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We study the “approximate squaring” map f(x) := x�x� and its
behavior when iterated. We conjecture that if f is repeatedly
applied to a rational number r = l/d > 1 then eventually an
integer will be reached. We prove this when d = 2, and provide
evidence that it is true in general by giving an upper bound on
the density of the “exceptional set” of numbers which fail to
reach an integer. We give similar results for a p-adic analogue
of f , when the exceptional set is nonempty, and for iterating the
“approximate multiplication” map fr(x) := r�x�, where r is a
fixed rational number. We briefly discuss what happens when
“ceiling” is replaced by “floor” in the definitions.

1. INTRODUCTION

In this paper we study the “approximate squaring” map
f : Q → Q given by

f(x) := x�x� (1–1)

and consider its behavior when iterated. Although there
is an extensive literature on iterated maps (see for ex-
ample [Collet and Eckmann 80], [Beardon 91], [La-
garias 92]), including the study of various first-order
recurrences involving the ceiling function ([Eisele and
Hadeler 90], [Graham and Yan 99]), the approximate
squaring map seems not to have been treated before and
has some interesting features.

The function f behaves qualitatively like iterating the
rational function R(x) = x2. Indeed, all points |x| ≤ 1
have a bounded orbit under f(x), while all points |x| > 1
have unbounded orbits and diverge to ∞, just as they
do when R(x) is iterated. However, f(x) has the addi-
tional feature that it is discontinuous at integer points.
It follows that the nth iterate f (n) is discontinuous at
a certain set of rational points, namely, those points x

where f (n)(x) is an integer.
It is therefore natural to ask: if we start with a ratio-

nal number r with |r| > 1 and iterate f , will we always
eventually reach an integer? This question is the subject
of our paper.
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Numerical experiments suggest that the answer to our
question is “Yes,” although it may take many steps, and
consequently involve some very large numbers.

For example, starting at r = 3
2 , f(r) = 3

2 · 2 = 3,
reaching an integer in one step; and starting at r = 8

7 ,
we get f(r) = 16

7 , f (2)(r) = 48
7 , and f (3)(r) = 48, taking

three steps. On the other hand, starting at r = 6
5 , we

find

f(r) =
12
5

,

f (2)(r) =
36
5

,

f (3)(r) =
288
5

,

f (4)(r) =
16704

5
,

f (5)(r) =
55808064

5
,

f (6)(r) =
622908012647232

5
,

f (7)(r) =
77602878444025201997703040704

5
,

... ,

and we do not reach an integer until f (18)(r), which is a
number with 57735 digits.

We note that for any rational starting point r, since
�x� is an integer, the denominators dj of the iterates
f (j)(r) must form a nonincreasing sequence with dj+1

dividing dj . For 0 < r ≤ 1, �r� = 1 and f(r) = r, so
there the denominator is fixed. For −1 < r ≤ 0, f(r) = 0,
and for r ≤ −1, f(r) ≥ 1. So it is sufficient to restrict
our attention to the case of rationals r > 1.

We make the following conjecture:

Conjecture 1.1. For each rational r ∈ Q with r > 1, there
is an integer m ≥ 0 such that f (j)(r) is an integer for all
j ≥ m.

We establish the conjecture in the special case when
the denominator is two, where a complete analysis is pos-
sible. This is done in Section 2.

In Section 3, we consider the case of rational starting
values r with a fixed denominator d ≥ 3. We show that
the set of starting values that reach an integer after ex-
actly j steps has a limiting density, and that the set of
starting values that never reach an integer has density
zero. More precisely, at most there is a sparse subset of
the rationals {r = l

d : d < l ≤ x} that fail to become
integers under iteration, in the sense that the cardinality
of this subset is bounded above by C(d, ε)x1−αd+ε for a

certain positive constant αd and any positive ε, where
C(d, ε) is a positive constant depending only on d and
ε. Showing that this “exceptional set” of starting val-
ues that fail to reach integers is in fact empty (or even
finite) appears to be a difficult problem, for reasons indi-
cated below. We also show that the set of starting values
that reach an integer after exactly j steps has a limiting
density.

In Section 4, we consider a p-adic analogue of the ap-
proximate squaring map. In this case we show that there
is a nonempty exceptional set of elements in 1

pk Zp which
under iteration never “escape” to the smaller invariant
set 1

pk−1 Zp. This set has Hausdorff dimension exactly
1 − αpk , where αpk is the same constant that appears
in Section 3. The existence of this exceptional set is one
reason why it may be a difficult problem to obtain better
upper bounds on the cardinality of the exceptional set in
Section 3.

In Section 5, we study similar questions concerning
the “approximate multiplication” map

fr(x) := r�x� , (1–2)

where r is a fixed rational number. For r = 1
b , this map is

a special case of the map x �→ a+�x
b �, where a, b ∈ Z and

b ≥ 2, studied by P. Eisele and K. P. Hadeler [Eisele and
Hadeler 90]. Recently, J. S. Tanton [Tanton 02], together
with Charles Adler, formulated a game-theoretic problem
“Survivor” and noted that its analysis leads to the study
of the sequence of rational numbers

a0 = r, an = r�an−1� for n ≥ 1 ,

for r > 1, which is the trajectory of r under the map
fr(x). He raised the question, “Must some an be an in-
teger?” and conjectured that the answer is “Yes.” This
question differs from the case of the approximate squar-
ing map in that the denominators of successive iterates,
though bounded by the denominator of r, may increase or
decrease. We note that the long-term dynamics of iterat-
ing this map differ according to whether |r| < 1, |r| = 1,
or |r| > 1, with the case r > 1 being most analogous to
the approximate squaring map.

The approximate multiplication maps have some re-
semblance to the map occurring in the 3x + 1 problem.
Setting r = l

d , we observe that fr(x) maps the domain
1
dZ into itself and, on this domain, is conjugate to the
map gr : Z → Z given by

gr(n) =


1
dn if n ≡ 0 (mod d),
1
d (n + l(d − b)) if n ≡ b (mod d),

1 ≤ b ≤ d − 1,
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(see (5–2) of Section 5). In terms of the conjugated map
the question that we consider becomes whether for most
starting values some iterate of gr is an integer divisible
by d. For r = 3

2 the conjugated map is

g3/2(n) =
{

3
2n if n ≡ 0 (mod 2) ,
3
2n + 3

2 if n ≡ 1 (mod 2) .

This is similar in form to the 3x + 1 function

T (n) =
{

1
2n if n ≡ 0 (mod 2) ,
3
2n + 1

2 if n ≡ 1 (mod 2) ,

as given in [Lagarias 85] and [Wirsching 98], although the
long-term dynamics of g3/2 and T are different.

We formulate a conjecture for approximate multipli-
cation maps analogous to the one above for the approxi-
mate squaring map. We define the exceptional set E(r)
for the map fr to be

E(r) :=
{

n : n ∈ Z and

no iterate f (j)
r (n) ∈ Z for j ≥ 1

}
. (1–3)

Then we have:

Conjecture 1.2. For each nonintegral rational r ∈ Q with
|r| > 1, the exceptional set E(r) for the approximate mul-
tiplication map fr is finite.

The “expanding map” hypothesis, |r| > 1, is necessary
in the statement of this conjecture, for the conclusion fails
for r = 1

d with d ≥ 3, as remarked below. In parallel to
the results for the approximate squaring map, we prove
Conjecture 1.2 for rational r having denominator 2; it
remains open for all rationals with |r| > 1 having de-
nominator d ≥ 3. This conjecture may also be difficult,
as indicated in Section 5 by an analogy with the problem
of showing that there exist no Mahler Z-numbers, a no-
torious problem connected with powers of 3

2 ([Mahler 68],
[Flatto, 1991]; also [Choquet 80], [Lagarias 85]).

