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Let s be any integer between 1 and 5. We determine necessary
and sufficient conditions that a ternary quartic be expressible as
a (possibly degenerate) sum of fourth powers of s linear forms.

1. INTRODUCTION

Let F be a homogeneous polynomial (or form) of degree
q in r variables. It is a classical problem to determine
whether F' can be expressed as a sum of powers of linear
forms,

F=L{+.---+1L% (1-1)

for a specified number s. This is usually called “War-
ing’s problem” for algebraic forms. (Normally one also
allows a “degeneration” of the right-hand side in (1-1);
this will be made precise later.) Now, the condition that
F can be so expressed is invariant under the natural ac-
tion of the group SL.; hence, it should be equivalent to
the vanishing of certain concomitants of F' in the sense
of the invariant theory of r-ary g¢-ics. It is of interest to
identify these concomitants, and thus to get explicit alge-
braic conditions on the coefficients of F for the expression
(1-1) (or its degeneration) to be possible.

In this paper, we consider the case of ternary quar-
tics, i.e., we let r = 3 and g = 4. Since a general ternary
quartic is a sum of 6 powers of linear forms, it is only
necessary to consider the range 1 < s < 5. The calcu-
lations required in this case are not prohibitively large,
and it is possible to get a complete solution. This is the
main result of the paper (see Theorem 4.1).

An excellent introduction to Waring’s problem may
be found in [Geramita 95]. A very comprehensive ac-
count of the theory is given in [Tarrobino and Kanev 99].
The problem was solved for binary forms by Gundelfin-
ger (see [Chipalkatti 04, Grace and Young 65, Kung 86]).
In Salmon’s book [Salmon 60], the solution for ternary
cubics is given in essence, but there it is scattered among
several articles.
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2. PRELIMINARIES

In this section, we establish notation and recall the
representation-theoretic notions that we will need. The
reader may wish to read it along with [Chipalkatti 02],
where a similar set-up is used, but more detailed expla-
nations are given. Although we work throughout with
ternary quartics, on occasion I state whether a result goes
through for arbitrary g and r. All the terminology from
algebraic geometry follows [Hartshorne 77], in particular
a variety is always irreducible as a topological space and
reduced as a scheme.

Let V be a three-dimensional C-vector space. Let V'
and V* have dual bases, {yo,y1,y2} and {zg, z1, 22}, re-
spectively. We will identify P (SyV*) = P with the
space of quartic forms in the x; (up to scalars). Let
R = S4(S4V) denote the symmetric algebra on Sy V|
then P4 = ProjR. The group SL(V) acts on P* by
change of variables.

For an integer s, let W C P! denote the set

{FeP":F=L{+ --+L% for some L; € V*}, (2-1)

and W, its Zariski closure in P!'* with its reduced
scheme structure. The embedding W, C P is SL(V)-
equivariant.

Remark 2.1. In general, the W? are not quasiprojective.
However, W is the image of the rational map

(V) = =P (Ly,...,Ls) — > L
1=1

hence it is constructible by Chevalley’s theorem (see
[Hartshorne 77, Chapter II]). Since W2 is the image of
an irreducible algebraic set, it is irreducible. Hence, W
is also irreducible, i.e., it is a projective variety.

Remark 2.2. The dimensions of the varieties W, are
known by a theorem due to Alexander and Hirschowitz—
see [Geramita 95, Iarrobino and Kanev 99] for references.
In fact, Wy = P for s > 6, dimW, = 3s — 1 for
1 < s <4, and W5 is a hypersurface. The degrees of
Wi,...,Ws are 16, 75, 112, 35, and 6, respectively (see
[Ellingsrud and Strgmme 96]). Elements of W, (respec-
tively, W5) are conventionally called Capolari (respec-
tively, Clebsch) quartics. For s = 6, a general ternary
quartic has oco® presentations as a sum of powers, and
they are parametrized by points of a prime Fano three-
fold of sectional genus 12 (see [Schreyer 01]).

We would like to give necessary and sufficient SL(V)-
invariant algebraic conditions for a form F' to lie in Wj.
This is roughly the same as determining the structure of
the ideal Iy, C R qua an SL(V)-representation. The
parallel problem of characterizing Wy is harder, and in
Section 4.6, we only consider the case of W.

