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A finite ±1 sequence X yields a binary triangle ∆X whose first
row is X, and whose (k + 1)th row is the sequence of pairwise
products of consecutive entries of its kth row, for all k ≥ 1.
We say that X is balanced if its derived triangle ∆X contains
as many +1s as −1s. In 1963, Steinhaus asked whether there
exist balanced binary sequences of every length n ≡ 0 or 3 mod
4. While this problem has been solved in the affirmative by
Harborth in 1972, we present here a different solution. We do so
by constructing strongly balanced binary sequences, i.e., binary
sequences of length n all of whose initial segments of length
n − 4t are balanced, for 0 ≤ t ≤ n/4. Our strongly balanced
sequences do occur in every length n ≡ 0 or 3 mod 4. Moreover,
we provide a complete classification of sufficiently long strongly
balanced binary sequences.

1. INTRODUCTION

Let X = (x1, x2, . . . , xn) be a binary sequence of length
n, i.e., a sequence with xi = ±1 for all i. We define the
derived sequence ∂X of X by ∂X = (y1, y2, . . . , yn−1)
where yi = xixi+1 for all i. By convention, we agree
that ∂X = ∅ whenever n = 0 or 1, where ∅ stands for
the empty binary sequence of length 0. More generally,
for k ≥ 0, we shall denote by ∂kX the kth derived se-
quence of X, defined recursively as usual by ∂0X = X

and ∂kX = ∂(∂k−1X) for k ≥ 1.
We shall denote by ∆X the collection of the derived

sequences X, ∂X,. . . , ∂n−1X of X. This collection may
be pictured as a triangle, as in the following example:
if X = (+1,+1,−1,+1,−1,+1,+1), abbreviated as + +
− + − + +, then ∆X =

+ + − + − + +
+ −−−−+
− + + + −
− + +−
− + −
−−
+
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We shall henceforth refer to ∆X as the derived triangle
of X. If Y = (y1, . . . , ym) is any finite collection of num-
bers, we denote the sum of its entries by S(Y ) =

∑m
i=1 yi.

For instance, if X = (x1, x2, . . . , xn) is a binary sequence,
then S(∆X) represents the sum of the entries in the de-
rived triangle ∆X of X, i.e., S(∆X) =

∑n−1
k=0 S(∂kX).

Definition 1.1. A binary sequence X = (x1, x2, . . . , xn)
is balanced if S(∆X) = 0. In other words, X is balanced
if its derived triangle ∆X contains as many +1s as −1s.

For example, the above binary sequence X = + +
− + − + + is balanced, as its derived triangle contains
14 positive signs and 14 negative signs in total. This
sequence, as well as other balanced sequences of lengths
11, 12, 19, and 20, appear in [Steinhaus 63], where the
author proposed the following problem:

Problem 1.2. Is there a balanced binary sequence of
length n for every n ≡ 0 or 3 mod 4?

(The term “balanced” is not used by Steinhaus.) Note
that the condition n ≡ 0 or 3 mod 4 is necessary for the
existence of a balanced binary sequence X of length n.
Indeed, the derived triangle of X contains n(n + 1)/2
entries; if n ≡ 1 or 2 mod 4, the number of entries is odd,
and therefore S(∆X) cannot vanish.

The above problem has been solved in the affirmative
in [Harborth 72]. In this paper, we shall present a new
solution to the problem of Steinhaus, by constructing bi-
nary sequences satisfying a much stronger condition.

Definition 1.3. A binary sequence X = (x1, . . . , xn) is
strongly balanced if the initial segment (x1, . . . , xn−4t) of
X is balanced, for every 0 ≤ t ≤ n/4.

Alternatively, strongly balanced sequences may be de-
fined recursively, as follows. As initial conditions, bal-
anced sequences of length 0 or 3 are considered strongly
balanced. For n ≥ 4, the sequence (x1, . . . , xn) is de-
fined as strongly balanced if and only if it is balanced
and (x1, . . . , xn−4) is strongly balanced.

For instance, the above binary sequence X = + +
− + − + + is strongly balanced of length 7, as X and
its initial segment of length 3, namely + + −, are both
balanced. Another example of a strongly balanced binary
sequence is given by P = + − + + − + + + + − −−, of
length 12. Indeed, the initial segments of length 4, 8,
and 12 of P , namely + − ++, + − + + − + ++, and
P itself, are all balanced as easily seen upon inspection.

On the other hand, the sequences Y7 = + + + − + + −
and Y8 = + + + + − + −− are both balanced, but not
strongly so. Indeed, the initial segments of length 3 of Y7

and length 4 of Y8 are both constant +1 sequences and,
therefore, cannot be balanced.

