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Let s be any integer between 1 and 5. We determine necessary
and sufficient conditions that a ternary quartic be expressible as
a (possibly degenerate) sum of fourth powers of s linear forms.

1. INTRODUCTION

Let F be a homogeneous polynomial (or form) of degree
q in r variables. It is a classical problem to determine
whether F can be expressed as a sum of powers of linear
forms,

F = Lq
1 + · · · + Lq

s, (1–1)

for a specified number s. This is usually called “War-
ing’s problem” for algebraic forms. (Normally one also
allows a “degeneration” of the right-hand side in (1–1);
this will be made precise later.) Now, the condition that
F can be so expressed is invariant under the natural ac-
tion of the group SLr; hence, it should be equivalent to
the vanishing of certain concomitants of F in the sense
of the invariant theory of r-ary q-ics. It is of interest to
identify these concomitants, and thus to get explicit alge-
braic conditions on the coefficients of F for the expression
(1–1) (or its degeneration) to be possible.

In this paper, we consider the case of ternary quar-
tics, i.e., we let r = 3 and q = 4. Since a general ternary
quartic is a sum of 6 powers of linear forms, it is only
necessary to consider the range 1 ≤ s ≤ 5. The calcu-
lations required in this case are not prohibitively large,
and it is possible to get a complete solution. This is the
main result of the paper (see Theorem 4.1).

An excellent introduction to Waring’s problem may
be found in [Geramita 95]. A very comprehensive ac-
count of the theory is given in [Iarrobino and Kanev 99].
The problem was solved for binary forms by Gundelfin-
ger (see [Chipalkatti 04, Grace and Young 65, Kung 86]).
In Salmon’s book [Salmon 60], the solution for ternary
cubics is given in essence, but there it is scattered among
several articles.
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2. PRELIMINARIES

In this section, we establish notation and recall the
representation-theoretic notions that we will need. The
reader may wish to read it along with [Chipalkatti 02],
where a similar set-up is used, but more detailed expla-
nations are given. Although we work throughout with
ternary quartics, on occasion I state whether a result goes
through for arbitrary q and r. All the terminology from
algebraic geometry follows [Hartshorne 77], in particular
a variety is always irreducible as a topological space and
reduced as a scheme.

Let V be a three-dimensional C-vector space. Let V

and V ∗ have dual bases, {y0, y1, y2} and {x0, x1, x2}, re-
spectively. We will identify P (S4 V ∗) = P

14 with the
space of quartic forms in the xi (up to scalars). Let
R = S•(S4 V ) denote the symmetric algebra on S4 V ,
then P

14 = ProjR. The group SL(V ) acts on P
14 by

change of variables.
For an integer s, let W ◦

s ⊆ P
14 denote the set

{F ∈ P
14 : F = L4

1+ · · ·+L4
s, for some Li ∈ V ∗}, (2–1)

and Ws its Zariski closure in P
14 with its reduced

scheme structure. The embedding Ws ⊆ P
14 is SL(V )-

equivariant.

Remark 2.1. In general, the W ◦
s are not quasiprojective.

However, W ◦
s is the image of the rational map

(V ∗)s − → P
14, (L1, . . . , Ls) −→

s∑
i=1

L4
i ;

hence it is constructible by Chevalley’s theorem (see
[Hartshorne 77, Chapter II]). Since W ◦

s is the image of
an irreducible algebraic set, it is irreducible. Hence, Ws

is also irreducible, i.e., it is a projective variety.

Remark 2.2. The dimensions of the varieties Ws are
known by a theorem due to Alexander and Hirschowitz—
see [Geramita 95, Iarrobino and Kanev 99] for references.
In fact, Ws = P

14 for s ≥ 6, dim Ws = 3s − 1 for
1 ≤ s ≤ 4, and W5 is a hypersurface. The degrees of
W1, . . . , W5 are 16, 75, 112, 35, and 6, respectively (see
[Ellingsrud and Strømme 96]). Elements of W4 (respec-
tively, W5) are conventionally called Capolari (respec-
tively, Clebsch) quartics. For s = 6, a general ternary
quartic has ∞3 presentations as a sum of powers, and
they are parametrized by points of a prime Fano three-
fold of sectional genus 12 (see [Schreyer 01]).