2.1 Schur Functors

If X\ is a partition, then Sy(—) denotes the corresponding
Schur functor. We maintain the indexing conventions of
[Fulton and Harris 91, Chapter 6].

Let J C R be a homogeneous SL(V)-stable ideal (for
instance, I, ), and Jy its degree d part. We have a direct
sum decomposition

Jg = @ (S,\V)NA C Sy (54 V)
A

(2-2)

Since V' is three-dimensional, each A is of the form (m +
n,n) for some integers m,n. If we can locate the degrees
d which generate J, and then specify the inclusions in
(2-2), then J is completely specified. These inclusions
are encoded by the concomitants of ternary quartics.

2.2 Concomitants

Write ay for the monomial yé" yil y;"‘, where I = (ig,1,12)
is of total degree 4. Then the {a;} form a basis of S4V,
and R is the polynomial algebra C[{as}]. Now S4V ®
Sy V* contains the trace element, which, when written

out in full, appears as

— i0, i1, .02
F= E ar @ xTy Ty
|1]=4

We may treat the {a;} as independent indeterminates, so
[ is the precise formulation of the concept of a “generic”
ternary quartic.

Now write ug = 1 A x9, u1 = x93 A g, Uz = Tg N Z1,
which form a basis of A2 V*. Consider an inclusion

Stminm)V —— Sa(SsV)

of SL(V)-representations, which will correspond to an
equivariant inclusion

C— 5y (54 V) & S(m-{-n,n)V*'

Let ® denote the image of 1 under this map. Written
out in full, it is a form of degree d, m,n, respectively, in
the three sets of variables ay, x;, u;. This follows because
S(m4n,n) V* has a basis derived from standard tableaux
(see [Fulton and Harris 91, Chapter 6]). We will write



this image as ®(d, m, n); classically it is called a concomi-
tant of degree d, order m, and class n of ternary quar-
tics. For instance, F itself is a ®(1,4,0) and the Hessian
of Fis a ®(3,6,0). For fixed d, m,n, the number of lin-
early independent concomitants equals the multiplicity
of S(ern,n) V in Sd(S4 V)

Remark 2.3. The name “concomitant” was introduced by
Sylvester (see [Sylvester 04]). The terminology is some-
times further refined—if either m or n is zero, then @ is
accordingly called a contravariant or a covariant. If m,n
are both zero, then it is an invariant.

We may regard ¢ as a form in u;, x; with coefficients
in Rg. Then the subspace of Ry generated by these coef-
ficients coincides with the image of the inclusion ¢ above.
We can evaluate ® at a specific form F' by substituting
its actual coefficients for the letters ay. Then we say that
® vanishes at F if this evaluated form is identically zero.

3. APOLARITY

We briefly explain the connection between the expression
of F' as a sum of powers, and the existence of schemes
“apolar” to F' (also see [Dolgachev and Kanev 93, Ehren-
borg and Rota 93, Iarrobino and Kanev 99]).

Let A = S,V denote the symmetric algebra on V.
A linear form L € V* can be considered as a point in
PV* = ProjA. If Z = {Ly,...,Ls} is a collection of
points in PV*, then Iy C A denotes their ideal. For
every k > 0, there is a coproduct map

Sa V¥ — S,V *® S, V™.
(It is zero unless 0 < k < 4.) This gives rise to a map

54 V* — Hom (Sk V, 54,k V*), F— Qg F- (3*1)

Taking a direct sum over all k, we have a map

4
S4V* — Hom (A, P S;V*), F— ap.
=0

For a fixed F', ker ap is a homogeneous ideal in A. Classi-
cally, a form in ker ag is said to be apolar to F'. The pas-
sage between apolarity and Waring’s problem is forged
by the following beautiful theorem of Reye, to whom the
concept of apolarity should be credited.

Chipalkatti: The Waring Loci of Ternary Quartics 95

Theorem 3.1. With notation as above,
F € span{L},..., [}} —
IZ - kerap < (Iz)4 - kera4,p.

Of course, Reye’s own formulation in [Reye 74] is
rather different. A modern proof can be found in [Tar-
robino and Kanev 99, Theorem 5.3 B]. An analogous re-
sult holds for any ¢, 7.

It is natural to relax the requirement that Z be a re-
duced scheme, which motivates the following definition.