Our analysis in Section 5 applies more generally to the
family Pr of maps hr : Z → Z having the form

hr(n) =
1
d
(ln + lb) when n ≡ b (mod d) , (1–4)

where the integers lb satisfy lb ≡ −lb (mod d). We ob-
tain for all functions hr ∈ Pr an explicit upper bound on
the cardinality of the exceptional set E(hr, x) consisting
of all integers |n| ≤ x that do not have some iterate that
is a multiple of d. We show that for all rationals r,

#E(hr, x) ≤ 4dxβd ,

with βd = log(d−1)
log d . We complement this upper bound

with a result showing that it is of the correct order of
magnitude (to within a multiplicative constant) for cer-
tain values of r lying in 0 < r < 1. This is the case for
the function gr for r = 1

d with d ≥ 3. It follows that
Conjecture 1.2 cannot hold for these values of r.

Section 6 gives some numerical results related to these
questions.

As a final point we observe that one can also con-
sider similar functions obtained by replacing the “ceiling”
function with the “floor” function. Exactly the same set
of questions can be asked for such functions. Our meth-
ods carry over to such functions, and there appear to be
analogues of all our results and conjectures. For example:

Conjecture 1.3. Let F (x) := x
x�. For each rational
r ∈ Q with r ≥ 2, there is an integer m ≥ 0 such that
F (j)(r) is an integer for all j ≥ m.

We will not say any more about the “floor” function
versions, apart from one result at the end of Section 5.

We use the following notation: � � denotes the ceiling
function, 
 � the floor function, and {{ }} the fractional
part. For a prime p, | |p denotes the p-adic valuation. (If
r ∈ Q , r = pa b

c with a, b, c ∈ Z, c �= 0, and gcd(p, b) =
gcd(p, c) = 1, then |r|p = a.) Qp and Zp denote the p-
adic rationals and integers, respectively. For integers r, s,

and i, r|s means r divides s, and ri||s means ri divides
s but ri+1 does not.

2. DENOMINATOR 2

In this section we investigate the case where the starting
value r has denominator 2. Here we are able to give a
complete analysis. The following table shows what hap-
pens for the first few values of r. It gives the initial term,
the number of steps to reach an integer, and the integer
that is reached:

start steps reaches
3/2 1 3
5/2 2 60
7/2 1 14
9/2 3 268065
11/2 1 33
13/2 2 2093
15/2 1 60
17/2 4 1204154941925628
19/2 1 95

...
...

...
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The number of steps appears to match sequence
A001511 in [Sloane 95–03] (and the numbers reached now
form sequence A081853 in that database). Indeed, we
have the following:

Theorem 2.1. Let r = 2l+1
2 , with l ≥ 1. Then f (m)(r)

reaches an integer for the first time when m = |l|2 + 1.

Proof: Note that if x ∈ Q has denominator 2 and is not
an integer, then �x� = x + 1

2 .
We use induction on |l|2 = v. If v = 0 then l is odd,

�r� = r + 1
2 = l + 1 is even, and r�r� has become an

integer in one step, as claimed.
Suppose v ≥ 1 and

l = 2v + lv+12v+1 + lv+22v+2 + · · ·

is the binary expansion of l, where each li = 0 or 1. Then,

r�r� =
(

l +
1
2

)
(l + 1)

=
1
2

+
l

2
+ l + l2

=
1
2

+ 2v−1 + (lv+1 + 1)2v

+(lv+1 + lv+2)2v+1 + · · · + 22v + · · ·
=

2l′ + 1
2

,

where

l′ = 2v−1+(lv+1+1)2v +(lv+1+lv+2)2v+1+· · ·+22v +· · ·

and |l′|2 = v − 1. By the induction hypothesis, this will
reach an integer in v − 1 steps, so we are done.

Remark 2.2. The numbers 2l+1 for which |l|2 = v are pre-
cisely the numbers that are congruent to 2v+1 + 1 (mod
2v+2). For example, if v = 0, 2l+1 ∈ {3, 7, 11, 15, . . .}, of
the form 3 (mod 4); if v = 1, 2l + 1 ∈ {5, 13, 21, 29, . . .},
of the form 5 (mod 8); and so on.

Corollary 2.3. Let r = 2l+1
2 , for l ≥ 1 and |l|2 = v. Then,

the first integer value taken by f (m)(r) is

1
2

θ(v+1)(2l + 1) ,

where θ(y) = y(y + 1)/2.

Proof: This is now a straightforward calculation, again
using the fact that if x ∈ Q \ Z has denominator 2 then
�x� = x + 1

2 .

For example, if v = 0, and r = (4k+3)/2 = y/2 (say),
then in one step we reach the integer 1

2θ(y) = y(y +1)/4;
if v = 1, and r = (8k + 5)/2 = y/2, then in two steps we
reach the integer

1
2
θ(θ(y)) =

y(y + 1)(y2 + y + 2)
16

;

if v = 2, and r = (16k + 9)/2 = y/2, then in three steps
we reach the integer

1
2
θ(θ(θ(y))) =

y (y + 1)
(
y2 + y + 2

) (
y2 − y + 2

) (
y2 + 3 y + 4

)
256

;

and so on.

3. DENOMINATOR d

We now analyze the case of rationals with a general de-
nominator d, obtaining less complete results. The next
theorem shows that most rationals will eventually reach
an integer. In particular, it gives an upper bound on the
number of such rationals below x that never reach an in-
teger. Given an integer d ≥ 2 and a bound x ≥ 1, we
study the “exceptional set”

Md(x) :=

{ l : 1 ≤ l ≤ x,

f (m)(
l

d
) /∈ Z for each m ≥ 1

}
, (3–1)

and let Md(x) = |Md(x)|. The finite set [1, d − 1] :=
{1, 2, . . . , d − 1} is contained in Md(x), and Conjec-
ture 1.1 asserts that Md(x) = [1, d − 1].

Theorem 3.1. Let d ≥ 2 be a fixed integer.

1. For each finite j ≥ 0 the set of positive integers l

for which the approximate squaring map with initial
value r = l

d first iterates to an integer after exactly
j steps is a union of arithmetic progressions (mod
dj+1) restricted to positive integers.

2. There is a positive exponent αd such that, for each
ε > 0 and all x > 1,

Md(x) ≤ C(d, ε)x1−αd+ε (3–2)

for a positive constant C(d, ε), with αd given by

αd = min
d′|d, d′>1

logd′

(
d′

φ(d′)

)
, (3–3)

where φ is the Euler totient function. In fact,

αd = min
pj ||d

log
(
1 + 1

p−1

)
j log p

. (3–4)
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Note that it follows immediately from (3–3) that 0 <

αd ≤ 1 and αd = 1 only for d = 2.
To prove the theorem we shall first prove a preliminary

lemma. We need some notation concerning the pattern of
denominators in a sequence of iterates. We write l

d = l0
d0

with gcd(l0, d0) = 1 and set

f (j)

(
l

d

)
=

lj
dj

, j ≥ 1 ,

where gcd(lj , dj) = 1 and dj |d with dj ≥ 1. The pair
(l, d) determines the sequence d0, d1, d2, . . ..

We consider the first m iterates for a given input r =
l
d , and let

Y(l, d,m) := (d0, d1, ..., dm) (3–5)

denote the vector of denominators of the first m iterates.
We call this a chain of length m+1. This information in
Y can be described in another way. We set d−1 = d and
define rj by

rj =
dj−1

dj

for j = 0, 1, 2, . . . ,m . We call j a break-point if rj > 1.
Let the break-points up to the mth iterate be 0 ≤ j1 <

j2 < . . . < jt ≤ m. The data Y(l, d,m) is completely de-
termined by knowledge of the pairs (j1, rj1), ..., (jt, rjt

)
and m. Note that, since each break-point removes a di-
visor of d from the denominator, in any chain of length m

there are at most s break-points, where s is the number
of prime factors of d, counted with multiplicity.