We shall denote by sb(n) the number of strongly bal-
anced binary sequences of length n. There is no a priori
reason to expect that strongly balanced sequences should
exist at all for large n. Fortunately, the task of searching
for all such sequences lends itself very well to computer
experimentation (see below). The outcome of our exper-
iments is quite surprising. Initially, the number sb(n)
for n ≡ 0 mod 4 strictly increases, from n = 4 up to
n = 36. Then, it starts to decrease (nonstrictly) up to
length n = 92, where it finally stabilizes to the constant
sb(n) = 4 for all n = 4m ≥ 92. For n ≡ 3 mod 4, the
situation is similar, though more complicated: provided
n ≥ 127, we find that sb(n) = 14 if n ≡ 3, 7 mod 12, and
sb(n) = 12 if n ≡ 11 mod 12.

A convenient way to summarize the behavior of the
numbers sb(n) is to exhibit properties of their generating
function g(t) =

∑∞
n=0 sb(n)tn. For example, the eventual

periodicity of sb(n) for large n is reflected by the property
of the generating function g(t) being a rational function.
Our main result in this paper is the following:

Theorem 1.4. The generating function g(t) =∑∞
n=0 sb(n)tn of the number sb(n) of strongly balanced

binary sequences of length n is given by the following ra-
tional function:

g(t) = 4t92/(1 − t4) + f0(t) + (14 + 12t4

+ 14t8)t127/(1 − t12) + f3(t),

where f0(t) and f3(t)are the following polynomials:

f0(t) = 1 + 6t4 + 18t8 + 30t12 + 52t16 + 80t20 + 88t24

+ 106t28 + 116t32 + 124t36 + 106t40 + 92t44

+ 92t48 + 90t52 + 64t56 + 44t60 + 38t64 + 32t68

+ 20t72 + 20t76 + 8t80 + 8t84 + 6t88,

f3(t) = 4t3 + 8t7 + 16t11 + 26t15 + 36t19 + 48t23 + 48t27

+ 66t31 + 88t35 + 108t39 + 114t43 + 90t47 + 88t51

+ 104t55 + 92t59 + 60t63 + 48t67 + 28t71 + 26t75

+ 26t79 + 20t83 + 16t87 + 18t91 + 14t95 + 14t99

+ 14t103 + 14t107 + 16t111 + 14t115 + 14t119

+ 16t123.
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In the above formula for g(t), the terms tn are sepa-
rated according as n ≡ 0 or 3 mod 4, for better readabil-
ity and because their behavior is different.

Corollary 1.5. For every natural number n ≡ 0 or
3 mod 4, there exists a strongly balanced binary sequence
of length n.

Proof: Consider first the case n ≡ 0 mod 4. By expand-
ing the summand 4t92/(1− t4) as 4t92 +4t96 +4t100 + . . .

in the formula for g(t), we see that sb(n) = 4 for every
n = 4m ≥ 92, as stated earlier. And the summand f0(t)
in g(t) gives the exact value of sb(n) for 0 ≤ n = 4m ≤ 88,
which is nowhere zero. Similarly, for the case n ≡ 3 mod
4, we see that sb(n) = 14 for every n ≡ 3 or 7 mod 12
with n ≥ 127, and sb(n) = 12 for every n ≡ 11 mod 12
with n ≥ 131. This follows from expanding the summand
(14+12t4+14t8)t127/(1−t12) as an infinite series. Smaller
values of n are taken care of by the polynomial f3(t). For
example, sb(51) = 88, sb(55) = 104, and sb(59) = 92. Al-
ternatively, one may note that, if there exists a strongly
balanced binary sequence X of length n, then the ini-
tial segment of length n − 4 of X is also a strongly bal-
anced binary sequence. This follows directly from the
definition.

The set of all strongly balanced binary sequences of
small length n (n ≤ 127, say) may be constructed by the
method described in Section 3. The eventual periodicity
of sb(n) is a consequence of Theorems 2.1 and 2.2 below.

2. A CLASSIFICATION OF LONG STRONGLY
BALANCED SEQUENCES

In this section, we shall describe the set of all strongly
balanced binary sequences of length n ≥ 92 for n ≡ 0
mod 4, and n ≥ 127 for n ≡ 3 mod 4. These two sets
admit periodic structures. In order to present the results,
we introduce the following notation.