Definition 3.2. Let F € P™, and Z C PV* a closed
subscheme with (saturated) ideal I;. We say that Z is
apolar to F, if I; C ker ap.

To restate Reye’s theorem, F' lies in W7 iff F' admits a
reduced zero-dimensional apolar scheme of length s. We
now tentatively introduce the locus

X2 ={F eP":kerap D I for some Z € Hilb*(PV*)}.

Let X, denote the closure of X7 with its reduced scheme
structure. A priori, X, is a closed algebraic subset of P14
which only contains W,. However, they turn out to be
equal.

Lemma 3.3. We have Wy = X, for all s, in particular
X, s irreducible.

Proof: This is essentially proven in [larrobino and
Kanev 99, Proposition 6.7]; here we will sketch the argu-
ment. Let F' € X2, with apolar scheme Z € Hilb®(P?).
It is known that Hilb®(P?) is irreducible, which implies
that Z is smoothable (i.e., it admits a flat deformation
to a smooth scheme). Then [larrobino and Kanev 99,
Proposition 6.7 A] implies that F' € Ws. It follows that

X7 C Wy, and so X C W. O

Remark 3.4. The proof shows that the analogous result is
true for 7 = 2,3 and all q. There are examples for r = 6
(see [Iarrobino and Kanev 99, Corollary 6.28]) where X,
is reducible and hence strictly contains W.

We will now use apolarity to relate X, with degener-
acy loci of certain morphisms of vector bundles on P4,
Globally, the map in (3-1) gives a morphism of vector
bundles

ap: SV ® Opm(fl) — S4_p V*. (3*2)

Up to a twist, ay is dual to ay_p.
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Lemma 3.5. If F belongs to X5, then rank ap p < s for
any k.

Proof: Since the rank is lower-semicontinuous as a func-
tion of F, we may assume F € XZ. Then (Iz); C

ker o, p, hence

rank ay p =
codim (ker ay, p, A) < codim ((Iz)x, Ak) < s

O

If ¢ : F — & is a morphism of vector bundles on
P let Y (s,1) denote the scheme {rankt < s}, whose
ideal sheaf is locally generated by the (s + 1) x (s + 1)-
minors of a matrix representing 1. Let Y;cq(s, %) denote
the underlying reduced scheme. We will shorten this to
Y or Yieq if no confusion is likely.

Remark 3.6. By the lemma above, X; C Yiea(s, ay) for
any k. Hence, we have a containment

Xs C ﬂxed(saak) (3_3)
k

For binary forms, this is an equality. By a result of
Schreyer [Schreyer 01, Theorem 2.3], we already have an
equality of sets Wy = Y (s, aa) for ternary quartics.

Example 3.7. This is an example where the containment
(3-3) is strict; T owe it to the referee. Let r = 3,q = 8,
and s = 14. For k # 4, either the source or the target of
ay hasrank < 14, s0 Y (14, o) = P4, Now Y (14, a4) is a
hypersurface in P4, hence the right-hand side of (3-3) is
43-dimensional. In contrast, X4 is only 41-dimensional.
In general, it is not known for which ¢, r, s equality holds
n (3-3).

3.1 Symmetric Bundle Maps

In the sequel, we will exploit the fact that as is a twisted
symmetric morphism.

Generally, let T' be a smooth complex projective vari-
ety. Let £ be a rank e vector bundle and £ a line bundle
onT. Assume that ¢ : £ — £*R L is a twisted symmet-
ric bundle map (i.e., ¥* ® L = ¢). Define Y = Y (s,9)
as above. Then assuming Y is nonempty,

(e—s)e—s+1)

codim (Y',T) < 5 ,

(3-4)

for every component Y’ of Y. Moreover, if equality holds
for every component, then Y is Cohen-Macaulay. In that

case, the class of Y in the Chow ring of T is given by a
determinantal formula (see [Harris and Tu 84]). Let 2z, =
cr(E*®V/L), then [Y] equals 2¢~* times the (e—s) x (e—s)
determinant whose (4, j)-th entry is z(e—s—2i4j41)-

The minimal free resolution of Y (assuming equality

n (3-4)) is deduced in [Jézefiak et al. 80]. All that we
need is the beginning portion
Sy.E@ LY L Op — Oy — 0, (3-5)

where )\, denotes the partition (2,...,2) = (2°*!) with
s+ 1 parts.
We will apply this set-up to ag, with £ =

O]P’14(_1) and E = O]plzl(—l).