We would like to give necessary and sufficient SL(V )-
invariant algebraic conditions for a form F to lie in Ws.
This is roughly the same as determining the structure of
the ideal IWs

⊆ R qua an SL(V )-representation. The
parallel problem of characterizing W ◦

s is harder, and in
Section 4.6, we only consider the case of W ◦

2 .

2.1 Schur Functors

If λ is a partition, then Sλ(−) denotes the corresponding
Schur functor. We maintain the indexing conventions of
[Fulton and Harris 91, Chapter 6].

Let J ⊆ R be a homogeneous SL(V )-stable ideal (for
instance, IWs

), and Jd its degree d part. We have a direct
sum decomposition

Jd =
⊕

λ

(SλV )Nλ ⊆ Sd (S4 V ). (2–2)

Since V is three-dimensional, each λ is of the form (m +
n, n) for some integers m,n. If we can locate the degrees
d which generate J , and then specify the inclusions in
(2–2), then J is completely specified. These inclusions
are encoded by the concomitants of ternary quartics.

2.2 Concomitants

Write aI for the monomial yi0
0 yi1

1 yi2
2 , where I = (i0, i1, i2)

is of total degree 4. Then the {aI} form a basis of S4 V ,
and R is the polynomial algebra C [{aI}]. Now S4 V ⊗
S4 V ∗ contains the trace element, which, when written
out in full, appears as

F =
∑
|I|=4

aI ⊗ xi0
0 xi1

1 xi2
2 .

We may treat the {aI} as independent indeterminates, so
F is the precise formulation of the concept of a “generic”
ternary quartic.

Now write u0 = x1 ∧ x2, u1 = x2 ∧ x0, u2 = x0 ∧ x1,
which form a basis of ∧2 V ∗. Consider an inclusion

S(m+n,n)V
ϕ−→ Sd (S4 V )

of SL(V )-representations, which will correspond to an
equivariant inclusion

C −→ Sd (S4 V ) ⊗ S(m+n,n)V
∗.

Let Φ denote the image of 1 under this map. Written
out in full, it is a form of degree d,m, n, respectively, in
the three sets of variables aI , xi, ui. This follows because
S(m+n,n) V ∗ has a basis derived from standard tableaux
(see [Fulton and Harris 91, Chapter 6]). We will write
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this image as Φ(d,m, n); classically it is called a concomi-
tant of degree d, order m, and class n of ternary quar-
tics. For instance, F itself is a Φ(1, 4, 0) and the Hessian
of F is a Φ(3, 6, 0). For fixed d,m, n, the number of lin-
early independent concomitants equals the multiplicity
of S(m+n,n) V in Sd(S4 V ).

Remark 2.3. The name “concomitant” was introduced by
Sylvester (see [Sylvester 04]). The terminology is some-
times further refined—if either m or n is zero, then Φ is
accordingly called a contravariant or a covariant. If m,n

are both zero, then it is an invariant.

We may regard Φ as a form in ui, xi with coefficients
in Rd. Then the subspace of Rd generated by these coef-
ficients coincides with the image of the inclusion ϕ above.
We can evaluate Φ at a specific form F by substituting
its actual coefficients for the letters aI . Then we say that
Φ vanishes at F if this evaluated form is identically zero.

3. APOLARITY

We briefly explain the connection between the expression
of F as a sum of powers, and the existence of schemes
“apolar” to F (also see [Dolgachev and Kanev 93, Ehren-
borg and Rota 93, Iarrobino and Kanev 99]).

Let A = S•V denote the symmetric algebra on V .
A linear form L ∈ V ∗ can be considered as a point in
PV ∗ = Proj A. If Z = {L1, . . . , Ls} is a collection of
points in PV ∗, then IZ ⊆ A denotes their ideal. For
every k ≥ 0, there is a coproduct map

S4 V ∗ −→ Sk V ∗ ⊗ S4−k V ∗.