Now consider an arbitrary chain Y, which consists of
a sequence (d0, d1, ..., dm) with dj+1 dividing dj and d0

dividing d. A chain is complete if dm = 1, and is incom-
plete otherwise. We will only consider complete chains
with dm−1 ≥ 2, i.e., with jt = m.

The following lemma characterizes the set of positive
integers l that have a given associated chain Y of length
m + 1.

Lemma 3.2. Given a fixed chain Y = (d0, d1, ..., dm) of
length m+1, the set of positive integers l such that r = l

d

has Y(l, d,m) = Y consists of a collection of arithmetic
progressions (mod d−1d0d1 · · · dm−1), restricted to the
positive integers. There are exactly

φ(d0)φ(d1)φ(d2) · · ·φ(dm) (3–6)

such arithmetic progressions.

Proof: We study the set of r = l
d having a fixed chain Y

for its initial m iterates.

The set of allowable l with (l, d) = d0 consists of all
integers r1l0 with gcd(l0, d0)=1. This consists of φ(d0)
arithmetic progressions (mod d) ≡ (mod d−1).

We now write lk
dk

(for k = 0, 1, . . .) in a mixed-radix
expansion where the radices depend on k:

lk
dk

=
a−1(k)

dk
+ a0(k) +

∞∑
j=1

aj(k)
j−1∏
l=0

dk+l , (3–7)

in which the “digits” aj(k) satisfy

0 < a−1(k) < dk , and 0 ≤ aj(k) < dj+k for each j ≥ 0 .

Here we set dm+j := dm for all j ≥ 1. The sum on
the right-hand side of (3–7) is actually a finite sum. By
definition,

lk+1

dk+1
= f

(
lk
dk

)
=a−1(k)

dk
+ a0(k) +

∞∑
j=1

aj(k)dkdk+1 · · · dk+j−1


×

1 + a0(k) +
∞∑

j=1

aj(k)dkdk+1 · · · dk+j−1

 . (3–8)

We use induction on k ≥ 0 to simultaneously establish
four properties of this mixed-radix expansion:

(i) We have

rk+1 = gcd(a0(k) + 1, dk) . (3–9)

(ii) We have

a−1(k + 1) ≡ a−1(k)
a0(k) + 1

rk+1
(mod dk+1) .

(3–10)

(iii) We have

gcd(a−1(k + 1), dk+1) = 1 . (3–11)

(iv) For 0 ≤ j ≤ m,

aj(k + 1) ≡ a−1(k)aj+1(k)

+ G(a−1(k), a0(k), a1(k), . . . , aj(k)) (mod dj+k+1) ,
(3–12)

for some function G(a−1(k), a0(k), a1(k), . . . , aj(k)).
This function includes all the necessary information
about “carries” in the multiple-radix expansion.

The base case k = 0 is checked directly. Since d0

divides all terms in the sum on the right-hand side of
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(3–7), the right-hand side of (3–8) (when k = 0) has a
single term a−1(0)(a0(0)+1)

d0
having a denominator, and this

term equals a−1(1)
d1

(mod 1). Since gcd(a−1(0), d0) = 1
by hypothesis, we must have

gcd(a0(0) + 1, d0) =
d0

d1
= r1 ,

which is (i) for k = 0. The term with a denominator in
(3–8) is then

a−1(0)a0(0)+1
r1

d1
;

hence

a−1(1) ≡ a−1(0)
(

a0(0) + 1
r1

)
(mod d1) , (3–13)

which is (ii). Now gcd(a−1(1), d1) divides
gcd(a−1(0), d1) gcd(a0(0)+1

r1
, d1), both terms of which are

1, so (iii) follows. Finally, to establish (iv) when k = 0,
we drop the terms involving d1d2 · · · dj+1 from (3–8) and
observe that there is a term

a−1(0)aj+1(0)d1d2 · · · dj , (3–14)

while all the other terms containing any aj+l(0) for l ≥ 1
are divisible by d1d2 · · · dj+1. (Note that d1d2 · · · dj+1 di-
vides d0d1d2 · · · dj .) This establishes that a congruence
of the form (3–12) holds for the digit aj(1) in the ex-
pansion (3–8) for l1

d1
, completing the proof of the base

case.
The induction step for general k follows using exactly

the same reasoning.
Next, we will deduce from (iv) that for each k ≥ 0,

a0(k + 1) ≡ ak+1(0)
k∏

l=0

a−1(l)

+ G̃(a−1(0), a0(0), a1(0), . . . , ak(0)) (mod dk+1)
(3–15)

for some function G̃ depending on the indicated variables.
The important point about (3–15) is that the dependence
on ak+1(0) is linear, even though the dependence on the
other initial terms a−1(0), a0(0), . . . , ak(0) is nonlinear.

To prove (3–15), we again use induction on k. For
k = 0 the assertion is that

a0(1) ≡ a1(0)a−1(0)

+ G̃(a−1(0), a0(0)) (mod d1) ,
(3–16)

which is (3–12) with k = j = 0. For k = 1 we wish to
show that

a0(2) ≡ a2(0)a−1(0)a−1(1)

+ G̃(a−1(0), a0(0), a1(0)) (mod d2) .
(3–17)

Setting k = 1, j = 0 and k = 0, j = 1 in (3–12), we obtain

a0(2) ≡ a−1(1)a1(1) + G̃(a−1(1), a0(1)) (mod d2)

and

a1(1) ≡ a−1(0)a2(0)

+ G̃(a−1(0), a0(0), a1(0)) (mod d2) ,

hence,

a0(2) ≡ a2(0)a−1(0)a−1(1)

+ a−1(1)G̃(a−1(0), a0(0), a1(0))

+ G̃(a−1(1), a0(1)) (mod d2) .

However, from (3–13) and the fact that 0 < a−1(1) <

d1, a−1(1) is uniquely determined by a−1(0) and a0(0).
Also the induction hypothesis allows us to use (3–16) to
eliminate a0(1). Equation (3–17) follows. The case of
general k follows in the same way; we leave the details to
the reader.

We have already seen that

gcd(a−1(0), d1) = 1 .

From (3–11) and (3–10) ,

gcd(a−1(2), d2) = 1 and

a−1(2) ≡ a−1(1)
a0(1) + 1

r2
(mod d2) .

Therefore, gcd(a−1(1), d2) = 1, and so

gcd(a−1(0)a−1(1), d2) = 1 .

Continuing in this way, we obtain

gcd(
k∏

l=0

a−1(l), dk+1) = 1 , (3–18)

for k = 0, 1, . . . ,m.
Then (3–15) shows that the congruence class of

a0(k + 1) (mod dk+1) is uniquely determined by
the congruence class of ak+1(0) (mod dk+1), once
a−1(0), a0(0), . . . , ak(0) are specified.

In particular, for each k ≥ 0 there are exactly φ(dk+1)
congruence classes of ak(0) (mod dk) that give

gcd(
a0(k) + 1

rk+1
, dk+1) = 1 ,

or in other words that give

gcd(a0(k) + 1, dk) = rk+1 .

