15423 × 10−2

10 −2.30019 × 10−2

11 4.08147 × 10−3

12 −2.42384 × 10−3

13 4.77844 × 10−4

14 −3.65649 × 10−4

15 9.58635 × 10−5

16 −4.19123 × 10−5

TABLE 2.

(1–12) that the average value of (3–4) as y varies is ex-
actly dm. We found that there is considerable variation
in (3–4), and when y ∈ Vm the values come out quite a
bit higher than dm (for example, when m = 5, the av-
erage value of (3–4) over all y ∈ V5 was 405, compared
with dm = 363). This is the evidence that the Dirichlet
kernels for y ∈ Vm are atypical. To avoid this bias, we
decided to look at Dirichlet kernels for y varying over 50
random points in V8 (this was the limit of resolution for
our computations). In Table 3, we give the average val-
ues over these 50 random points of the square of the L2

norm, the L1 norm, and the integral, for m = 1, 2, 3, 4, 5.

m dm square of L2 norm L1 norm integral

1 3 2.87645 1.26962 .90388
2 12 12.08358 1.98981 .97839
3 39 38.14721 2.18412 .98894
4 120 122.79748 2.31967 1.00513
5 363 355.08908 2.37096 1.00136

TABLE 3.
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Comparing Tables 2 and 1, we see that the Dirichlet
kernel exhibits a similar decay pattern as the sampling
function, except that since the initial values near the di-
agonal are around dm, we expect that the estimates (3–1)
or (3–3) would be multiplied by dm. This would yield an
estimate for the Dirichlet kernel that is almost the same
as for the heat kernel, with time t ≈ 5−m. Indeed, the
heat kernel upper bound [Kigami 01] is a multiple of

t−
log 5
log 3 exp

(
− c

(
t−

log 5/3
log 5 dR(x, y)

) log 5
log 3

)
, (3–7)

which for t ≈ 5−m becomes

3m exp
(
− c

((5
3

)m

dR(x, y)
) log 5

log 3
)
. (3–8)

Since dm ≈ c3m, the difference between (3–8) and the
right side of (3–3) multiplied by dm is just in the power
inside the exponential. In fact, such distinctions are too
fine to be made on the basis of our data.

We are able to offer a heuristic argument why the
Dirichlet kernel should resemble the heat kernel in this
case. The heat kernel may be written, similarly to (1–12)
as ∞∑

j=1

e−tλj ũj(x)ũj(y), (3–9)

where λj denotes here the eigenvlaue of ũj . Now it
happens that the eigenvalues are changing dramatically
around j = dm. When m = 2 and dm = 12, we have
λ12 = 677.859, while the eigenvalue just below it is
279.429, and the eigenvalue just above it is 861.823 [Gib-
bons et al. 01], and these values are simply multiplied by
5m−2 when m ≥ 2 (the case m = 1 is exceptional). Thus,
by choosing t = c5−m for the appropriate choice of c, we
can make the factors e−tλj close to zero for j > dm and
close to one for j ≤ dm, so that (3–9) and (1–12) are not
so different. This argument seems unconvincing when
j = dm, but here we observe that all the eigenfunctions
associated with this eigenvalue are localized (supported
in the union of two adjacent cells of order m), so they
play no role in the off diagonal decay estimates we are
considering. Of course, the argument we have presented
is entirely heuristic, and there does not seem to be any
hope that it can be transformed into a proof.

The data presented in Table 3 is also very interesting.
The discrepancy between the values of dm and the aver-
age square of the L2 norm indicates that we would need
to take considerably more than 50 random points to get
more reliable results (the computations we did required
several days of computer time, so it was not feasible to do

much more). The expected value for the integral should
approach one as m → ∞, and the data is consistent with
this. What is really startling is the small size of the av-
erage values of the L1 norm. This is the analog of the
Lebesgue constants in the theory of Fourier series. If we
had analogous behavior, we would expect values on the
order of log dm = cm, and clearly we are doing much
better than that. The data is consistent with uniform
boundedness for all the integrals (3–5) for all y and all
m. (Additional evidence for this is the fact that the max-
imum value of the L1 norm over all 50 random points is
2.70457 for m = 4 and 2.70901 for m = 5.) This would
imply the uniform convergence of the partial sums, along
the subsequence dm, for the eigenfunction expansion of
any continuous function vanishing on the boundary. On
the basis of our data, we can only speculate on this pos-
sibility. Not only do we have the inaccuracy due to the
small number of random points chosen, but it would be
difficult to imagine an experiment that could distinguish
between uniform boundedness and slow growth on the
order of log log dm.