SV ®

4. THE IDEAL OF Wg

We proceed to state the main theorem, and then explain
the calculations entering into it. The concomitants will
be written in the symbolic notation—see [Chipalkatti 02,
Grace and Young 65] for an explanation of this formalism.
Define the following concomitants of ternary quartics:

®(2,4,2

)

$(2,0,4

o 52 (afu)?
(aBu)t
9(3,6,0) = a3 B3 72 (¢ 87)*

®(3,3,3 —ag@ﬁm%(aﬁv) (aBu) (ayu)(Byu)

9(3,2,2) =72 (a 37)? (a fu)?

®(3,0,0) = (af)*

®(3,0,6) = (afu)*(ayu)*(Byu)?
(7 6)*(876)*(a fu)?

D(4,1,3) = ax(ay0)*(Byu)*(aB6)(Bou)

®(4,4,0) = a2 720z (@ B7)(aB) (B ) (v d)

D(4,2,4) = a8 (ay0)(By6)(aBu)?(ydu)?
®7(5,0,4) = (afy)*(Seu)?
®77(5,0,4 (aBY)2(0eu)?(ade)*(Byu)?

)
®(5,2,0) = Bz (afy)*(ade)(Be)(yde)?

(2,4,2) =
(2,0,4) =
(3,6,0)
(3,3,3)
(3,2,2) =
(3,0,0) =
(3,0,6) =
$(4,0,2) =
(4,1,3)
(4,4,0)
(4,2,4)
(5,0,4) =
(5,0,4) =
(5,2,0)
(6,0,0) = (af7)*(8e¢)* (e )*(B7)*.

$(6,0,0

Now form the lists

Uy = {9(2,4,2),9(2,0,4)}

Uy = {$(3,6,0),9(3,0,6), (3,3, 3), ®(3,2,2), $(3,0,0)}
Us = {B(4,4,0),D(4,2,4), (4,1,3) $(4,0,2)}

Uy ={21(5,0,4) = 3®11(5,0,4), 2(5,2,0)}

Us = {39(6,0,0) — <I>(3,0,0) 1.



0 — HYPMY Iy, (2)

S2(S4V)

— HO(P™, 0p1a (2))
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— H°(W3, Ow, (2))

| I
SsV

FIGURE 1.

If U is such a list, then U |p = 0 (respectively, U|p #
0) means that all elements of &/ vanish at F (respec-
tively, at least one element is nonzero at F'). With nota-
tion as above, our main theorem is the following:

Theorem 4.1. Let F be a ternary quartic, and 1 < s < 5.
Then

FeW, < U,r=0.

This statement is closer to the classical roots of the
subject, but in fact something stronger is true. Let 2, C
R denote the ideal generated by all the coefficients of all
the elements in ;. Then the saturation of A is Iy, ;
in other words, the elements of U, define W, scheme-
theoretically. In fact, no saturation is needed for s =
1,2,5; I do not know if it is needed for s = 3,4. All of
this will follow from the analysis below.

In the sequel, it is frequently necessary to calculate
plethysms and tensor products of SL(V')-representations;
this was done using John Stembridge’s SF package for
Maple. All commutative algebra computations were done
in Macaulay-2.

41 Cases=1

The locus Wi is the quartic Veronese embedding of
PV*. It is well known that its ideal is generated in
degree 2, and we have an exact sequence as shown in
Figure 1 above. Decomposing S2(S4 V), we see that
HO(P', Zyy, (2)) must be isomorphic to S(g2)V @& S0 V.
Sometimes we will abbreviate the latter as (6,2) @ (4, 4).

To specify the inclusion S 2y < S2(S4V) is to spec-
ify a concomitant ®(2,4,2). There is only one copy of
S(6,2) inside S(S4), hence there is a unique such ® up
to a constant. Now observe that a2 32 (o Bu)? is a (le-
gal) symbolic expression of the right degree; moreover it
is not identically zero. This is tantamount to checking
that it is a nonzero element in the “bracket algebra” (see
[Sturmfels 93, Section 3]), which was done in Macaulay-
2. Thus we have found ®(2,4,2). The other concomitant
®(2,0,4) is found in the same way, and this finishes the
calculation for s = 1.