At each iteration we impose one such condition. Com-
bining this with the φ(d0) congruence classes (mod d−1)
allowed initially, (3–6) follows.
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Proof of Theorem 3.1: Part (1) follows from Lemma 3.2.
Indeed, the set of integers which iterate to an integer
in exactly j steps are precisely those integers that be-
long to some complete chain Y having j = jt. There
are finitely many complete chains of length m + 1 with
m = jt = j, and by Lemma 3.2 the set of positive l

such that l
d belongs to a given such chain is a union of

arithmetic progressions (mod d−1d0d1 . . . dm−1). Each
such progression subdivides into a finite union of arith-
metic progressions (mod dm+1), since d−1d0d1 . . . dm−1

divides dm+1.

To establish part (2), let the cutoff value x be given.
We call a value l ≤ x “bad” at size x if there is an iterate
m ≥ 0 such that

m−1∏
j=0

dj ≤ x <

m∏
j=0

dj , (3–19)

with dm > 1; here m depends on l, d, and x. The chain
Y associated to the data (d0, d1, ..., dm) is necessarily an
incomplete chain, and we say it is incomplete at size x

if (3–19) holds. Conversely, all elements l ≤ x belonging
to such an incomplete chain are “bad.” We let Nd(x)
denote the number of “bad” elements at size x, and we
clearly have

Md(x) ≤ Nd(x) .

We will establish part (2) by showing the stronger result
that

Nd(x) ≤ C(d, ε)x1−αd+ε . (3–20)

To bound Nd(x) we first bound the number of distinct
incomplete chains at size x, and then bound the maximal
number of elements below x falling in any such chain.
It is easy to bound the number of incomplete chains Y
at size x as follows. Since each dj ≥ 2, we have m ≤
log2 x. There are

(
m
t

)
choices for the break-points, and

the bound t ≤ s then yields that there are at most

s∑
t=0

(
log2 x

t

)
≤ s(log2 x)s

break-point patterns. Since a nontrivial divisor ri of di−1

is removed at each break-point, we conclude that the
number of distinct chains is at most d!s(log2 x)s. For fixed
d (and hence s) this gives, for any fixed ε > 0 and x ≥ 2,
that

#(Y) ≤ C1(d, ε)xε , (3–21)

for some positive constant C1(d, ε).
Now, let Nd(Y, x) count the number of bad l at size x

having a given chain Y = (d0, d1, ..., dm) that is incom-
plete at size x. In view of (3–21), it suffices to prove

an upper bound of the same form as (3–20) for each
such chain. So, consider a fixed such chain Y. Now,
(3–19) holds and shows that each arithmetic progression
(mod d0d1 · · · dm−1) contains at most dm elements be-
low x. From (3–6), Nd(Y, x), the number of bad elements
l at size x with chain Y , satisfies

Nd(Y, x) ≤ dmφ(d1)φ(d2) · · ·φ(dm) .

Now, x ≥ d0d1 · · · dm−1 ≥ d1d2 · · · dm−1, hence

Nd(Y, x)
x

≤ dm

m∏
j=1

φ(dj)
dj

,

and therefore

Nd(Y, x)
x

≤ dm e
∑ m

j=1 log
φ(dj)

dj

≤ d x

∑m
j=0 log

φ(dj)
dj

log x . (3–22)

Now, x ≤ d0d1 · · · dm, so that∑m
j=0

∣∣∣log φ(dj)
dj

∣∣∣
log x

≥
∑m

j=0

∣∣∣log φ(dj)
dj

∣∣∣∑m
j=0 log dj

≥ min
0≤j≤m

∣∣∣log φ(dj)
dj

∣∣∣
log dj

≥ min
0≤j≤m

(
logdj

(
dj

φ(dj)

))
≥ αd ,

where we used the definition (3–3). Substituting this in
(3–22) yields

Nd(Y, x)
x

≤ d x−αd ,

since φ(dj)
dj

< 1 gives log φ(dj)
dj

< 0, and so

Nd(Y, x) ≤ d x1−αd ,

as required. Combined with (3–21), this gives (3–20),
hence (3–2).

Finally, we establish the equivalence of (3–3) and (3–
4). Since φ is multiplicative, for a general d′ > 1 we
have

logd′

(
d′

φ(d′)

)
=

∑
pj ||d′ log

(
pj

φ(pj)

)
∑

pj ||d log pj

≥ min
pj ||d′

{
logpj

(
pj

φ(pj)

)}
.

(3–23)
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Thus the minimum in (3–3) is attained when d′ is a prime
power. Now

logpj

(
pj

φ(pj)

)
=

log
(

1
1− 1

p

)
log pj

=
log

(
1 + 1

p−1

)
j log p

(3–24)

is minimized by making j as large as possible, so we ob-
tain the formula (3–4).

The upper bound in (3–20) in Theorem 3.1 has an
exponent that is essentially the best possible. Indeed, if
l, d, x, and m are such that

d1 = d2 = · · · = dm = d′ ,

where d′ is the value that minimizes (3–3), so that t = 1
and the chain is simply Y = {(1, d′)}, we have

Nd(Y, x) ≥ C
′
d x1−αd ,

for some positive constant C
′
d.

We next give a probabilistic interpretation of Theo-
rem 3.1, following a suggestion of Daniel Berend. Given
a denominator d and an integer cutoff value x, let X be
a random integer chosen uniformly on the interval [1, x],
and let s = X/d. We iterate f starting at s, and let
Stop(X) be the random variable giving the number of
iterates needed to reach an integer. Stop(X) takes non-
negative integer values (including 0 and ∞). There is an
associated probability distribution

{Probx[Stop = j] : j = 0, 1, . . . ,∞}
which depends on the interval [1, x].

Theorem 3.3. For each fixed denominator d, there exists
a limiting distribution as x → ∞ of the stopping times
of the approximate squaring map f on rationals l

d . More
precisely, for each finite j the limit

Prob∞[Stop(X) = j] := lim
x→∞Probx[Stop(X) = j]

(3–25)
exists and is a rational number with denominator dividing
dj+1, and for j = ∞ we have

Prob∞[Stop(X) = ∞] := lim
x→∞Probx[Stop(x) = ∞] = 0 .

(3–26)
In the case when d = p is a prime the limiting distribution
is a geometric distribution:

Prob∞[Stop(X) = j] = p(1 − p)j . (3–27)

Proof: The assertion (3–25) follows directly from part
(1) of Theorem 3.1, which shows that the set with stop-
ping time j is a union of complete arithmetic progressions
(mod dj+1). The assertion (3–26) follows from part (2)
of Theorem 3.1. The computation of the density (3–27)
follows from the fact that for d = p and each j ≥ 0 there
is a unique complete chain Y with stopping time j, hav-
ing the single break-point (j, 1), giving one arithmetic
progression (mod pj+1).

Remark 3.4.

1. This stopping time formulation is similar to that
arising in the 3x + 1 problem and studied in [Ter-
ras 76, 79].

2. In principle the limiting distribution for any specific
composite d is computable from the proof of Theo-
rem 3.1.

3. For all d we have Prob∞[Stop(X) = 0] = 1/d.

4. p-ADIC ITERATION

We now consider an approximate squaring map defined
on the p-adic numbers analogous to the approximate
squaring map on Q and study the question of whether
some iterate will eventually become a p-adic integer. We
show that now there is always a nonempty exceptional set
of p-adic numbers which never become p-adic integers.