It makes sense to consider also Dirichlet kernels
DN (x, y) of orders N other than dm, as long as we do not
split multiple eigenvalues. In other words, we take the
sum (1–12) up to j = N . It is easy to see that we could
not possibly have the same sort of localization holding
for all allowable choices of N , because as we change N at
eigenvalues without multiplicity we add on nonlocalized
terms. It remains poossible that some choices of N other
than dm might yield localization. Indeed, we argued
above that the λdm

eigenfunctions are all localized, so if
we chose the value of N just below dm (this is not dm−1
because λdm

is an eigenvalue of high multiplicity), we
would get the identical localization. We experimented by
computing Dirichlet kernels DN for all the allowable val-
ues N = 45, 46, 48.50, 51, 54, 57, 60, 61, 63, 65, 66, 81 be-
tween d3 = 39 and d4 = 120, and found that N = 81 just
below d4 was the only one to exhibit any localization.

(Note added March 2003: Further experimental
work of Kealey Dias (http://www.mathlab.cornell
.edu/∼dias) indicates the existence of a Gibbs’ phe-
nomenon for N = dm. This is reported in [Coletta et
al. 03].)

4. SAMPLING APPROXIMATION

The sampling formula (2–2) is exact for bandlimited
functions, but it can also be used as an approximation
formula for more general functions. In order to assert
that this is a useful method of approximation, one would
have to show that the error is small for reasonable classes
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m upper bound for Mm(x)

1 1.894427
2 2.469615
3 2.716993
4 2.749244

TABLE 4.

of functions, and that the sampling approximation is eas-
ier to manipulate than the original function in solving
specific problems. In this section, we will present experi-
mental evidence that the error is indeed small for a large
class of functions. It seems plausible that the sampling
approximation may form the basis of a new approach
to numerical analysis on SG for solving various classes
of fractal differential equations, but more work will be
needed to carry this out. It is not clear whether or not
sampling approximation can outperform the spline-based
numerical methods of [Strichartz and Usher 00] and [Gib-
bons et al. 01].

The key to understanding the approximation error is
to estimate the functions∑

y∈Vm\V0

|ψ(m)
y (x)| = Mm(x). (4–1)

In Table 4, we display the upper bounds we have found
experimentally.

Conjecture 4.1. The functions Mm(x) are uniformly
bounded by 2.8 for all m.

In Figure 9, we display the graph of the function
M4(x). Note that Mm(x) = 1 for x ∈ Vm \ V0.

If f is any continuous function vanishing on V0, write

Smf(x) =
∑

y∈Vm\V0

f(y)ψ(m)
y (x) (4–2)

for its sampling approximation of level m. If

f(x) =
∞∑

j=1

cj ũj (4–3)

is its expansion in terms of an orthonormal basis {ũj} of
Dirichlet eigenfunctions, write

f = fm + fm (4–4)

for

fm(x) =
dm∑
j=1

cj ũj(x). (4–5)

FIGURE 9. The graph of M4(x).

Then Smfm = fm so

Smf − f = Smfm − fm. (4–6)

Under various hypotheses on f , we can conclude that fm

is small. For example, if we just assume that f has finite
energy, this means

E(f, f) =
∞∑

j=1

|cj |2λj < ∞, (4–7)

hence E(fm, fm) → 0 as m → ∞. Since

‖f‖∞ ≤ cE(f, f)1/2 (4–8)

for any f vanishing on V0, we have fm → 0 uniformly as
m → ∞. But

|Smfm(x)| ≤ Mm(x)‖fm‖∞ (4–9)

hence, Smf → f uniformly under Conjecture 4.1.
We can obtain a rate of convergence if we assume f

belongs to the domain of ∆ (or domL2∆). For then

E(fm, fm) =
∞∑

j=dm+1

|cj |2λj ≤ (λdm+1)−1

×
∞∑

j=1

|λjcj |2

= (λdm+1)−1‖∆f‖2
2 (4–10)

and λdm
= c5m. Thus,

‖fm‖∞ ≤ c5−m/2 (4–11)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 10. Graphs of (a) the function f1, (b)–(e) the approximations of orders m = 1, 2, 3, 4, and (f)–(i) the differences
(the vertical axis scale is not the same for all m).

by (4–8) and (4–10), which implies

‖Smf − f‖∞ ≤ cMm5−m/2, (4–12)

where Mm = ‖Mm(x)‖∞. (Incidentally, we cannot im-
prove the estimated rate of convergence by assuming
more “smoothness” for f in the form of f belonging to
the domain of higher powers of the Laplacian, because

we do not have

(−∆)kf =
∞∑

j=1

λk
j cj ũj

for k > 1 without imposing rather artificial boundary
conditions.)

In typical applications of sampling approximation, one
would not be dealing with large values of m, so these
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 11. The graphs of (a) the function f2, (b)–(e) the approximations of orders m = 1, 2, 3, 4, and (f)–(i) the
differences (the vertical axis scale is not the same for all m).



