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In a previous article (see [Dieulefait and Manoharmayum 03],
the modularity of a large class of rigid Calabi-Yau threefolds was
established. To make that result more explicit, we recall (and
reprove) a result of Serre giving a bound for the conductor of
“integral" two-dimensional compatible families of Galois repre-
sentations and apply this result to give an algorithm that deter-
mines the level of a modular rigid Calabi-Yau threefold. We
apply the algorithm to three examples.

1. INTRODUCTION

In [Dieulefait and Manoharmayum 03], modularity for a
large class of rigid Calabi-Yau threefolds defined over Q

was established, by an application of Wiles techniques
combined with some solved cases of Serre’s conjecture
and results on crystalline representations. As other au-
thors have remarked, a drawback of our result is that it
does not give a way to determine the corresponding mod-
ular form: it is well-known (this is an instance of compat-
ibility with the local Langlands correspondence) that the
level of this modular form agrees with the conductor of
the compatible family of Galois representations attached
to the rigid Calabi-Yau; the problem is that the determi-
nation of this conductor is not an easy task. So, in order
to make our result more useful, in the present note we will
describe a simple algorithm that, without any restriction,
determines the level of the modular form corresponding
to a given modular rigid Calabi-Yau threefold. We will
start by recalling a result of Serre (see [Serre 87]) giving
a universal bound for the exponents of the primes of bad
reduction in the conductor of the Galois representations
attached to a rigid Calabi-Yau threefold (assuming mod-
ularity). In fact, the bound given by Serre is the same
holding for elliptic curves defined over Q.

After briefly recalling the ideas behind Serre’s proof
of this result, we will reprove it by using congruences be-
tween rigid Calabi-Yau threefolds and elliptic curves (or,
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in the residual reducible case, Hecke characters). With
this bound, which is also a bound for the level of the
searched modular form, we only have a finite number of
modular forms as candidates for a given Calabi-Yau, so
by elimination we easily determine the right one. We will
illustrate this procedure by determining the right new-
form for three examples of rigid Calabi-Yau threefolds.
In the examples, we use the values of the traces of the
images of a few Frobenius elements (these values appear,
for example, in [Yui 03]) and the corresponding eigenval-
ues of newforms of weight 4 and several levels, most of
them available in the tables on W. Stein’s web site [Stein
00], and the rest computed with Magma.

To speed up the process, we will use in the last ex-
ample (which involves computations with high levels)
mod 5 congruences between weight 4 and weight 2 new-
forms, so that we can switch to spaces of weight 2 new-
forms where more tables are available.

Throughout this article, we will assume that we
are working with a modular rigid Calabi-Yau threefold.
Modularity for most of the known examples, and in par-
ticular for the three examples that we will consider, fol-
lows easily from the main theorem in [Dieulefait and
Manoharmayum 03].

Let us remark that in each known example of a rigid
Calabi-Yau threefold, the fact that the variety is modu-
lar and the exact value of the level of the corresponding
modular form were also established independently of the
results in [Dieulefait and Manoharmayum 03] by other
methods (see [Yui 03]). The advantage we see is that
with our approach (combining the result in [Dieulefait
and Manoharmayum 03] with the present note) we have
a “general result” that gives both modularity (the theo-
retical result) and the level (the algorithm) for most of
the known examples and for many examples to come.

2. THE BOUND FOR THE CONDUCTOR/LEVEL

Let X be a modular rigid Calabi-Yau threefold defined
over Q (for definitions, see [Yui 03]), and let {ρ�} be the
compatible family of (two-dimensional, continuous, odd,
irreducible) Galois representations giving the action of
the Galois group of Q on the �-adic cohomology groups
H3

et(XQ̄, Q�). Because the family corresponds to a mod-
ular form f of weight 4 (whose level N contains only
primes of bad reduction of X), the “conductor” c of the
family is well defined: if we take any prime � where X

has good reduction, so that � is not in the ramification
set of the family {ρ�}, then c agrees with the prime-to-�

part of the conductor of ρ�, which also agrees with the
level N of f .