Let p be a prime ≥ 2 and let Qp denote the p-adic
numbers, with typical element α =

∑∞
j=−k ajp

j , where
k ∈ Z and the aj satisfy 0 ≤ aj ≤ p − 1. The p-adic
integral part of α is given by the function Fp : Qp → Qp,
where

Fp(α) :=
∞∑

j=max{0,k}
ajp

j ,

while the p-adic fractional part (or “principal part”) of
α is

Pp(α) :=
∑
j<0

ajp
j ,

which is a finite sum (possibly empty); thus, α = Pp(α)+
Fp(α). We investigate the function

fp(α) := α(Fp(α) + 1) ,

which is a p-adic analogue of the approximate squaring
map defined in (1–1). If we regard the rationals Q as
embedded in Qp, then for nonintegral r in the subring
Z[ 1p ] ⊆ Q ⊆ Qp, we have fp(r) = r�r�, so the iterates
there agree with the approximate squaring map.
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For each k ≥ 0 the set 1
pk Zp is invariant under the

action of fp(x), and

Z ⊆ 1
p

Z ⊆ 1
p2

Z ⊆ · · · .

We define the exceptional set

Ωk(p) :=

{
α ∈ 1

pk
Zp : f (m)(α) /∈ 1

pk−1
Zp

for each m ≥ 1

}
, (4–1)

for k ≥ 1. The set Ωk(p) is an analogue of the exceptional
sets Md(x) studied in the last section, corresponding to
the denominator d = pk. (Note that Ωk(p)∩ 1

pk Z>0 is con-
tained in 1

pk Mpk(∞), as defined in (3–1)). We will show
that these sets are nonempty, determine their Hausdorff
dimension s, and get upper and lower bounds on their
Hausdorff s-dimensional measure.

The s-dimensional p-adic Hausdorff measure Hs
p(Ω) of

a closed set Ω in Qp is defined by the general prescription
in [Falconer 90, Chapter 2] or [Federer 69, Section 2.10].
Here, 0 < s ≤ 1. The diameter of a measurable set
S ⊆ Qp is

|S| := sup{|α − β|p : α, β ∈ S} ,

and its p-adic measure µp(S) is the Haar measure with
the normalization µp(Zp) = 1. A p-adic ball

B(α; pl) := {β ∈ Qp : |β − α|p ≤ pl}

is both closed and open and has the property that its
diameter equals its measure:

|B(α; pl)| = µ(B(α; pl)) =
1
pl

.

For each δ > 0 we define

Hs(Ω, δ) := inf

{ ∞∑
j=1

|Ij |s : Ω ⊆
∞⋃

j=1

Ij ,

|Ij | ≤ δ for all j

}
, (4–2)

and1

Hs
p(Ω) := lim

δ→0
Hs(Ω, δ) . (4–3)

The p-adic Hausdorff dimension of Ω is the unique value
s0 such that Hs

p(Ω) = ∞ for s < s0 and Hs
p(Ω) = 0

for s > s0. The value of Hs0
p (Ω) may be zero, finite, or

infinite.
1The limit (which may be ∞) exists since Hs(Ω, δ1) ≥ Hs(Ω, δ2)

if δ1 ≤ δ2.

A closed set Ω ⊂ Zp is called weakly self-similar (mod
pk) with branching ratio b, where b is an integer ≥ 2, if
the following “equal branching” property holds for l =
1, 2, . . .. Let Wl(Ω) denote the set of initial sequences of
digits of length lk in Ω, i.e.,

Wl(Ω) =

{
β =

lk−1∑
j=0

ajp
j : there exists some α ∈ Ω

whose “initial part” plkPp(p−lkα) = β

}
.

(4–4)
Then each sequence in Wl(Ω) should extend to exactly b

sequences in Wl+1(Ω). That is, if the digits of an element
β ∈ Ω are grouped in blocks of size k, once the first l

blocks of digits are specified, there are exactly b allowable
choices for the next block of digits.

Theorem 4.1. For each k ≥ 1 the set pkΩk(p) is weakly
self-similar (mod pk) with branching ratio b = φ(pk) =
pk − pk−1.

Proof: The set Wl(Ωk(p)) specifies the conditions un-
der which the first l iterates f(α), f (2)(α), . . ., f (l)(α)
/∈ 1

pk−1 Zp. Each such condition is a congruence (mod
plk), which has exactly φ(pk) = pk−pk−1 solutions for the
next digit (compare (3–12) in the proof of Theorem 3.1,
taking each dj = pk). Finally the definition of Ωk(p)
implies it is a closed set. Thus, pkΩk(p) is weakly self-
similar.

We can determine the Hausdorff dimension of weakly
self-similar sets in Zp, together with upper and lower
bounds for the Hausdorff measure at this dimension.

Theorem 4.2. Let Ω ⊆ Zp be a weakly self-similar set
(mod pk) with branching ratio b satisfying 2 ≤ b < pk.
Then Ω is a compact set and has Hausdorff dimension
s(Ω) given by

dimH(Ω) =
log b

log pk
.

Its s(Ω)-dimensional Hausdorff measure satisfies(
b

pk

)1− 1
k

≤ Hs(Ω)
p (Ω) ≤ 1 . (4–5)

Proof: The compactness of Ω is established similarly to
Theorem 4.1. We define Wl(Ω) as in (4–4). This set has
cardinality bl by hypothesis, and

Ω =
∞⋂

l=1

W̃l(Ω) ,
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where W̃l(Ω) is the compact set

W̃l(Ω) =

{
β̃ ∈ Zp : β̃ ≡ β (mod plk)

for some β ∈ Wl(Ω)

}
.

To determine the Hausdorff dimension, it suffices to
establish the inequalities (4–5), since the fact that the
Hausdorff measure is positive and finite determines the
Hausdorff dimension. Set s = (log b)/(log pk), so that
pks = b. Also 0 < s < 1.

For the upper bound in (4–5), we consider the sets
W̃l(Ω). Now bl balls of diameter plk cover W̃l(Ω), hence
cover Ω. Thus, for δ = p−lk this covering gives

Hs(Ω, p−lk) ≤ bl

plks
=

bl

bl
= 1 ,

which implies
Hs

p(Ω)) ≤ 1 .

The lower bound argument is similar in spirit to that
used for Cantor sets in [Falconer 90, pages 31–32]. By
the compactness of Ω, we need only prove that the lower
bound holds for finite coverings. The nonarchimedean
property of the valuation | |p means that each Ij has
diameter pm for some m, and hence we can enlarge Ij to
a ball B(α; pm) ⊇ Ij without changing its diameter. But
B(α; pm) gives an open cover, so it has a finite subcover:

Ω ⊆
m⋃

j=1

B(αj ; pmj ) ,

and
m∑

j=1

|B(αj ; pmj )|s =
m∑

j=1

pmjs .

We want to show

m∑
j=1

|B(αj ; pmj )|s ≥
(

b

pk

) k−1
k

. (4–6)

We first replace these balls with balls of diameter p−klj

for integers lj . Write

mj = −klj + kj , 0 ≤ kj ≤ k − 1 .

Then, we can cover B(αj ; pmj ) with pkj balls
B(αj′ ; p−klj ). We claim that

m∑
j=1

|B(αj ; pmj )|s ≥
(

b

pk

) k−1
k ∑

j′
|B(αj′ ; p−klj )|s .

(4–7)

This will follow if we show that(
p−klj+kj

)s ≥
(

b

pk

) k−1
k

pkj
(
p−klj

)s

holds for each j. This in turn is equivalent to showing

pkj(s−1) ≥
(

b

pk

) k−1
k

.

Since pks = b, we have

pkj(s−1) =
(

b

pk

) kj
k

≥
(

b

pk

) k−1
k

,

which proves (4–7). Thus (4–6) will follow from showing
that

m∑
j=1

|B(αj ; p−klj )|s ≥ 1 (4–8)

for any set of such balls that covers Ω. We may suppose
l1 ≤ l2 ≤ · · · ≤ lm. By the weak self-similarity of Ω, there
are blm principal parts to cover with balls of diameter
p−klm in W̃m(Ω). Weak self-similarity also says that each
ball of radius p−klj covers either none of or else exactly
blm−lj such principal parts in W̃m(Ω). Since the balls
cover Ω, we must have

m∑
j=1

blm−lj ≥ blm .