Remark 4.2. In general, given d, m, n, it is possible to get
all possible symbolic expressions which would be candi-
dates for concomitants, by solving a system of Diophan-
tine equations. However, in practice it is much easier to
concoct such expressions by hand, especially if the mul-
tiplicity of S(pn,n) in Sg(S4) is small.

4.2 Cases =2

First, we calculate the ideal Iy, by explicit elimination.
Let

F= Z arz’, L = piovo+pi 1+piz w2 for i =1,2,
I|=4

where ay, p;; are indeterminates. Write F' = L}+ L3, and
equate coefficients. We obtain polynomial expressions

ar = fr(p1o,---,pa22), defining a morphism

f:Clar}] — C{pi}l-

Then Iy, equals ker f. The actual Macaulay-2 compu-
tation shows that all the ideal generators are in degree 3,
and dim (fw,)s = 148.

The inclusion Wy C Y'(2,a3) = Y implies Iy C Iyy,.
Now Y is a rank variety of dimension 6 in the sense of
Porras [Porras 96]; in particular it is reduced. (It is the
locus of those F' which can be written as forms in only two
variables by a change of coordinates.) By [loc. cit.], its
ideal Iy has a resolution given by the Eagon-Northcott
complex of the map

S3V®R(—1) — V*®R.
The beginning portion of this resolution is
.= N3(S3V)® R(=3) - R — R/Iy — 0.
Hence, Iy is generated by the 120-dimensional piece
A%(S3) = (6,3) @ (6,0) @ (4,2) @ (0,0),
which is a subrepresentation of

R3 = S3(54V) =(12,0) & (10,2) @ (9,3) & (8,4)®
(6,6) @ (6,3) & (6,0) & (4,2) @ (0,0).
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The quotient of the inclusion (Iy)s C (Iw,)s is a 28-
dimensional representation, so it can only be S ).
Hence

(Iw,)s = (6,6) & (6,3) & (6,0) & (4,2) & (0,0).

The concomitants are then calculated as in the previous
case.

Remark 4.3. The Gordan-Noether theorem (see
[Olver 99, page 234]) implies that F' € Y (2,a3) =Y iff
the Hessian of F' (which is ®(3,6,0)) identically vanishes.
However, the Hessian does not define Y as a scheme in
the following sense. Let $ C R denote the ideal gener-
ated by the coefficients of ®(3,6,0); then the saturation
of § is strictly smaller than Iy. (This was verified in
Macaulay-2.) Hence, Proj (R/$)) is a nonreduced scheme
with the same support as Y.

4.3 Cases =3

Matters are greatly simplified due to the following
lemma.

Lemma 4.4. As schemes, W3 = Y (3,az); in particular
the latter is a reduced scheme.

Proof: As a first step, we show that W3 = Yiea(3, a2). Let
F € Yiea. If ranka; p <2, then F' is a binary quartic in
disguise, and then it has infinitely many apolar schemes
of length 3 (see [Iarrobino and Kanev 99, Section 1.3]).
If rank oy p = 3, then the existence of a length 3 apo-
lar scheme follows from [Iarrobino and Kanev 99, Theo-
rem 5.31]. (To summarize the situation, the Buchsbaum-
Eisenbud structure theorem implies that ker ar is gener-
ated as an ideal by 3 conics and 2 quartics. The subideal
generated by the 3 conics defines the apolar scheme.) In
either case, F' € W3. This shows that W3 = Y4 (3, ).
Now Y = Y (3,a9) is irreducible of dimension 8, so
equality holds in the codimension estimate (3-4). Hence,
Y is Cohen-Macaulay, and has no embedded components.
By the determinantal formula, deg Y = 112 which is the
same as deg W3. Hence, Y must be reduced. O

The resolution (3-5) in Section 3.1 implies that Iy, is
generated up to saturation by the following submodule
of R4Z

5(2,2,2,2) (52 V) = (674) D (47 3) D (47 0) D (27 2)

The concomitants are calculated as before.

As in the previous case, I tried to calculate Iy, by
direct elimination in Macaulay-2, but the program failed
to terminate successfully.

44 Cases =4

This is similar to the previous case.