(It is zero unless 0 ≤ k ≤ 4.) This gives rise to a map

S4 V ∗ −→ Hom (Sk V, S4−k V ∗), F −→ αk,F . (3–1)

Taking a direct sum over all k, we have a map

S4 V ∗ −→ Hom (A,
4⊕

i=0

Si V ∗), F −→ αF .

For a fixed F , ker αF is a homogeneous ideal in A. Classi-
cally, a form in kerαF is said to be apolar to F . The pas-
sage between apolarity and Waring’s problem is forged
by the following beautiful theorem of Reye, to whom the
concept of apolarity should be credited.

Theorem 3.1. With notation as above,

F ∈ span {L4
1, . . . , L

4
s} ⇐⇒

IZ ⊆ ker αF ⇐⇒ (IZ)4 ⊆ ker α4,F .

Of course, Reye’s own formulation in [Reye 74] is
rather different. A modern proof can be found in [Iar-
robino and Kanev 99, Theorem 5.3 B]. An analogous re-
sult holds for any q, r.

It is natural to relax the requirement that Z be a re-
duced scheme, which motivates the following definition.

Definition 3.2. Let F ∈ P
14, and Z ⊆ PV ∗ a closed

subscheme with (saturated) ideal IZ . We say that Z is
apolar to F , if IZ ⊆ ker αF .

To restate Reye’s theorem, F lies in W ◦
s iff F admits a

reduced zero-dimensional apolar scheme of length s. We
now tentatively introduce the locus

X◦
s = {F ∈ P

14 : ker αF ⊇ IZ for some Z ∈ Hilbs(PV ∗)}.

Let Xs denote the closure of X◦
s with its reduced scheme

structure. A priori, Xs is a closed algebraic subset of P
14

which only contains Ws. However, they turn out to be
equal.

Lemma 3.3. We have Ws = Xs for all s, in particular
Xs is irreducible.

Proof: This is essentially proven in [Iarrobino and
Kanev 99, Proposition 6.7]; here we will sketch the argu-
ment. Let F ∈ X◦

s , with apolar scheme Z ∈ Hilbs(P2).
It is known that Hilbs(P2) is irreducible, which implies
that Z is smoothable (i.e., it admits a flat deformation
to a smooth scheme). Then [Iarrobino and Kanev 99,
Proposition 6.7 A] implies that F ∈ Ws. It follows that
X◦

s ⊆ Ws, and so Xs ⊆ Ws.

Remark 3.4. The proof shows that the analogous result is
true for r = 2, 3 and all q. There are examples for r = 6
(see [Iarrobino and Kanev 99, Corollary 6.28]) where Xs

is reducible and hence strictly contains Ws.

We will now use apolarity to relate Xs with degener-
acy loci of certain morphisms of vector bundles on P

14.
Globally, the map in (3–1) gives a morphism of vector
bundles

αk : Sk V ⊗OP14(−1) −→ S4−k V ∗. (3–2)

Up to a twist, αk is dual to α4−k.



96 Experimental Mathematics, Vol. 13 (2004), No. 1

Lemma 3.5. If F belongs to Xs, then rank αk,F ≤ s for
any k.

Proof: Since the rank is lower-semicontinuous as a func-
tion of F , we may assume F ∈ X◦

s . Then (IZ)k ⊆
ker αk,F , hence

rankαk,F =

codim (ker αk,F , Ak) ≤ codim ((IZ)k, Ak) ≤ s.

If ψ : F −→ E is a morphism of vector bundles on
P

14, let Y (s, ψ) denote the scheme {rankψ ≤ s}, whose
ideal sheaf is locally generated by the (s + 1) × (s + 1)-
minors of a matrix representing ψ. Let Yred(s, ψ) denote
the underlying reduced scheme. We will shorten this to
Y or Yred if no confusion is likely.

Remark 3.6. By the lemma above, Xs ⊆ Yred(s, αk) for
any k. Hence, we have a containment

Xs ⊆
⋂
k

Yred(s, αk). (3–3)

For binary forms, this is an equality. By a result of
Schreyer [Schreyer 01, Theorem 2.3], we already have an
equality of sets Ws = Y (s, α2) for ternary quartics.