Dividing by blm yields
m∑

j=1

b−lj ≥ 1 . (4–9)

Using this bound, we obtain
m∑

j=1

|B(αj ; p−klj )|s =
m∑

j=1

p−kljs

=
m∑

j=1

b−lj

≥ 1 ,

which is (4–8). Thus (4–7) holds.

Corollary 4.3. The set Ωk(p) has Hausdorff dimension

dimH(Ωk(p)) = s(pk) := 1 −
log

(
1 + 1

p−1

)
k log p

(4–10)

for k ≥ 1. Furthermore, its s(pk)-dimensional Hausdorff
measure satisfies(

1 − 1
p

)1− 1
k

(pk−pk−1) ≤ Hs(pk)
p (Ωk(p)) ≤ pk−pk−1 .

(4–11)
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Proof: This follows by applying Theorems 4.1 and 4.2 to
the set pkΩk(p) and using the fact that

Hs(pk)
p (Ωk(p)) = bHs(pk)

p (pkΩk(p)) ,

since (pk)s = b. Using the branching ratio b = φ(pk) =
pk − pk−1, we have

log b

log pk
=

log pk + log(1 − 1/p)
log pk

which gives (4–10).

Remark 4.4. For the branching ratio b = φ(pk) = pk −
pk−1, one can show that equality may occur on either
side of the Hausdorff measure bounds in (4–5) (or (4–
11)). For the lower bound, take the pk − pk−1 allowed
digit sets in each layer to be

∑k(l+1)−1
j=lk aj pj with the

restriction that alk �= 0. Then we can cover Ω with (pk −
pk−1)l+1(p − 1) balls of radius p−(lk+1) and get

Hs
p(Ωk(p)) ≤ (pk − pk−1)(pk − pk−1)lp−lks[(p − 1)p−s]

≤ (pk − pk−1)

[(
1 − 1

p

) (
1 − 1

p

)− 1
k

]
.

Since this coincides with the lower bound in (4–11),
Hs

p(Ωk(p)) must equal this bound.
For the upper bound, choose the pk − pk−1 allowed

digits in each layer to be
∑k(l+1)−1

j=lk aj pj with the restric-
tion that ak(l+1)−1 �= 0. Then each residue class (mod
p−k(l+1)+r) covers exactly (p − 1)pr−1 classes of Ω (mod
p−lk), and we can do no better than the upper bound.

It would be interesting to know how many elements
r = l

pk have no iterate fn
p (r) ∈ 1

pk−1 Zp. We know that
this set contains the pk − pk−1 elements 1 ≤ l ≤ pk − 1
with (l, p) = 1. We conjecture that these are the only
such elements.

5. APPROXIMATE MULTIPLICATION MAPS

We can use similar methods to study iteration of the
approximate multiplication map fr : Q → Q given by

fr(x) = r�x� , (5–1)

where r is a fixed rational number, say r = l
d with

gcd(l, d) = 1. In this case, since x enters into the it-
eration only as the integer �x�, we may restrict attention
to initial values x ∈ Z. We consider the case where the
denominator d > 1, and study the question of whether
some iterate f

(j)
r (x) will be an integer for some j ≥ 1.

Note that all iterates lie in 1
dZ.

Unlike the case of approximate squaring, the iter-
ates do not remain integral once they become inte-
gral. However, the truth of Conjecture 1.2 would imply
that infinitely many members of a sequence of iterations
{f (j)

r (n) : j ≥ 1} will be integers, provided |r| > 1.
It is convenient to rescale the map to eliminate the de-

nominators d, by conjugating fr by the dilation Φd(x) =
d x. The result is the map gr : Z → Z given by
gr(x) := Φd ◦ fr ◦ Φ−1

d (x). Thus,

gr(x) = d fr(
x

d
) = l�x

d
� , (5–2)

with
g(j)

r (x) = d f (j)
r (

x

d
)

for j = 1, 2, . . .. We have

gr(n) =
1
d
(ln + lb) when n ≡ b (mod d) ,

where l0 = 0 and

lb = l(d − b) for 1 ≤ b ≤ d − 1 .

For example, when r = 3
2 , we have

g3/2(n) =
{

3
2n if n ≡ 0 (mod 2) ,
3
2n + 3

2 if n ≡ 1 (mod 2) .

Our question then becomes: when does the sequence of
iterations {g(j)

r (n) : j ≥ 1} contain a term which is
divisible by d?

The map gr belongs to a general class of functions,
which we will denote by Pr, consisting of those “period-
ically linear” functions hr : Z → Z of the form

hr(n) =
1
d
(ln + lb) when n ≡ b (mod d) , (5–3)

where r = l/d is rational and the integers {lb : 0 ≤ b ≤
d − 1} satisfy the conditions

lb ≡ −lb (mod d) (5–4)

needed to give an integer-valued map. Thus, although
the notation does not reflect this, hr is defined by speci-
fying r = l/d and constants l0, l1, . . . , ld−1 satisfying (5–
4). We note that any map hr in Pr is “self-similar” in
the sense that its linear part l

dn is independent of the
residue class. More general classes of periodically linear
functions have been studied in connection with the 3x+1
problem (see Section 3.2 of [Lagarias 85]); those classes
differ from Pr in allowing the linear part of the map to
depend on the residue class (mod d).
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Our methods apply generally to the question of
whether a particular function hr ∈ Pr has an iterate that
is divisible by d (the denominator of r). The behavior of
the map hr depends on whether |r| > 1, the “expanding
map” case; r = ±1, the “indifferent map” case; or |r| ≤ 1,
the “contracting map” case. Our motivation comes from
the expanding map case, but the results proved below
apply to all cases.

We formulate a general conjecture concerning func-
tions in this class that are expanding maps, of which
Conjecture 1.2 is a special case.

Conjecture 5.1. Let r = l
d with gcd(l, d) = 1 and |r| > 1.

Let hr : Z → Z be a function in the class Pr. Then for
each integer n, with at most a finite number of exceptions,
there is some iterate j ≥ 1 such that h

(j)
r (n) ≡ 0 (mod

d).

The “expanding” condition on r is necessary, for the
conjecture fails for certain r with 0 < r < 1, as shown in
Theorem 5.4 below.

An interesting map in the class Pr is

g̃r(x) = �rx� . (5–5)

This map has l0 = 0 and

lb = d − (lb mod d) for 1 ≤ b ≤ d − 1 .

The function g̃3/2(x) appears in Mahler’s study of Z-
numbers [Mahler 68], as explained below. We have

g̃3/2(n) =
{

3
2n if n ≡ 0 (mod 2) ,
3
2n + 1

2 if n ≡ 1 (mod 2) .

Mahler’s study of Z-numbers led to questions similar to
Conjecture 5.1. A Z-number is a positive real number ξ

with the property that

0 ≤ {{ (
3
2
)nξ }} ≤ 1

2
for all n ≥ 1 ,

where {{x}} = x − 
x� denotes the fractional part of x.
Mahler conjectured that Z-numbers do not exist and
showed that a necessary and sufficient condition for their
nonexistence is that for each n ≥ 1 there exists some
j ≥ 1 (depending on n) such that

g̃
(j)
3/2(n) ≡ 3 (mod 4) . (5–6)

Mahler’s conjecture remains open. Mahler obtained a
nontrivial upper bound on the number of Z-numbers
smaller than x, and [Flatto 91] improved the upper bound
to O(x0.59) for x → ∞.