Oberlin et al.: Sampling on the Sierpinski Gasket 417

m Max error f1 Max error f2

1 .228945 .448683
2 .044125 .405737
3 .008813 .136708
4 .001763 .045786

TABLE 5.

estimates may be beside the point. We did some tests
of the method that suggest that it is very effective, not
only in the size of the maximum error, but also in the
ability of the approximation to capture the qualitative
features of the function. Generally speaking, the more
rapidly the function oscillates, the larger one would have
to take m in order to have a reasonable approximation.
Since we are not equipped to handle large values of m,
we restricted our test to functions with slow oscillation.
The first function we chose, f1, is a biharmonic function
(∆2f1 = 0) vanishing on V0, an example of an infinitely
smooth function. The second function, f2, is the square
of f1, which means that it has finite energy, but does
not belong to domL2∆ [Ben Bassat et al. 99]. We have
‖f1‖∞ ≈ 1.7 and ‖f2‖∞ ≈ 3.

In Table 5, we report the maximum error of approxi-
mation.

In Figure 10, we display the graphs of f1 and its ap-
proximations, as well as the errors. Figure 11 does the
same for f2. It is striking that the largest errors occur
near the boundary, and away from a small neighborhood
of the boundary the error is substantially smaller than
the maximum error. In particular, the average error
should be an order of magnitude better than the max-
imum error. Also note that already by m = 2, even
though the numerical error is significant, the graph of
the approximation appears to be almost identical to the
graph of the function, except for the behavior near to
boundary points. (The fact that one boundary point is
much better than the other two has to do with the specific
choice of function, namely its normal derivative vanishes
at that point.)

5. IRREGULAR SAMPLING

In this section, we consider the question of changing the
sampling set Vm while keeping the bandlimited space Bm.
Specifically, we ask which sets S of cardinality dm have
the property that the restriction of functions in Bm to S

remains a space of dimension dm. This is equivalent to
the nonvanishing of

det{ψ(m)
y (x)}x∈S,y∈Vm\V0 , (5–1)

which implies the existence of sampling functions ψ
(S)
y (x)

for each y ∈ S such that the sampling formula (2–2) holds
for Bm. In the case of regular sampling, S = Vm \V0, the
determinant (5–1) is one. Although any nonzero value
for (5–1) allows sampling, we want to avoid very small
values as this may lead to “unstable” sampling formulas
with very large functions ψ

(S)
y that may unduly amplify

sampling errors.
Unlike the case of the unit interval, not every set S

of dm distinct points will do. The space Bm contains lo-
calized eigenfunctions supported on any pair of adjacent
m−1 cells, so every sampling set S must contain at least
one point in the interior of every pair of adjacent m − 1
cells (the interior contains the intersection point of the
cells, but not the other boundary points of the cells). It
is conceivable that the converse is true, but we have not
tested it directly.

We have looked at the idea that a reasonable pertur-
bation of Vm \V0 is always a sampling set, with a specific
lower bound on (5–1). Points y ∈ Vm \V0 have a natural
system of neighborhoods Un(y), for n ≥ m, consisting
of the union of the two n cells containing y as a bound-
ary point. A set S is called an (m,n) perturbation of
Vm \ V0 if S consists of one point ỹ from Un(y) for each
y ∈ Vm \ V0. Let δ(m,n) denote the minimum value of
(5–1) as S varies over all (m,n) perturbations of Vm \V0.
It appears that we can compute δ(m,n) for moderate val-
ues of m and n. We can easily compute the determinant
(5–1) for any choice of S, but there are infinitely many
perturbations, so we can’t search all possibilities. A rea-
sonable compromise is to search all possibilities where
ỹ is restricted to Vk points in Un(y) for k moderately
larger than n. Rather serendipitously, we found that it
suffices to take k = n, since the minimum value never
changed when we increased k above n. In other words,
an extremal perturbation apparently always exists with
each ỹ equal to one of the five Vn points in Un(y) (the
boundary points of the two n cells). If this observation
is indeed always true, then the computation of δ(n,m)
only requires a search of 5dm possible perturbations.

m = 1 m = 2 m = 3

n = 2 0
n = 3 .681045 0
n = 4 .910845 .134638 0
n = 5 .973817 .550821 .003733
n = 6 .991750 .791145 .248726
n = 7 .997262 .895151 .619498
n = 8 .999061 .943220 .824522

TABLE 6.
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In Table 6, we report the values of δ(m,n) for m =
1, 2, 3 and m + 1 ≤ n ≤ 8.Note that δ(m,m + 1) = 0
because the neighborhoods Um+1(y) overlap at points.

Conjecture 5.1.
(a) δ(m,n) > 0 for n ≥ m + 2, so in particular every

(m,m + 2) perturbation of Vm is a sampling set for Bm.

(b) There is a uniform lower bound (about .134638)
for δ(m, 2m) for m ≥ 2.

It seems clear that we will not get a uniform lower
bound for δ(m,m + k) for all m for any fixed k. On the
other hand, one might be able to improve (b) by taking
δ(m, [λm]) for a fixed constant λ > 1 (changing the lower
bound, of course). Perhaps any λ > 1 would suffice.
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