Example 3.7. This is an example where the containment
(3–3) is strict; I owe it to the referee. Let r = 3, q = 8,

and s = 14. For k �= 4, either the source or the target of
αk has rank < 14, so Y (14, αk) = P

44. Now Y (14, α4) is a
hypersurface in P

44, hence the right-hand side of (3–3) is
43-dimensional. In contrast, X14 is only 41-dimensional.
In general, it is not known for which q, r, s equality holds
in (3–3).

3.1 Symmetric Bundle Maps

In the sequel, we will exploit the fact that α2 is a twisted
symmetric morphism.

Generally, let T be a smooth complex projective vari-
ety. Let E be a rank e vector bundle and L a line bundle
on T . Assume that ψ : E −→ E∗⊗L is a twisted symmet-
ric bundle map (i.e., ψ∗ ⊗ L = ψ). Define Y = Y (s, ψ)
as above. Then assuming Y is nonempty,

codim (Y ′, T ) ≤ (e − s)(e − s + 1)
2

, (3–4)

for every component Y ′ of Y . Moreover, if equality holds
for every component, then Y is Cohen-Macaulay. In that

case, the class of Y in the Chow ring of T is given by a
determinantal formula (see [Harris and Tu 84]). Let zk =
ck(E∗⊗√L), then [Y ] equals 2e−s times the (e−s)×(e−s)
determinant whose (i, j)-th entry is z(e−s−2i+j+1).

The minimal free resolution of Y (assuming equality
in (3–4)) is deduced in [Józefiak et al. 80]. All that we
need is the beginning portion

Sλs
E ⊗ L⊗(−s−1) → OT → OY → 0, (3–5)

where λs denotes the partition (2, . . . , 2) = (2s+1) with
s + 1 parts.

We will apply this set-up to α2, with E = S2 V ⊗
OP14(−1) and L = OP14(−1).

4. THE IDEAL OF WS

We proceed to state the main theorem, and then explain
the calculations entering into it. The concomitants will
be written in the symbolic notation—see [Chipalkatti 02,
Grace and Young 65] for an explanation of this formalism.
Define the following concomitants of ternary quartics:

Φ(2, 4, 2) = α2
x β2

x (α β u)2

Φ(2, 0, 4) = (α β u)4

Φ(3, 6, 0) = α2
x β2

x γ2
x (α β γ)2

Φ(3, 3, 3) = αxβxγx(α β γ) (α β u) (α γ u) (β γ u)

Φ(3, 2, 2) = γ2
x (α β γ)2 (α β u)2

Φ(3, 0, 0) = (α β γ)4

Φ(3, 0, 6) = (α β u)2(α γ u)2(β γ u)2

Φ(4, 0, 2) = (α γ δ)2(β γ δ)2(α β u)2

Φ(4, 1, 3) = αx(α γ δ)2(β γ u)2(α β δ)(β δ u)

Φ(4, 4, 0) = αxβxγxδx (α β γ)(α β δ)(β γ δ)(α γ δ)

Φ(4, 2, 4) = αxβx (α γ δ)(β γ δ)(α β u)2(γ δ u)2

ΦI(5, 0, 4) = (α β γ)4(δ ε u)4

ΦII(5, 0, 4) = (α β γ)2(δ ε u)2(α δ ε)2(β γ u)2

Φ(5, 2, 0) = αxβx(α β γ)2(α δ ε)(β δ ε)(γ δ ε)2

Φ(6, 0, 0) = (α β γ)2(δ ε ζ)2(α ε ζ)2(β γ δ)2.

Now form the lists

U 1 = {Φ(2, 4, 2),Φ(2, 0, 4)}
U 2 = {Φ(3, 6, 0),Φ(3, 0, 6),Φ(3, 3, 3),Φ(3, 2, 2),Φ(3, 0, 0)}
U 3 = {Φ(4, 4, 0),Φ(4, 2, 4),Φ(4, 1, 3),Φ(4, 0, 2)}
U 4 = {ΦI(5, 0, 4) − 3ΦII(5, 0, 4),Φ(5, 2, 0)}
U 5 = {3Φ(6, 0, 0) − Φ(3, 0, 0)2}.
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0 → H0(P14, IW1(2)) → H0(P14,OP14(2)) → H0(W1,OW1(2))
|| ||

S2(S4 V ) S8 V

FIGURE 1.