Lemma 4.5. As schemes, Wy = Y (4, as); in particular
the latter is a reduced scheme.

Proof: Assume F' € Yieq(4, a2). If either rank aq p < 2 or
rank ag p < 3, then I € W3 by the previous argument.
Hence, we may assume rank o p = 3,rankas p = 4. We
would like to show that F' admits an apolar scheme of
length 4. Let U = ker ap r, which is a two-dimensional
subspace of SoV. There are now three subcases.

o If the generators of U do not have a common lin-
ear factor, then they define a complete intersection
scheme of length 4 which is apolar to F. If the gen-
erators do have a common linear factor, then up to a
change of variables, there are only two possibilities.

e U = (yoy1,yoy2). Then necessarily F = x§ +
q(z1,x2), for some quartic (binary) form ¢. It is
now immediate that ker a3 p contains a cubic form
u(y1,y2). The ideal (yoy1, yoye, u) defines an apolar
length 4 scheme.

e U = (y3,90y1), which forces F = zox3 + q(z1,72)
for some quartic form g. Then ker a3  contains a
cubic form u(yi,ys2), which is a linear combination
of y3,y?y2, y1y3. Now the ideal (y2,yoy1,u) defines
the required length 4 scheme.

We have shown that Wy = Yieq(4, a2). The rest of the
proof is similar to the previous lemma. O

It follows that Iy, is generated up to saturation by
the following submodule of Rj:

S(2,2,2,2,2)(S2 V) = (4,4) © (2,0).

There are two copies S(4.4) inside S5(S;), hence a two-
dimensional space of concomitants of degree (5,0,4). A
basis for this space is given by ®;(5,0,4) and ®;;(5,0,4).
Choose a typical form in Wy, say F = x§ + 2 + 23 +
(ro + 21 + x2)* and evaluate both concomitants at F. It
is found that ®; — 3®;; identically vanishes on F.

Similarly, there are two copies of Si) in S5(S).
However, it turns out that ®(5,2,0) itself vanishes on
F', so no linear combination is needed.



45 Cases=25

Clebsch showed in [Clebsch 61] that W is a hypersurface
in P'4; here we calculate its invariant equation.
Let Y = Y(5,2), then W5 C Yieq. Let C denote

the equation of the scheme Y. Since C is given by the
determinant of

a1 SV ® Opm(—l) — So V¥,

it has degree 6. Decomposing Sg(S4 V), we see that it
contains a two-dimensional subspace of trivial represen-
tations. Now ®(6,0,0) and ®(3,0,0)? generate this sub-
space, hence C must be their linear combination. To de-
termine this combination, specialize both of them at

F= xé—i—x‘f—l—x%—i— (xo + a1 +x2)4+ (o — a1 +x2)4,

which is an element of Ws5. It turns out that C =
3®(6,0,0) — ®(3,0,0)2. Now if C were not a prime ele-
ment of the ring R, then it would have an invariant factor
of degree < 3. The only candidate for such a factor is
®(3,0,0) (because ternary quartics have no invariant of
degree 2), but we have seen that it does not divide C.
Hence, C is irreducible, and it defines W5. Usually C is
called the catalecticant of ternary quartics. This com-
pletes the discussion of Theorem 4.1.

4.6 A Description of W3

In general, W7 is only expressible as a complicated
boolean expression in closed sets, and it is not easy to
characterize it algebraically. Here we attempt such a
characterization for s = 2.

Let F € Wy \ Wy, then F is apolar to a nonreduced
length two subscheme Z of PV*. Up to a change of co-
ordinates, Iz = (yo,y7). This forces F = ¢; x5 + co x123,
for some constants ¢;. Since F' has no apolar scheme of
length one, ¢y # 0; so F' = x%(i—;xg + x1). Hence,

Wo \ Wy = {L3Ly : L; are linearly independent}.
Now let
B = (Wg\WS)UWl = {L?LQ :L; € V*},

which is an irreducible projective variety of dimension 4.
Geometrically, B is the union of tangent planes to W7j.
The inclusions W7 € B C Wy imply Iw, C Ig C Iw,.
As in Section 4.2, we calculate the generators of Ig by
explicit elimination. Its minimal resolution begins as