2.1 Notation

If P , Q are finite binary sequences, we shall denote
by PQ∞ the infinite eventually periodic sequence which
starts with P and continues with Q repeated periodically
thereafter. If R is yet another finite binary sequence, and
if k ∈ N, we shall denote by PQkR the sequence starting
with P , continuing with Q repeated k times, and end-
ing with R. Finally, if T = (t1, . . . , tm, . . .) is any finite
or infinite sequence of length ≥ m, we shall denote by
T [m] = (t1, . . . , tm) the initial segment of length m of T .

2.2 The Case n ≡ 0 mod 4

Let Q1, . . . , Q4 denote the following infinite eventually
periodic binary sequences. We will show that every ini-
tial segment Qi[n] with n ≡ 0 mod 4 is strongly balanced
and that there are no other strongly balanced binary se-
quences of length n, provided n = 4m ≥ 92. These
statements are formalized in the next theorem.

Q1 = + − + + (+ + − + + − + −−− ++)∞,

Q2 = (+ − + + − + + + + −−−)∞,

Q3 = + − + − (+ −− + + + + −− + ++)∞,

Q4 = + − + − (− + − + + + − + − + ++)∞.

Theorem 2.1. For every n ≡ 0 mod 4, the initial segment
of length n of each of Q1, Q2, Q3 and Q4 is a strongly
balanced binary sequence. Conversely, every strongly bal-
anced binary sequence of length n with n ≡ 0 mod 4 and
n ≥ 92 is an initial segment of either of Q1, Q2, Q3,
or Q4.

Parts of the proof of this result can be found in Sec-
tion 6.

2.3 The Case n ≡ 3 mod 4

This case is more complicated. Let R1, . . . , R12 de-
note the following infinite eventually periodic binary se-
quences. Their initial segments of length n ≡ 3 mod 4
are all strongly balanced. Moreover, they account for all
sufficiently long strongly balanced binary sequences, ex-
cept for five more exotic ones in lengths n ≡ 3 mod 12
and n ≡ 7 mod 12. For instance, one of these extra se-
quences for n ≡ 3 mod 12 is R5[n − 4] + − + −, that is,
the initial segment of length n − 4 of R5 appended with
the sequence + − +−.

R1 = + + −(+ − + + + + − + + + +−)∞,

R2 = + + −−−− +(+ + −− + − + − + −−+)∞,

R3 = + − +(+ + + − + − + + + + −+)∞,

R4 = + − + + + + −
(+ − + + − + −−−− + + + + − + − + −−−−−−)∞,

R5 = + − + + + + −(− + + − + + + + − + +−)∞,

R6 = + − + − + −−(+ − + − + −− + + + −−)∞,

R7 = + − + − + −−
(+ − + −−−−−−− + − + −− + − + + −−− +−)∞,

R8 = + − +(− + −−− + −− + + −+)∞,

R9 = − + +(+ + − + + + + − + − ++)∞,
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R10 = − + + + + − +(−− + + + −− + − + −+)∞,

R11 = −−−−− + −(+ −− + + + −− + − +−)∞,

R12 = −−−(−− + −− + + + + −−−)∞.

Theorem 2.2. Let n ≡ 3 mod 4. Then, the initial seg-
ment of length n of each of R1, . . . , R12 is a strongly bal-
anced binary sequence. Moreover, if n ≥ 127, then every
strongly balanced binary sequence of length n is an initial
segment of one of R1, . . . , R12, with the following excep-
tions:

• if n ≡ 3 mod 12, there are two more strongly
balanced binary sequences of length n, namely
R5[n − 4] + − + − and R8[n − 4] + − + +.

• if n ≡ 7 mod 12, there are also two more strongly
balanced binary sequences of length n, namely
R8[n− 8]+−++−+++, and either R5[n−8]+−+
−−−−− if n ≡ 7 mod 24, or R5[n−8]+−+−−+−+
if n ≡ 19 mod 24.

The proof is similar to that of Theorem 2.1. See the
last comment in Section 6.

Even though Theorems 2.1 and 2.2 achieve the com-
plete description of all sufficiently long strongly balanced
binary sequences, we should point out that there are
other infinite families of (simply) balanced binary se-
quences. For example, for all n ≡ 3 mod 4, the sequence
Q1[n]+ happens to be balanced. Similarly, for all n ≡ 8
mod 12, the sequence R1[n] +−−+ is balanced as well.
And of course, there are the sequences in [Harborth 72]
that originally solved the problem of Steinhaus. None of
the presently discussed sequences are strongly balanced,
though.

3. THE METHOD

We shall explain now the method by which we have ob-
tained the results above and shall also supply our specific
Mathematica implementation of it.

The idea is quite simple. Assume X is a strongly bal-
anced binary sequence of length n. An extension of X

is any binary sequence Y containing X as an initial seg-
ment. Let Y be any one of the 16 possible extensions
of X of length n + 4. Then, Y is strongly balanced if
and only if Y is balanced. This holds because X itself is
strongly balanced.