If U is such a list, then U |F = 0 (respectively, U |F �=
0) means that all elements of U vanish at F (respec-
tively, at least one element is nonzero at F ). With nota-
tion as above, our main theorem is the following:

Theorem 4.1. Let F be a ternary quartic, and 1 ≤ s ≤ 5.
Then

F ∈ Ws ⇐⇒ U s|F = 0.

This statement is closer to the classical roots of the
subject, but in fact something stronger is true. Let As ⊆
R denote the ideal generated by all the coefficients of all
the elements in U s. Then the saturation of As is IWs

;
in other words, the elements of U s define Ws scheme-
theoretically. In fact, no saturation is needed for s =
1, 2, 5; I do not know if it is needed for s = 3, 4. All of
this will follow from the analysis below.

In the sequel, it is frequently necessary to calculate
plethysms and tensor products of SL(V )-representations;
this was done using John Stembridge’s SF package for
Maple. All commutative algebra computations were done
in Macaulay-2.

4.1 Case s = 1

The locus W1 is the quartic Veronese embedding of
P V ∗. It is well known that its ideal is generated in
degree 2, and we have an exact sequence as shown in
Figure 1 above. Decomposing S2(S4 V ), we see that
H0(P14, IW1(2)) must be isomorphic to S(6,2)V ⊕S(4,4)V .
Sometimes we will abbreviate the latter as (6, 2)⊕ (4, 4).

To specify the inclusion S(6,2) ↪→ S2(S4 V ) is to spec-
ify a concomitant Φ(2, 4, 2). There is only one copy of
S(6,2) inside S2(S4), hence there is a unique such Φ up
to a constant. Now observe that α2

x β2
x (α β u)2 is a (le-

gal) symbolic expression of the right degree; moreover it
is not identically zero. This is tantamount to checking
that it is a nonzero element in the “bracket algebra” (see
[Sturmfels 93, Section 3]), which was done in Macaulay-
2. Thus we have found Φ(2, 4, 2). The other concomitant
Φ(2, 0, 4) is found in the same way, and this finishes the
calculation for s = 1.

Remark 4.2. In general, given d,m, n, it is possible to get
all possible symbolic expressions which would be candi-
dates for concomitants, by solving a system of Diophan-
tine equations. However, in practice it is much easier to
concoct such expressions by hand, especially if the mul-
tiplicity of S(m+n,n) in Sd(S4) is small.

4.2 Case s = 2

First, we calculate the ideal IW2 by explicit elimination.
Let

F =
∑
|I|=4

aI xI , Li = pi0 x0+pi1 x1+pi2 x2 for i = 1, 2,

where aI , pij are indeterminates. Write F = L4
1+L4

2, and
equate coefficients. We obtain polynomial expressions
aI = fI(p10, . . . , p22), defining a morphism

f : C [{aI}] −→ C [{pij}].

Then IW2 equals ker f . The actual Macaulay-2 compu-
tation shows that all the ideal generators are in degree 3,
and dim (IW2)3 = 148.

The inclusion W2 ⊆ Y (2, α3) = Y implies IY ⊆ IW2 .
Now Y is a rank variety of dimension 6 in the sense of
Porras [Porras 96]; in particular it is reduced. (It is the
locus of those F which can be written as forms in only two
variables by a change of coordinates.) By [loc. cit.], its
ideal IY has a resolution given by the Eagon-Northcott
complex of the map

S3V ⊗ R(−1) −→ V ∗ ⊗ R.

The beginning portion of this resolution is

. . . → ∧3(S3V ) ⊗ R(−3) → R → R/IY → 0.