Remark 2.1. More generally, even if � is a prime where
the representations ramify, if we take p �= �, the p-part
of the conductor of the family (equal to the p-part of the
level of the corresponding modular form) agrees with the
p-part of the conductor of ρ�.

Let S be the (finite) set of primes of bad reduction
of X. For every prime p ∈ S, let ep be the exponent
of p in the level N of f (equal to the exponent of p in
the conductor c of the family of Galois representations).
Observe that (contrary to what happens in the case of
abelian varieties) it is perfectly possible that for some
p ∈ S, we have ep = 0. In [Serre 87, Section 4.8], Serre
gives a bound for these exponents. He assumes the truth
of Serre’s conjecture in order to ensure that the residual
representations, when irreducible (they can only be re-
ducible for finitely many primes), are modular. In our
case, we are working with this modularity assumption,
therefore the result of Serre applies.

Theorem 2.2. (J. -P. Serre.) Let {ρ�} be the compatible
family of Galois representations attached to a modular
rigid Calabi-Yau threefold X with bad reduction set S.
Then the conductor c of this family, which agrees with
the level N of the corresponding weight 4 modular form,
can be bounded as follows: for every prime p ∈ S, the
exponent ep of p in N verifies ep ≤ 2 if p > 3, ep ≤ 5 if
p = 3, and ep ≤ 8 if p = 2.

Remark 2.3. For p = 2, Serre gives a proof of the weaker
inequality e2 ≤ 9, but he remarks (see [Serre 87, page
216]) that a more detailed analysis gives e2 ≤ 8. In any
case, in our proof of the theorem we will prove the bound
e2 ≤ 8.

2.1 Brief Description of the Original Proof

The proof uses the fact that the residual (assume irre-
ducible) representations ρ̄� have image inside GL2(F�),
and for a prime p > 3, infinitely many of these groups
have order prime to p, thus ρ̄� is tamely ramified at p, and
this gives the desired bound for the p-part of the conduc-
tor of ρ̄� for infinitely many �, and this implies (here is
where residual modularity, more precisely the strong ver-
sion of Serre’s conjecture, is used; see [Serre 87]) that the
same bound holds for the p-part of the modular level N .
A similar (though more complicated) argument is used
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to deal with the cases p = 2 and p = 3. Here the desired
bound is obtained by looking at the (2-part or the 3-part
of the) conductor of ρ̄� for primes � �≡ ±1 (mod 8) or
� �≡ ±1 (mod 9), respectively.

2.1.1 Another proof of Theorem 2.2. Take � = 5. We
will first be interested in bounding the prime-to-5 part
of the conductor c of the family {ρ�}. To do this, we will
bound the conductor of ρ̄5 (taking the definition as in
[Serre 87], i.e., considering only the prime-to-5 ramifica-
tion). Let us divide into two cases:

1. ρ̄5 is reducible: in this case, (semisimplify if neces-
sary), we can assume that ρ̄5 is semisimple, so we
have

ρ̄5
∼= εχi ⊕ ε−1χj ,

where χ is the cyclotomic character. Since det(ρ̄5) =
χ3, we have i+ j ≡ 3 (mod 4). Take p �= 5 and con-
sider the p-part of the conductor of ε. Because ρ̄5

is odd, it is well known (irreducible agrees with ab-
solutely irreducible) that the components must also
be defined over F5, so Image(ε) ⊆ F∗

5. This clearly
gives 24 = 16 as a bound for the 2-part of the con-
ductor of ε, and p1 = p as a bound for its p-part for
every p > 2 (p �= 5). Thus we obtain 28 and p2 (for
p �= 2, 5) as bounds for the p-part of the conductor
of ρ̄5.