Consequently, if we know the set SB(n) of all
strongly balanced binary sequences of length n, and if
card(SB(n)) = t, then in order to construct the set

SB(n + 4), it is enough to consider the 16t extensions
of length n + 4 of all the elements in SB(n) and select
those which are simply (hence strongly) balanced. This
is a computational task of low complexity.

In summary, our method is a greedy algorithm, which
aims to construct all strongly balanced sequences at in-
creasing lengths. For lengths divisible by 4, the algo-
rithm may start with the set {∅} of (strongly) balanced
sequences of length 0. For lengths 3 mod 4, it will start
with the set {++−,+−+,−++,−−−} of all (strongly)
balanced sequences of length 3.

Here are the very concise Mathematica functions
which we have written to implement the method. The
first four functions (derive, triangle, weight, and
ext4) take as argument an arbitrary finite binary se-
quence s, e.g., s = {1, 1,−1, 1} in Mathematica syntax.

1. The function derive[s] outputs the derived
sequence ∂s of s, that is, the sequence of pairwise
products of consecutive terms in s.

derive[s_] := Table[s[[i]]s[[i + 1]],

{i, 1, Length[s] - 1}]

2. Then, the function triangle[s] outputs the derived
triangle ∆s of s, i.e., the list of all higher order de-
rived sequences of s.

triangle[s_] := Block[{s1, tri},

s1 = s; tri = {s1};

While[Length[s1] > 1, s1 = derive[s1];

AppendTo[tri, s1]]; tri]

3. The function weight[s] outputs the sum of the en-
tries in the derived triangle ∆s of s.

weight[s_] := Apply[Plus,

Flatten[triangle[s]]]

4. The function ext4[s] outputs the list of all bal-
anced binary sequences containing s as an initial
segment plus 4 additional units. Note that, if s is
strongly balanced, then ext4[s] outputs the list of
all strongly balanced sequences containing s as an
initial segment plus 4 additional units.

ext4[s_] := Block[{l, sext}, l = {};

Do[sext = Join[s, {x1, x2, x3, x4}];

If[weight[sext] == 0,

AppendTo[l, sext]],

{x1, -1, 1, 2}, {x2, -1, 1, 2},

{x3, -1, 1, 2}, {x4, -1, 1, 2}];

l]
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5. Finally, given a nonnegative integer n ≡ 0 or 3
mod 4, the function strong[n] successively builds
all strongly balanced binary sequences of length m

with m ≤ n and m ≡ n mod 4.

strong[n_] := strong[n]

= (If[n == 0, Return[{{}}]];

If[n == 3,

Return[{{1, 1, -1}, {1, -1, 1},

{-1, 1, 1}, {-1, -1, -1}}]];

Flatten[Map[ext4, strong[n - 4]], 1])}

For instance, the command

Sum[Length[strong[n]]*t^n, {n, 0, 88, 4}]
will output the polynomial f0(t) of Theorem 1.4, where
f0(t) =

∑22
i=0 sb(4i)t4i displays the numbers sb(n) for

each length n = 4i ≤ 88. This computation takes about
90 seconds on a standard PC with a Pentium 4m proces-
sor clocked at 1.6 GHZ.

4. OTHER POSSIBLE STRENGTHENINGS

We describe here two other attempts of strengthening the
notion of balanced sequences. However, in contrast to
strongly balanced sequences, these other strengthenings
turn out to admit only finitely many complying binary
sequences.

4.1 M-Sequences

In our first attempt, we shall be seeking binary sequences
X = (x1, . . . , xn) having the property M, defined recur-
sively as follows: X is balanced, and its middle segment
(x3, . . . , xn−2) of length n−4 is also balanced and satisfies
property M. By convention, balanced binary sequences
of length 0 or 3 satisfy property M. (Compare with the
similar-looking recursive definition of strongly balanced
sequences.) For brevity, sequences satisfying property M
will be called M-sequences.

We shall restrict our attention to lengths n ≡ 0 mod 4.
As it turns out, there are binary M-sequences of length
n for every n = 4, 8, . . . , 96. In length 96, there remain
exactly two binary M-sequences. Quite surprisingly, nei-
ther of these two sequences can be extended to a se-
quence of length 100 still satisfying property M. Con-
sequently, there are no binary M-sequences X of length
n ≡ 0 mod 4 with n ≥ 100. Thus, the generating func-
tion gM (t) =

∑
X tl(X), where X runs over the set of all

balanced binary M-sequences of even length, and where
l(X) denotes the length of X, is a polynomial of degree

96, given by the following expression:

gM (t) = 2t96 + 8t92 + 10t88 + 14t84 + 22t80 + 22t76

+ 30t72 + 48t68 + 76t64 + 88t60 + 108t56 + 130t52

+ 174t48 + 226t44 + 222t40 + 198t36 + 172t32

+ 144t28 + 138t24 + 94t20 + 60t16 + 40t12 + 20t8

+ 6t4 + 1.