In comparison to (5–6), Conjecture 5.1 for g̃3/2 (with
r = 3

2 ) asserts that for each n ∈ Z there exists some j ≥ 1
(depending on n) with

g̃
(j)
3/2(n) ≡ 0 (mod 2) , (5–7)

with at most a finite number of exceptions. This special
case of Conjecture 5.1 is true, as a consequence of the
next theorem. There is exactly one exceptional integer,
n = −1, whose iterates never satisfy (5–7).

More generally, for the case of rational numbers r with
denominator d = 2, Conjecture 5.1 is provable for all
functions in the class Pr in a fashion analogous to that
used for the approximate squaring map in Section 2.

Theorem 5.2. Let hr be a function in the class Pr, for
fixed r = 2t+1

2 where t is an integer. Then for each n ∈
Z, with at most two exceptions, there exists some iterate
k ≥ 1 with

h(k)
r (n) ≡ 0 (mod 2) . (5–8)

Proof: We have

hr(n) =

{
r n + l0 if n ≡ 0 (mod 2) ,
r n + 1

2 + l1 if n ≡ 1 (mod 2)

for some integers l0, l1.
We claim that the set of integers n satisfying

h(j)
r (n) �≡ 0 (mod 2) for 1 ≤ j ≤ k (5–9)

consists of the integers in exactly two arithmetic progres-
sions b (mod 2k+1), one consisting of even integers and
one of odd integers. We prove the claim by induction
on k ≥ 1. For the base case, let b ≡ a0 (mod 2) with
a0 = 0 or 1 fixed, and consider the arithmetic progres-
sion n = b + 2m, with m ∈ Z. Then,

hr(n) = hr(b) + (2t + 1)m ,

and the condition hr(n) ≡ 0 (mod 2) restricts m to lie
in a single congruence class m ≡ a1(b) (mod 2). We
conclude that exactly two congruence classes b ≡ a0 +
2a1 (mod 4) satisfy (5–9) for k = 1, one consisting of
even integers and one of odd integers, completing the
base case.

For the induction step, supposing (5–9) true for k,
let b (mod 2k+1) run over the two allowed congruence
classes for the given k. Consider the arithmetic progres-
sion n = b + 2k+1m, with m ∈ Z. Then, we have

h(j)
r (n) ≡ h(j)

r (b) (mod 2) for 1 ≤ j ≤ k
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and
h(k+1)

r (n) = hk+1
r (b) + (2t + 1)k+1m .

The condition that

h(k+1)
r (n) ≡ 0 (mod 2)

is equivalent to saying that m ≡ ak+1(b) (mod 2), which
excludes the congruence class

b′ ≡ b + ak+1(b)2k+1 (mod 2k+2) .

Thus two congruence classes (mod 2k+2) remain which
satisfy (5–9) for 1 ≤ j ≤ k+1. Since each of the previous
classes b (mod 2k+1) contributed one of these classes,
one contains even integers and the other contains odd
integers. This completes the induction step.

Denote these two classes by b0(k+1) (mod 2k+2) and
b1(k + 1) (mod 2k+2), respectively. It follows that (5–8)
holds except for integers in the sets

∞⋃
k=1

{n ≡ b0(k) (mod 2k+1)}

and ∞⋃
k=1

{n ≡ b1(k) (mod 2k+1)} .

Each of these sets contains at most one element, so there
are at most two exceptional elements.

Concerning Theorem 5.2, there exist examples of func-
tions hr ∈ Pr with denominator d = 2 such that there
are zero, one, or two elements in the exceptional set. For
example, for r = 3

2 the function g̃3/2 has the single ex-
ceptional element n = −1. The map

h3/2(n) =
{

3
2 n + 1

2 if n ≡ 1 (mod 2) ,
3
2 n − 1 if n ≡ 0 (mod 2) (5–10)

has two exceptional points, 0 and −1, all the iterates of
which are odd.

We also note that Theorem 5.2 applies to the two val-
ues r = ± 1

2 where the maps in Pr are contracting.
We next prove a result in the direction of Conjec-

ture 5.1 for denominators d ≥ 3. We bound the num-
ber of exceptions below x for a general function in the
class Pr, using an argument similar to that for the ap-
proximate squaring map studied in Section 3. Given a
rational number r = l

d with gcd(l, d) = 1 and a function
hr in the class Pr, we define the exceptional set by

E(hr;x) :=

{ n ∈ Z : |n| ≤ x,

h(k)
r (n) �≡ 0 (mod d)

for all k ≥ 1

}
, (5–11)

and let
N(hr;x) := #(E(hr;x)) .

(The exceptional set in (1–3) is E(r) = E(gr;∞).) The
following result holds for all rational r, including those
with |r| ≤ 1.

Theorem 5.3. Let r = l
d be a rational number with

gcd(l, d) = 1, and suppose that d ≥ 2.

1. For each function hr ∈ Pr, the set of integers l such
that the function hr iterated starting from the ini-
tial value x = l reaches an integer for the first time
at iterate j ≥ 1 is a union of d(d − 1)j complete
arithmetic progressions (mod dj+1).

2. There is a constant 0 ≤ βd < 1 depending only on d

such that for every function hr ∈ Pr we have

N(hr;x) ≤ 4dxβd . (5–12)

The precise value of the constant is

βd =
log(d − 1)

log d
= 1 − logd(1 +

1
d − 1

) . (5–13)

Proof: The arguments to establish this result are simpler
than those for the approximate squaring map because
we can use radix expansions to the fixed base d. If n ≡
b (mod d), then

hr(n) =
l

d
n +

lb
d

, (5–14)

where 0 ≤ lb ≤ d − 1 with lb ≡ −lb (mod d).
We claim that the elements n ∈ Z such that

h(j)
r (n) �≡ 0 (mod d) for 1 ≤ j ≤ k (5–15)

consist of a certain set of d(d − 1)k residue classes (mod
dk+1). We proceed by induction on k ≥ 1. For the
base case k = 1, given b (mod d) the elements of the
arithmetic progression n = b + dm with m ∈ Z have

hr(n) = hr(b) + lm .

Since gcd(l,m) = 1, as m ∈ Z varies these numbers cycle
through every residue class ( mod d). In particular, there
is one class m ≡ a1(b) ( mod d), say, that gives gr(n) ≡
0 (mod d). This arithmetic progression b + a1(b)d (mod
d2) is ruled out and all elements of the remaining d −
1 arithmetic progressions (mod d2) satisfy (5–15) with
k = 1. This completes the base case.
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For the induction step, suppose (5–15) holds for k, and
there are d(d−1)k allowed residue classes b (mod dk+1).
For each of these residue classes, consider the arithmetic
progression n = b + dk+1m with m ∈ Z. Using (5–14)
repeatedly, we have

hk+1
r (n) = h(k+1)

r (b) + lk+1m .

Since gcd(l,m) = 1, this progression cycles through all
residue classes (mod d), and the condition hk+1

r (n) ≡
0(mod d) rules out one residue class, say b +
ak+1(b)dk+1 (mod dk+2). Thus imposing the additional
condition

hk+1
r (n) �≡ 0 (mod d)

leaves d(d − 1)k+1 allowed residue classes (mod dk+2)
whose elements satisfy (5–15) for k + 1. This completes
the induction step, proving the claim.

The proof of the claim establishes part (1), since the
elements that first have an integer iterate at the kth step
for k ≥ 1 were shown to form d(d−1)k−1 complete arith-
metic progressions (mod dk+1).