2. ρ̄5 is irreducible: let σ := ρ̄5 ⊗ χ. This representa-
tion has determinant equal to χ, then it is known
(see [Breuil et al. 01]) that it is isomorphic to the
representation on the 5 torsion of some elliptic curve
defined over Q. At any prime p �= 5, the bound for
the p-part of the conductor of σ, thus also of ρ̄5, fol-
lows from the well-known bound for conductors of
elliptic curves (see [Silverman 94]).

Now let us compare the conductors of ρ̄5 and ρ5. Re-
call that the second of these values agrees with the prime-
to-5 part of the conductor of the family {ρ�}. For a prime
p �= 5, it is possible that the exponent e′p of p in the con-
ductor of ρ̄5 is strictly smaller than the exponent ep of p

in the conductor of ρ5. However, since the determinant
of both representations is unramified at p, it is known
that e′p < ep can only happen in a few particular cases
(see [Carayol 89]):

(e′p = 0, ep = 2); (e′p = 0, ep = 1), and (e′p = 1, ep = 2).
(2–1)

So, if e′p = ep, having obtained the right bound for ρ̄5,
we also have it for ρ5, and if e′p < ep, then ep ≤ 2. In any
case, we obtain the right bound for the conductor of ρ5.

As for the 5-part of the conductor of the family {ρ�},
just observe (as in Serre’s proof) that for � = 7, the order
of GL2(F7) is not a multiple of 5, then the 5-part of the
conductor of ρ̄7 is at most 52, and again using (2–1) we
see that this bound also works for ρ7.

3. FINDING THE RIGHT NEWFORM

With the bound given in Theorem 2.2, we now have a
method to find the modular form corresponding to a
given modular rigid Calabi-Yau threefold X: let S be
the set of bad reduction primes of X, and let

B =
∏

p∈S

pbp ,

where the exponents bp are the bounds given in the theo-
rem. We have to consider all spaces of weight 4 newforms
with level N dividing B, and for any newform f in each
of these spaces with field of coefficients Qf = Q, compare
a few eigenvalues ap with the traces tp of the images of
Frobenius (for p �∈ S) for the geometric Galois repre-
sentations attached to the Calabi-Yau threefold. When-
ever ap �= tp for a single p, the newform is discarded.
With this procedure, by elimination, the (unique) mod-
ular form corresponding to X is easily found.

Remark 3.1. If f is a newform (with eigenvalues ap ∈ Z)
not corresponding to X, we should estimate the size
of the smallest p such that we have ap �= tp. In all
computed examples, this always happens for a small p,
but for theoretical reasons, let us recall that there is a
bound T (Sturm’s bound) easily computed in terms of
our “maximal possible level B” such that ap = tp for ev-
ery p � B, p ≤ T implies that f does correspond to X.
Thus the elimination procedure necessarily finishes at a
prime p smaller than T .

Incidentally, observe that this gives an alternative
way of determining the right newform f : if you suspect
which is the right f , instead of eliminating the other
candidates, just check the equality ap = tp up to Sturm’s
bound T . This suffices for a proof. This method is not
practical because since B can be large, the bound T

sometimes becomes too large for computations.

3.1 The Examples

Example 3.2. Let X1 be the rigid Calabi-Yau with bad re-
duction only at 2 constructed by Werner and van Geemen
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(see [Yui 03]), with the following values for tp (p ≤ 7,
p �= 2): −4,−2, 24.

Since it has good reduction at 3 and 7, it is modu-
lar (see [Dieulefait and Manoharmayum 03]). We know
from Theorem 2.2 that the corresponding modular form
has a level dividing 256, and comparing the first eigen-
values of all newforms of such levels with the values of
tp listed above, we conclude that the modular form f1

corresponding to X1 has level 8.

Example 3.3. Let X2 be the rigid Calabi-Yau with bad re-
duction only at 5 constructed by Schoen (see [Serre 87]).
Again, the main theorem of [Dieulefait and Manohar-
mayum 03] implies that it is modular, and Theorem 2.2
gives us 25 as a bound for the level of the corresponding
modular form. Using only the values of t2 and t3, we
conclude that it corresponds to a newform of level 25.