R(-3)®@ Mg ® R(—4) ® Ms70 ® R(—5) @ Mgs —
R(=2) ® Mys @ R(—3) ® My — R — R/Ig — 0,
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where M; is an i-dimensional SL(V)-representation. We
need to identify M5 and Mse. Since (Ig)a C (I, )2, on
dimensional grounds M5 = S(44). Consider the chain
(Iw,)3 € (UB)s S (Iw,)3-
sitions of the end terms are already known, hence the

The irreducible decompo-

middle term is forced:
(I)s = (8,4) ® (6,6) ® (6,3) ® (6,0) ® (4,2) ® (0,0).
Now Mg is a submodule of
Mis @ R1 =(8,4) @ (6,3)® (4,2) ® (2,1) & (0,0),
hence Mg = S(3 1). This implies that the submodule
(8,4) ® (6,3) ® (4,2) & (0,0) C (Ip)s

is generated by Mjs. Hence, Mss (the module of new
generators in degree 3) must be (6,6) @ (6,0). Define

V= {®(2,0,4),®(3,0,6),$(3,6,0)},

following the generators of Iz. Since Wy = (W2\ B)UW7,
we deduce the following:

Proposition 4.6. For a ternary quartic F,

FeWs < (Usp=0AV|p#0)V Uylr =0).

The cases s > 2 do not seem so accessible, partly be-
cause there are a great many possibilities for the struc-
ture of a nonreduced length s scheme.

5. A FOLIATION OF Y (2, a3)

This section is something of a digression, since it does not
concern Waring’s problem. However, it is consonant with
a dominant theme in classical invariant theory: those
properties of a form which are independent of coordinates
should be detectable by the vanishing of concomitants.

Let us write Y for Y (2,a3). A point F in Y is really
a binary form up to a change of variables. Hence, for
a general such F, the curve {F = 0} C P? is a set of
four concurrent lines, which can be assigned a cross-ratio.
This motivates the following definition: for t € C, let Q*)
denote the Zariski closure of the set

{LlLQ(Ll + Lg)(Ll +tL2) : Ll € V*}

in Y (with the reduced scheme structure). This is a hy-
persurface in Y for a fixed t; and the family {Q®} de-
fines a foliation over a dense open set of Y. Following
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a venerated tradition (see [Hartshorne 77, Chapter IV,
Section 4]), we define
, 42 —t+1)>°
i) = S
27¢2(t — 1)
and 5(0) = j(1) = oo. Then QM) = Q) iff j(t) = j(t').
Now we can calculate the ideal of Q) by elimination

for t #0,1;

as in Section 4.2, and decompose it as a representation.
This goes through without complications, hence I will
omit the details and merely state the result.

Let 3 C R denote the ideal of Q) evidently
Iy € 3™, Since the generators of Iy are already known
from Section 4.2, it is enough to describe the generators
of the quotient Q® = J® /Iy. The computation shows
that Q™) is generated as a graded R/Iy module by an ir-
reducible representation M (). The degree in which M®)
appears and its structure depend on j(¢), in fact

Sy in degree 2 if j(t) = 0,
MW = S(6.6) in degree 3 if j(t) =1,
S(12,12) in degree 6 if j(t) # 0, 1.

Now it is a routine matter to identify the concomitant
corresponding to M), Define

{(1 — §)®(2,0,4)% + 6] (3,0,6)2, for j finite;
i =

—®(2,0,4)% + 6 9(3,0,6)2, for j = oo.

(The definitions of ® are those in the beginning of Sec-
tion 4.) Then we have the following result.

Theorem 5.1. For a ternary quartic F,
FeQW if and only if
{@(37 67 O)a (I)(?’» 3> 3)7 (I)(Sa 2; 2)’ (I)(?’v 07 O)a Ej(t) }|F =0.

Notice that Q) = W, and j(2) = 1. In this case, the
result agrees with Theorem 4.1 (as it should).

Remarks 5.2.

1. The roles played by ®(2,0,4) and ®(3,0,6) are very
similar to those of the Eisenstein series g2, g3 in the
classical theory of elliptic functions. I do not know
if one can demonstrate a precise connection between
the two theories.

2. It is tempting to conjecture that there is a similar
story to be told for quartic forms in any number of
variables. For instance, (conjecturally) there should
be a continuously moving concomitant of quaternary
quartics which detects the cross-ratio of four coaxial
planes.
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