For definiteness, here are the two binary M-sequences
of length 96:

+ + + +−−−−−+ + +−−−−+−+ +−+−−+−
+ +−+−−+ +−−−−+−−−−−−+ + +−−+ +
+ + +−+ + + +−+ +−+−−+ + + +−−−−−−−
−− + + −−− + + − + −− + + + ++,

+ + + + +−−+−+ +−−−+ +−−−−−−−+−+
+ + +−−+−+ +−+ + + +−+ + + + +−−+ + +−
−−−−−+−−−−+ +−−+−+ +−+−−+−+ +
− + −−−− + + + −−−−− + + + + .

4.2 Universal Balanced Binary Sequences

In our second attempt, we seek universal balanced bi-
nary sequences, i.e., balanced binary sequences X =
(x1, . . . , xn) with the property that every initial seg-
ment (x1, . . . , xk), with k ≡ 0 or 3 mod 4, is also bal-
anced. There are exactly 6 universal balanced binary
sequences of length 11, namely +−+ + + +−+−+ +,
+ − + + + + − − + + −, + − + + + + − − + − +,
+ − + − + −− + − + −, + − + − + −−− + + +, and
+−+−+−−−+−−. As easily checked, by adding one
more ± sign at the end of each of these 6 sequences, we
find that there are no universal balanced binary sequences
in length 12 or higher.

5. RELATED OPEN PROBLEMS

We propose here a few open problems in the same spirit
as that of Steinhaus.

Problem 5.1. Are there infinitely many symmetric bal-
anced binary sequences, such as X = + + − + − + + ?
More generally, what is the set of lengths of all such
sequences? For instance, it may be shown that there
exist no symmetric balanced binary sequences of length
n ≡ 4 mod 8.

Problem 5.2. The balanced sequences X of length 12
and 20 given in [Steinhaus 63] have the property that
S(X) = 0, where S(X) is the sum of the entries in X.
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As a consequence, their derived sequences, of length 11
and 19, respectively, are also balanced. It would be of
great interest to know, more generally, whether for every
n divisible by 4, there exists a balanced binary sequence
X of length n satisfying S(X) = 0. We did find such
sequences in every length n = 4k with n ≤ 36. However,
we do not know whether they exist in higher lengths.
This problem was suggested by Michel Kervaire during a
phone conversation with one of the authors.

Problem 5.3. For every binary sequence X of length
n ≡ 1 or 2 mod 4, the sum S(∆X) of the entries of
the derived triangle ∆X of X is an odd number. It
is natural to ask whether the value S(∆X) = 1 (re-
spectively S(∆X) = −1) is attained for every n ≡ 1
or 2 mod 4. More generally, given any integer v, are
there infinitely many finite binary sequences X such that
S(∆X) = v ? We know at least that the answer is posi-
tive for v = −3,−2, 1, 2, 4, and 5, by taking suitable ini-
tial segments of some of the Qi and the Ri. The answer is
also positive for v = −1, with the sequence Q1[n]+− for
every n ≡ 11 mod 12. Still more generally, what can be
said about the generating function Gn(t) =

∑
X tS(∆X),

where X runs over the set of all binary sequences of
length n?

Problem 5.4. The notion of a balanced sequence makes
sense not only with entries ±1, but also more generally,
with entries taken from any (commutative) ring R. In-
deed, let X = (x1, . . . , xn) be a sequence with entries xi ∈
R for all i. The derived sequence ∂X = (y1, . . . , yn−1) of
X can still be defined by yi = xixi+1 for all 1 ≤ i ≤ n−1,
and this gives rise again to the derived triangle ∆X of
X, namely the collection of the ∂kX. Of course, the se-
quence X is said to be balanced if the sum of the entries
in ∆X is 0 ∈ R. Are there interesting infinite families of
balanced sequences in this more general setting?

For instance, let p be a prime number, let ζ be a primi-
tive pth root of unity, and let R = Z[ζ]. In a forthcoming
note, we shall show that, for p = 3, the ring R contains
infinitely many balanced sequences of powers of ζ. We do
not know whether this remains true for larger primes p.