Hence, IY is generated by the 120-dimensional piece

∧3(S3) = (6, 3) ⊕ (6, 0) ⊕ (4, 2) ⊕ (0, 0),

which is a subrepresentation of

R3 = S3(S4V ) = (12, 0) ⊕ (10, 2) ⊕ (9, 3) ⊕ (8, 4)⊕
(6, 6) ⊕ (6, 3) ⊕ (6, 0) ⊕ (4, 2) ⊕ (0, 0).
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The quotient of the inclusion (IY )3 ⊆ (IW2)3 is a 28-
dimensional representation, so it can only be S(6,6).
Hence

(IW2)3 = (6, 6) ⊕ (6, 3) ⊕ (6, 0) ⊕ (4, 2) ⊕ (0, 0).

The concomitants are then calculated as in the previous
case.

Remark 4.3. The Gordan-Noether theorem (see
[Olver 99, page 234]) implies that F ∈ Y (2, α3) = Y iff
the Hessian of F (which is Φ(3, 6, 0)) identically vanishes.
However, the Hessian does not define Y as a scheme in
the following sense. Let H ⊆ R denote the ideal gener-
ated by the coefficients of Φ(3, 6, 0); then the saturation
of H is strictly smaller than IY . (This was verified in
Macaulay-2.) Hence, Proj (R/H) is a nonreduced scheme
with the same support as Y .

4.3 Case s = 3

Matters are greatly simplified due to the following
lemma.

Lemma 4.4. As schemes, W3 = Y (3, α2); in particular
the latter is a reduced scheme.

Proof: As a first step, we show that W3 = Yred(3, α2). Let
F ∈ Yred. If rankα1,F ≤ 2, then F is a binary quartic in
disguise, and then it has infinitely many apolar schemes
of length 3 (see [Iarrobino and Kanev 99, Section 1.3]).
If rankα1,F = 3, then the existence of a length 3 apo-
lar scheme follows from [Iarrobino and Kanev 99, Theo-
rem 5.31]. (To summarize the situation, the Buchsbaum-
Eisenbud structure theorem implies that kerαF is gener-
ated as an ideal by 3 conics and 2 quartics. The subideal
generated by the 3 conics defines the apolar scheme.) In
either case, F ∈ W3. This shows that W3 = Yred(3, α2).

Now Y = Y (3, α2) is irreducible of dimension 8, so
equality holds in the codimension estimate (3–4). Hence,
Y is Cohen-Macaulay, and has no embedded components.
By the determinantal formula, deg Y = 112 which is the
same as deg W3. Hence, Y must be reduced.

The resolution (3–5) in Section 3.1 implies that IW3 is
generated up to saturation by the following submodule
of R4:

S(2,2,2,2)(S2 V ) = (6, 4) ⊕ (4, 3) ⊕ (4, 0) ⊕ (2, 2).

The concomitants are calculated as before.

As in the previous case, I tried to calculate IW3 by
direct elimination in Macaulay-2, but the program failed
to terminate successfully.

4.4 Case s = 4

This is similar to the previous case.

Lemma 4.5. As schemes, W4 = Y (4, α2); in particular
the latter is a reduced scheme.

Proof: Assume F ∈ Yred(4, α2). If either rankα1,F ≤ 2 or
rankα2,F ≤ 3, then F ∈ W3 by the previous argument.
Hence, we may assume rank α1,F = 3, rank α2,F = 4. We
would like to show that F admits an apolar scheme of
length 4. Let U = ker α2,F , which is a two-dimensional
subspace of S2V . There are now three subcases.

• If the generators of U do not have a common lin-
ear factor, then they define a complete intersection
scheme of length 4 which is apolar to F . If the gen-
erators do have a common linear factor, then up to a
change of variables, there are only two possibilities.

• U = (y0y1, y0y2). Then necessarily F = x4
0 +

q(x1, x2), for some quartic (binary) form q. It is
now immediate that ker α3,F contains a cubic form
u(y1, y2). The ideal (y0y1, y0y2, u) defines an apolar
length 4 scheme.

• U = (y2
0 , y0y1), which forces F = x0x

3
2 + q(x1, x2)

for some quartic form q. Then ker α3,F contains a
cubic form u(y1, y2), which is a linear combination
of y3

1 , y2
1y2, y1y

2
2 . Now the ideal (y2

0 , y0y1, u) defines
the required length 4 scheme.

We have shown that W4 = Yred(4, α2). The rest of the
proof is similar to the previous lemma.