To establish part (2), we will prove a stronger result
than stated above. Set

E∗(hr;x) :=

{n ∈ Z : |n| ≤ x,

h(k)
r (n) �≡ 0 (mod d)

for 1 ≤ k ≤ logd x

}
(5–16)

and let N∗(hr;x) = #(E∗(hr;x)). Certainly N∗(hr;x) ≥
N(hr;x), so it suffices to establish

N∗(hr;x) ≤ 4dxβd , (5–17)

where βd is given in (5–13).
Now suppose dk ≤ x < dk+1. We observe that ap-

plying (5–15), with k replaced by k − 1, shows that the
elements in E∗(hr;x) are necessarily contained in a set of
d(d−1)k−1 residue classes ( mod dk), since logd x > k−1.
It follows that

N∗(hr;x) ≤ d(d − 1)k−1 · 2
⌈

x

dk

⌉
≤ 2d2(d − 1)k−1 ≤ 4d(d − 1)k ,

since d ≥ 2. Now x ≥ dk, so k ≤ log x
log d and we have

N∗(hr;x) ≤ 4dek log(d−1)

≤ 4dx
log(d−1)

log d ,

as asserted.

Theorem 5.3 has a probabilistic interpretation analo-
gous to that of Theorem 3.3. We leave its formulation to
the reader.

We now show that the upper bound of part (2) of
Theorem 5.3 is nearly best possible for certain values of
r in the interval 0 < r < 1, where the map is a contracting
map. That is, for suitable maps in the class Pr, the upper
bound (5–12) of Theorem 5.3 is within a multiplicative
constant of the best possible upper bound.

Theorem 5.4. Let r = 1
d with d ≥ 3. Then, for the

conjugated approximate multiplication map gr of (5–2),
the exceptional set E(gr;x) has cardinality

N(gr;x) ≥ 1
d
xβd , for all x ≥ d , (5–18)

with βd = log(d−1)
log d . In particular, the full exceptional set

E(gr;∞) is infinite.

Proof: Note that for r = 1
d the functions gr and g̃r co-

incide. We claim that, for each k ≥ 1, the subset Σk of
[1, dk] given by

{n : 1 ≤ n ≤ dk,

n = a0 + a1d + . . . + ak−1d
k−1

with all ai �≡ −1 (mod d) for i ≥ 1

}

is contained in E(gr; dk). (The cardinality of Σk is d(d−
1)k−1.) We prove this by induction on k ≥ 1.

For the base case k = 1 we have

Σ1 = {1, 2, . . . , d − 1} ⊆ E(gr; d)

because each gr(n) = 1 �≡ 0 (mod d) and 1 is a fixed
point of gr. Next,

gr(Σk) ⊂ Σk−1 ,

because

gr(n) = (a1 + 1) + a2d + a3d
2 + · · · + ak−1d

k−2 ∈ Σk−1 ,

and 1 ≤ a1 + 1 ≤ d − 1 by hypothesis. Thus, Σk ⊂
E(gr; dk), which completes the induction step.

For dk ≤ x < dk+1, with k ≥ 1, we have

N(gr;x) ≥ N(gr; dk)

≥ #Σk = d(d − 1)k−1 ≥ 1
d
xβd , (5–19)

as asserted.



Lagarias and Sloane: Approximate Squaring 127

Since the exceptional set E(r) of the approximate mul-
tiplication map fr has E(r) = E(gr;∞) and E(gr, x) ⊂
E(gr;∞), Theorem 5.4 shows that the conclusion of Con-
jecture 1.2 does not hold for these values of r.

It seems plausible that for all values −1 < r < 1 (ex-
cept r = 0) there is some function in the class Pr for
which the conclusion of Conjecture 5.1 does not hold.
However, we do not attempt to construct such functions
here.

We end this section with a result that shows that in at
least one case the approximate multiplication map based
on the floor function,

Fr(x) := r
x� ,

behaves in exactly the same way as fr(x). A version of
this result was communicated to us by Benoit Cloitre.

Theorem 5.5. Let r = d+1
d with d ≥ 1. Then, for any

integer m ≥ 1, the sequence F
(j)
r (m+d), j ≥ 0, takes ex-

actly as long to reach an integer as the sequence f
(j)
r (m),

j ≥ 0.

Proof: Let yj = f
(j)
r (m) and Yj = F

(j)
r (m + d). An easy

induction argument shows that Yj = yj +d+1 for j ≥ 0.

6. NUMERICAL RESULTS

The simplest case where we do not know if the approxi-
mate squaring map f of (1–1) will always reach an inte-
ger is when the starting value r = l/d has denominator
d = 3. We wish to determine θ(r) (say), the smallest
value of k ≥ 0 for which f (k)(r) is an integer.

Testing any particular value of r is complicated by the
fact—already illustrated in Section 1—that the iterates
grow so rapidly. This difficulty can be overcome by writ-
ing the kth iterate lk/dk := f (k)(r) in “base d”:

lk
dk

=
∞∑

j=−1

aj(k)dk , (6–1)

where the “digits” aj(k) satisfy 0 ≤ aj(k) < d (compare
(3–7)), but storing only the terms in (6–1) with j ≤ M .
That is, we work mod dM+1. As long as θ(r) ≤ M − 1,
we get the correct answer by finding the smallest k for
which a−1(k) = 0. If this has not happened by the time
k reaches M , we increase M and repeat.

For denominator 3 the value M = 25 is sufficient to
show that θ(l/3) is finite for 3 ≤ l ≤ 2000. The following
table shows what happens for the first few values. It gives

the initial term, the number of steps to reach an integer,
and the integer that is reached.

start θ reaches
3/3 0 1
4/3 2 8
5/3 6 1484710602474311520
6/3 0 2
7/3 1 7
8/3 1 8
9/3 0 3
10/3 5 1484710602474311520
11/3 2 220

...
...

...

(These are sequences A072340 and A085276 in
[Sloane 95–03].) In the range l ≤ 2000, large values
of θ(l/3) are scarce. The first few record values are
θ(l/3) = 0, 2, 6, 22, 23, reached at l = 3, 4, 5, 28, 1783 re-
spectively.

Starting values r = d+1
d take longer to converge–

we discussed the cases d ≤ 8 in Section 1. The ini-
tial values of θ((d + 1)/d) can be found in sequence
A073524 in [Sloane 95–03]. The first few record val-
ues are 0, 1, 2, 3, 18, 26, 56, 79, 200, 225, 388, 1444, reached
at d = 1, 2, 3, 4, 5, 11, 19, 31, 37, 67, 149, 199 respectively
(sequences A073529, A073528). R. G. Wilson, v. [Wil-
son 02] has checked that θ((d+1)/d) is finite for d ≤ 500.

It is amusing to note that the record value 1444 has the
following interpretation: starting with 200

199 and repeat-
edly approximately squaring, the first integer reached is

20021444
,

a number with about 10435 digits.
The approximate multiplication map fr(x) of (5–1) is

easier to compute since it grows more slowly. Let θr(n)
denote the smallest value of k ≥ 1 for which f

(k)
r (n) is an

integer. We give just one example. This table shows what
happens when f4/3(n) is iterated with starting value n:

n: 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
θ4/3(n): 1 3 2 1 2 9 1 8 3 1 7 2 1 · · ·
reaches: 0 4 4 4 8 84 8 84 20 12 84 20 16 · · ·

(sequences A085068 and A085071). Large values of
θ4/3(n) are again scarce. The first few record val-
ues are θ4/3(n) = 1, 3, 9, 15, 17, 18, 24, 27, 28, 30, 40,
reached at 0, 1, 5, 161, 1772, 3097, 3473, 23084, 38752,

335165, 491729 respectively (sequences A085328 and
A085330). We thank J. Earls [Earls 03] for computing
the last six terms in these two sequences.
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All the evidence supports the conjectures made here;
it would be nice to know more.
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