The referee has suggested the following related prob-
lem. Let G be a finite group, even a nonabelian one.
Are there infinitely many sequences X with entries in G

whose derived triangle ∆X contains the same number of
occurrences of each group element?

Problem 5.5. This is really a family of problems. We
may consider higher-dimensional analogues of balanced

sequences, such as balanced binary matrices, balanced bi-
nary three-dimensional tensors, or balanced binary sim-
plices for example. In general, the concept of a balanced
object X will make sense whenever there is a suitable
notion of a derived object X �→ ∂X, with strictly de-
creasing sizes. The derived object should be constructed
by taking the product of the neighbours for each suitable
position in X, as is the case for sequences. A given object
X will then be said to be balanced whenever the sum of
the entries in the collection of its iterated derived objects
∂kX is zero.

Consider, for example, the following notion of a bal-
anced binary square matrix. If A = (ai,j)1≤i,j≤n is
a binary matrix of order n, define ∂A as the binary
matrix (bi,j)1≤i,j≤n−1 of order n − 1, where bi,j =
ai,jai,j+1ai+1,jai+1,j+1. The derived pyramid ∆A is then
defined as the collection of ∂kA for 0 ≤ k ≤ n − 1. Note
that, again, the total number of binary entries in ∆A is
even if and only if n is congruent to 0 or 3 mod 4. Are
there infinitely many balanced binary matrices?

Problem 5.6. Let X be an arbitrary binary sequence of
length n. Does there exist a balanced binary sequence Y

having X as an initial segment? (This problem is due to
Pierre Duchet.)

For instance, let Jn be the constant +1 sequence of
length n. What is the length j(n) of a shortest possible
balanced binary extension of Jn, if one exists at all? We
know by construction that j(100) ≤ 236.

6. HIGHLIGHTS OF THE PROOF OF THEOREM 2.1

We shall give here parts of the proof of Theorem 2.1.
There are two things to prove: first that the initial seg-
ments Qi[n] are balanced, for every n ≡ 0 mod 4, and
second that there are no other strongly balanced binary
sequences of length n ≡ 0 mod 4, provided n ≥ 92.

We shall restrict our attention to Q1. (The phe-
nomena are similar for Q2, Q3, and Q4.) The fact that
S(∆Q1[n]) = 0 for n ≡ 0 mod 4 will follow from a certain
periodic structure of the derived triangle ∆Q1[n]. This
structure then allows us to control which extensions of
Q1[n] remain strongly balanced, leading to the classifica-
tion statement.

This is already quite tedious. Consequently, we shall
not discuss Theorem 2.2 concerning sequences of length
n ≡ 3 mod 4. However, the phenomena are similar again,
and it should become clear that a complete proof can be
written in this case as well.

Recall from Section 2.2 that Q1 = + − + + (+ + − +
+−+−−−++)∞. Let n ≡ 0 mod 4 be a given positive
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FIGURE 1. Structure of the derived triangle of Q1[52].

integer. We claim that ∆Q1[n] has a periodic structure,
as illustrated in Figure 1.

More specifically, we will prove that, if n ≥ 16, there
are nine types of NE/SW diagonal strips of width 4, de-
noted A1, A2, A3, B1, B2, B3, C1, C2, and C3, such that
the derived triangle ∆Q1[n] is the periodic assembly of
T16 = ∆Q1[16] and of the components Ai, Bi, Ci, as de-
picted in Figure 1. Note that the components A1, B1,
and C1 appear on the top of the derived triangle, the
components A3, B3, and C3 on its SW side, and A2, B2,
and C2 occupy the rest of the triangle (except T16). The
sum of each component is as indicated (e.g., A1 has sum
S(A1) = 0, B1 has sum S(B1) = −4, and so on).

According to this structure of ∆Q1[n], we see that
each full NE/SW diagonal strip of width 4 on the right
of T16 has sum zero, and therefore S(∆Q1[n]) = 0, as
claimed.

In order to establish this structure, we need to in-
troduce some notation selecting certain specific parts of
these NE/SW diagonal strips.

6.1 Notation

• The term xq
p denotes the pth digit in the qth row of

∆Q1[n], for all 1 ≤ p ≤ n and 1 ≤ q ≤ n − p +
1. In particular, the first row of ∆Q1[n], i.e., Q1[n]
itself, is constituted by the elements x1

1, x
1
2, . . . , x

1
n,

and the left side of the triangle ∆Q1[n] consists of
x1

1, x
2
1, . . . , x

n
1 . The basic defining property of the

triangle ∆Q1[n] thus reads xq+1
p = xq

px
q
p+1.