It follows that IW4 is generated up to saturation by
the following submodule of R5:

S(2,2,2,2,2)(S2 V ) = (4, 4) ⊕ (2, 0).

There are two copies S(4,4) inside S5(S4), hence a two-
dimensional space of concomitants of degree (5, 0, 4). A
basis for this space is given by ΦI(5, 0, 4) and ΦII(5, 0, 4).
Choose a typical form in W4, say F = x4

0 + x4
1 + x4

2 +
(x0 + x1 + x2)4 and evaluate both concomitants at F . It
is found that ΦI − 3ΦII identically vanishes on F .

Similarly, there are two copies of S(2,0) in S5(S4).
However, it turns out that Φ(5, 2, 0) itself vanishes on
F , so no linear combination is needed.
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4.5 Case s = 5

Clebsch showed in [Clebsch 61] that W5 is a hypersurface
in P

14; here we calculate its invariant equation.
Let Y = Y (5, α2), then W5 ⊆ Yred. Let C denote

the equation of the scheme Y . Since C is given by the
determinant of

α2 : S2 V ⊗OP14(−1) −→ S2 V ∗,

it has degree 6. Decomposing S6(S4 V ), we see that it
contains a two-dimensional subspace of trivial represen-
tations. Now Φ(6, 0, 0) and Φ(3, 0, 0)2 generate this sub-
space, hence C must be their linear combination. To de-
termine this combination, specialize both of them at

F = x4
0 + x4

1 + x4
2 + (x0 + x1 + x2)4 + (x0 − x1 + x2)4,

which is an element of W5. It turns out that C =
3Φ(6, 0, 0) − Φ(3, 0, 0)2. Now if C were not a prime ele-
ment of the ring R, then it would have an invariant factor
of degree ≤ 3. The only candidate for such a factor is
Φ(3, 0, 0) (because ternary quartics have no invariant of
degree 2), but we have seen that it does not divide C.
Hence, C is irreducible, and it defines W5. Usually C is
called the catalecticant of ternary quartics. This com-
pletes the discussion of Theorem 4.1.

4.6 A Description of W ◦
2

In general, W ◦
s is only expressible as a complicated

boolean expression in closed sets, and it is not easy to
characterize it algebraically. Here we attempt such a
characterization for s = 2.

Let F ∈ W2 \ W ◦
2 , then F is apolar to a nonreduced

length two subscheme Z of PV ∗. Up to a change of co-
ordinates, IZ = (y0, y

2
1). This forces F = c1 x4

2 + c2 x1x
3
2,

for some constants ci. Since F has no apolar scheme of
length one, c2 �= 0; so F = x3

2(
c1
c2

x2 + x1). Hence,

W2 \ W ◦
2 = {L3

1L2 : Li are linearly independent}.

Now let

B = (W2 \ W ◦
2 ) ∪ W1 = {L3

1L2 : Li ∈ V ∗},

which is an irreducible projective variety of dimension 4.
Geometrically, B is the union of tangent planes to W1.
The inclusions W1 ⊆ B ⊆ W2 imply IW2 ⊆ IB ⊆ IW1 .

As in Section 4.2, we calculate the generators of IB by
explicit elimination. Its minimal resolution begins as

R(−3) ⊗ M8 ⊕ R(−4) ⊗ M570 ⊕ R(−5) ⊗ M66 →
R(−2) ⊗ M15 ⊕ R(−3) ⊗ M56 → R → R/IB → 0,

where Mi is an i-dimensional SL(V )-representation. We
need to identify M15 and M56. Since (IB)2 ⊆ (IW1)2, on
dimensional grounds M15 = S(4,4). Consider the chain
(IW2)3 ⊆ (IB)3 ⊆ (IW1)3. The irreducible decompo-
sitions of the end terms are already known, hence the
middle term is forced:

(IB)3 = (8, 4) ⊕ (6, 6) ⊕ (6, 3) ⊕ (6, 0) ⊕ (4, 2) ⊕ (0, 0).