Example 3.4. Let X3 be the rigid Calabi-Yau with bad
reduction at 2 and 5 constructed by Werner and van
Geemen (see [Yui 03]), with the following values for tp
(p = 3, 7, 11, 13, 17, and 19):

−2,−26,−28,−12, 64,−60. (3–1)

Again [Dieulefait and Manoharmayum 03] gives mod-
ularity. Theorem 2.2 gives a large bound for the level of
the corresponding newform: B = 256 ∗ 25 = 6400. To
speed up the process of elimination, we have applied a
different trick to cases of large level. We have divided in
two cases:

1. level N divisible by 16. In this case, the trick is
the following: consider the mod 5 representation
ρ̄5; the first traces of this representation are the re-
ductions mod 5 of the values tp listed in (3–1).
Observe that the hypothesis 16 | N implies that the
conductor of ρ̄5 is also divisible by 16 (as in the pre-
vious section; see [Carayol 89]), and this in turn im-
plies that ρ̄5 must be irreducible, since it is not hard
to see from the values of a few tp (reduced mod 5)
that if it were reducible it (in fact, its semisimplifi-
cation) would be unramified at 2. Now consider the
twisted representation σ := ρ̄5 ⊗ χ. This irreducible
modular representation must correspond to a weight
2 newform, whose level divides 6400 and is a multi-
ple of 16, and whose first eigenvalues ap should agree
modulo 5 with p ·tp, thus the value of these eigenval-
ues ap modulo 5 should be (for p = 3, 7, 11, 13, 17,
and 19):

−1,−2,−3,−1,−2, 0. (3–2)

We search through all these spaces of newforms (for
all newforms up to level 3200, and also for those of
level 6400 with Qf = Q, the eigenvalues are listed in
the tables in [Stein 00]; for the remaining newforms
of weight 2 and level 6400, we performed computa-
tions with Magma). We eliminate all newforms such
that Qf �= Q and there is no prime above 5 of residue
class degree 1. For the remaining newforms, in most
cases the values of a3 and a7 modulo 5 already do
not match with (3–2), and finally using the other
values in (3–2) we eliminate all newforms. We con-
clude that it is impossible that the conductor of ρ5

be a multiple of 16, thus we have 16 � N .

2. level N not divisible by 16. Having discarded Case
1, we know that the 2-part of the conductor is at
most 8, and comparing the first values of tp listed in
(3–1) with all newforms of weight 4 and level di-
viding 8 ∗ 25 = 200, the only one that matches is
a newform of level 50. Thus we conclude that the
Calabi-Yau threefold X3 is modular of level 50.

Remark 3.5. Assuming that ρ̄5 is irreducible, after twist-
ing it by χ we obtain the representation σ that must cor-
respond to some newform of weight 2 and level dividing
50. But the only such newform (with its first eigenvalues
modulo 5 as in (3–2)) corresponds to an elliptic curve of
conductor 50, and it is known that this elliptic curve has
a rational 5-torsion point, contradicting the irreducibility
of ρ̄5. We conclude that ρ̄5 is reducible.

4. FINAL REMARK

It follows from recent results of Taylor that the compati-
ble family of Galois representations attached to any rigid
Calabi-Yau threefold (modular or not) is “strongly com-
patible” (see [Taylor 01]). This strong compatibility im-
plies that the conductor of the family is well defined (as
in the case of Galois representations attached to modular
forms; recall the discussion in Section 2). In the proof of
Theorem 2.2 given in this note, the Calabi-Yau threefold
was assumed to be modular only to apply this “indepen-
dence of �” of the conductor, thus we conclude that the
bound for the conductor given in Theorem 2.2 is true for
any rigid Calabi-Yau threefold (modular or not).
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