• The term di denotes the ith NE/SW diagonal of
∆Q1[n]; i.e., di is the right side of the triangle
∆Q1[i], for all 1 ≤ i ≤ n;

• For i ≡ 1 mod 4 and j ≡ 1 mod 4, 1 ≤ j ≤ i,
T j

i denotes the following trapezoid:

x1
i x1

i+1 x1
i+2 x1

i+3

x2
i−1 x2

i x2
i+1 x2

i+2

x3
i−2 x3

i−1 x3
i x3

i+1

. . . .
. . . .

. . . .

xj
i+1−j xj

i+2−j xj
i+3−j xj

i+4−j

xj+1
i+1−j xj+1

i+2−j xj+1
i+3−j

xj+2
i+1−j xj+2

i+2−j

xj+3
i+1−j

• For i ≡ 1 mod 4, we set Si = T i
i . This special

trapezoid Si corresponds to the last four NE/SW
diagonals of ∆Q1[i + 3] and will be called a strip.

• For i ≡ 1 mod 4 and j ≡ 2 mod 4, 2 ≤ j ≤ i,
P j

i denotes the following parallelogram, of width 4
and length 12:

xj
i

xj+1
i−1 xj+1

i

xj+2
i−2 xj+2

i−1 xj+2
i

xj+3
i−3 xj+3

i−2 xj+3
i−1 xj+3

i

xj+4
i−4 xj+4

i−3 xj+4
i−2 xj+4

i−1

. . . .
. . . .

. . . .

xj+11
i−11 xj+11

i−10 xj+11
i−9 xj+11

i−8

xj+12
i−11 xj+12

i−10 xj+12
i−9

xj+13
i−11 xj+13

i−10

xj+14
i−11

A few remarks are in order. First observe that, be-
cause of the basic property xq+1

p = xq
px

q
p+1, the trapezoid

T j
i is completely determined by its top row and its left

side, namely by x1
i , x1

i+1, x1
i+2, x1

i+3 and x1
i , x2

i−1, . . . ,

xj
i+1−j . Now, this left side of T j

i is itself determined by
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∗ A1 := T 5
17 = + + − +

+ + − −
+ + − +

− + − −
− − − +

+ + −
+ −

−

∗ A2 := P 6
29 = +

− +
+ − +

+ − − −
+ − + +

− − − +
+ + + −

− + + −
+ − + −

+ − − −
+ − + +

− − − +
+ + −

+ −
−

FIGURE 2.

x1
i and by the right side of the adjacent trapezoid T j−4

i−4 .
We record these observations as follows.

Fact 6.1. The trapezoid T j
i is completely determined by

its top row and by the right side of T j−4
i−4 .

Similar remarks can be made about the parallelogram
P j

i , and we have:

Fact 6.2. The parallelogram P j
i is completely determined

by the bottom of the quadrilateral just above it and by
the right side of P j−4

i−4 .

Finally, given i ≡ 1 mod 4, let j be the unique ele-
ment in the set {1, 5, 9}, which is congruent to i mod 12.
Clearly, with these notations, the strip Si is the con-
catenation, in the NE/SW direction, of the trapezoid
T j

i and of the (i − j)/12 parallelograms P j+1
i , P j+13

i ,
. . ., P i−11

i .
We will denote the NE/SW concatenation by the sym-

bol +. With this notation, we have Si = T j
i + P j+1

i +
P j+13

i + . . . + P i−11
i .

We now define the 9 special components Ai, Bi, Ci,
where A1, B1, and C1 are trapezoids, whereas A2, B2,

C2, A3, B3, and C3 are parallelograms (see Figures 2–5).
We shall need to observe some resemblances between

some of these components, to be used with Facts 6.1
and 6.2.

• The SW edge of A1 (respectively B1, C1) is equal to
the SW edge of A2 (respectively B2, C2).

• The 12-tuple composed by the last 12 digits of the
right side of C1 is equal to the 12-tuple containing
the digits of the right side of C2.

We claim that the strips Si come in three different
types, depending on the class i ≡ 1, 5 or 9 mod 12. Here
is the general key formula we want to prove:

Claim 6.3. For all k ∈ N, k ≥ 1,

S12k+5 = A1 + (k − 1)A2 + A3,
S12k+9 = B1 + (k − 1)B2 + B3,

S12(k+1)+1 = C1 + (k − 1)C2 + C3.

As we will see, this results from the structure of the 9
components Ai, Bi, Ci and Facts 6.1 and 6.2, and may
be proved by induction on k.

To start the induction, one verifies the claim in
∆Q1[40] by direct observation.