Now M8 is a submodule of

M15 ⊗ R1 = (8, 4) ⊕ (6, 3) ⊕ (4, 2) ⊕ (2, 1) ⊕ (0, 0),

hence M8 = S(2,1). This implies that the submodule

(8, 4) ⊕ (6, 3) ⊕ (4, 2) ⊕ (0, 0) ⊆ (IB)3

is generated by M15. Hence, M56 (the module of new
generators in degree 3) must be (6, 6) ⊕ (6, 0). Define

V = {Φ(2, 0, 4),Φ(3, 0, 6),Φ(3, 6, 0)},

following the generators of IB. Since W ◦
2 = (W2\B)∪W1,

we deduce the following:

Proposition 4.6. For a ternary quartic F ,

F ∈ W ◦
2 ⇐⇒ (U 2|F = 0 ∧ V|F �= 0) ∨ (U 1|F = 0).

The cases s > 2 do not seem so accessible, partly be-
cause there are a great many possibilities for the struc-
ture of a nonreduced length s scheme.

5. A FOLIATION OF Y (2, α3)

This section is something of a digression, since it does not
concern Waring’s problem. However, it is consonant with
a dominant theme in classical invariant theory: those
properties of a form which are independent of coordinates
should be detectable by the vanishing of concomitants.

Let us write Y for Y (2, α3). A point F in Y is really
a binary form up to a change of variables. Hence, for
a general such F , the curve {F = 0} ⊆ P

2 is a set of
four concurrent lines, which can be assigned a cross-ratio.
This motivates the following definition: for t ∈ C, let Ω(t)

denote the Zariski closure of the set

{L1L2(L1 + L2)(L1 + t L2) : Li ∈ V ∗}

in Y (with the reduced scheme structure). This is a hy-
persurface in Y for a fixed t; and the family {Ω(t)} de-
fines a foliation over a dense open set of Y . Following
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a venerated tradition (see [Hartshorne 77, Chapter IV,
Section 4]), we define

j(t) =
4 (t2 − t + 1)3

27 t2(t − 1)2
, for t �= 0, 1;

and j(0) = j(1) = ∞. Then Ω(t) = Ω(t′) iff j(t) = j(t′).
Now we can calculate the ideal of Ω(t) by elimination

as in Section 4.2, and decompose it as a representation.
This goes through without complications, hence I will
omit the details and merely state the result.

Let J(t) ⊆ R denote the ideal of Ω(t), evidently
IY ⊆ J(t). Since the generators of IY are already known
from Section 4.2, it is enough to describe the generators
of the quotient Q(t) = J(t)/IY . The computation shows
that Q(t) is generated as a graded R/IY module by an ir-
reducible representation M (t). The degree in which M (t)

appears and its structure depend on j(t), in fact

M (t) =




S(4,4) in degree 2 if j(t) = 0,
S(6,6) in degree 3 if j(t) = 1,
S(12,12) in degree 6 if j(t) �= 0, 1.

Now it is a routine matter to identify the concomitant
corresponding to M (t). Define

Ej =

{
(1 − j)Φ(2, 0, 4)3 + 6j Φ(3, 0, 6)2, for j finite;
−Φ(2, 0, 4)3 + 6Φ(3, 0, 6)2, for j = ∞.

(The definitions of Φ are those in the beginning of Sec-
tion 4.) Then we have the following result.

Theorem 5.1. For a ternary quartic F ,

F ∈ Ω(t) if and only if

{Φ(3, 6, 0),Φ(3, 3, 3),Φ(3, 2, 2),Φ(3, 0, 0), Ej(t)}|F = 0.

Notice that Ω(2) = W2 and j(2) = 1. In this case, the
result agrees with Theorem 4.1 (as it should).

Remarks 5.2.

1. The roles played by Φ(2, 0, 4) and Φ(3, 0, 6) are very
similar to those of the Eisenstein series g2, g3 in the
classical theory of elliptic functions. I do not know
if one can demonstrate a precise connection between
the two theories.

2. It is tempting to conjecture that there is a similar
story to be told for quartic forms in any number of
variables. For instance, (conjecturally) there should
be a continuously moving concomitant of quaternary
quartics which detects the cross-ratio of four coaxial
planes.
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