Assume now that the claim is true for k = 1, 2. In
particular, we know that S37 = C1 + C2 + C3. We will
show that S41 = A1 + 2A2 + A3. By periodicity of the
sequence Q1, we know that the top of S41 is equal to
the top of A1. Thus, using Fact 6.1, we derive that the
trapezoid T 17

41 is equal to A1+A2. Indeed, it is completely
determined by the top of A1 and the right side of C1
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∗ A3 := P 6
17 = +

− +
+ − +

+ − − −
+ − + +

− − − +
+ + + −

− + + −
+ − + −

+ − − −
+ − + +

+ − − +
− + −

− −
+

∗ B1 := T 9
21 = + − + −

+ − − −
− − + +

− + − +
+ − − −

+ − + +
− − − +

+ + + −
− + + −

− + −
− −

+

∗ B2 := P 10
33 = +

+ −
+ − +

− − − +
+ + + −

− + + −
+ − + −

+ − − −
+ − + +

− − − +
+ + + −

− + + −
− + −

− −
+

∗ B3 := P 10
21 = +

+ −
+ − +

− − − +
+ + + −

− + + −
+ − + −

+ − − −
+ − + +

− − − +
+ + + −

+ + + −
+ + −

+ −
−

FIGURE 3.

(by the hypothesis for S37), and the same is true for
A1 + A2 in S29, by the hypothesis for S29. Thus, the
parallelogram just under A1 + A2 in S41 is completely
determined by the bottom of A2 and the right side of C2,
which is equal to the last 12 digits of the right side of
C1. According to the verifications we have just made for
the previous trapezoid, the same holds for A2, whence
Fact 6.2 implies: T 29

41 = A1 + A2 + A2.

Finally, similar arguments enable us to show that the
last parallelogram of S41 is equal to the last parallelogram
of S29, namely A3. Hence we get S41 = A1 + 2A2 + A3,
and we are done.

The case k ≥ 3 can be treated in the same way, by
induction.

Claim 6.4. For all n ≡ 1 mod 4, S(Sn) = 0.
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∗ C1 := T 13
25 = − − + +

+ + − +
− + − −

− − − +
− + + −

+ − + −
+ − − −

+ − + +
− − − +

+ + + −
− + + −

+ − + −
+ − − −

− + +
− +
−

∗ C2 := P 14
37 = +

− −
+ + +

− + + −
+ − + −

+ − − −
+ − + +

− − − +
+ + + −

− + + −
+ − + −

+ − − −
− + +

− +
−

FIGURE 4.

∗ C3 := P 14
25 = +

− −
+ + +

− + + −
+ − + −

+ − − −
+ − + +

− − − +
+ + + −

− + + −
+ − + −

− − − −
+ + +

+ +
+

FIGURE 5.

Using Claim 6.3, it suffices to compute the sum of
each of the nine components Ai, Bi, Ci and of the first
irregular strips.

For every n ≤ 37, we check the equality by direct
computations of sums in the triangle ∆Q1[40].

For n ≥ 41, we have to consider three possibilities,
according to Claim 6.3:

• if n = 12k + 1, k ≥ 2, then

S(Sn) = S(C1) + (k − 2)S(C2) + S(C3)

= −4 + (k − 2) × 0 + 4

= 0 ;

• if n = 12k + 5, k ≥ 2, then

S(Sn) =S(A1) + (k − 1)S(A2) + S(A3)

= 0 + (k − 1) × 0 + 0

= 0 ;

• if n = 12k + 9, k ≥ 2, then

S(Sn) = S(B1) + (k − 1)S(B2) + S(B3)

= −4 + (k − 1) × 0 + 4

= 0 .

This proves Claim 6.4. It follows that S(∆Q1[n]) = 0,
i.e., that Q1[n] is balanced, for every n ≡ 0 mod 4.

We now turn to the proof of the second part of The-
orem 2.1, namely that every strongly balanced binary
sequence of length n with n = 4m ≥ 92 is equal to Qi[n]
for some 1 ≤ i ≤ 4.
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∗ A′
1 = x1 x2 x3 x4

x1 x1x2 x2x3 x3x4

x1 x2 x1x3 x2x4

−x1 x1x2 x1x2x3 x1x2x3x4

−x1 − x2 x3 x4

x1 x1x2 −x2x3 x3x4

−x1 x2 −x1x3 −x2x4

x1 −x1x2 −x1x2x3 x1x2x3x4

x1 − x2 x3 − x4

x1 −x1x2 −x2x3 −x3x4

−x1 − x2 x1x3 x2x4

x1 x1x2 −x1x2x3 x1x2x3x4

−x1 x2 − x3 − x4

x1 −x1x2 −x2x3 x3x4

x1 − x2 x1x3 −x2x4

x1 −x1x2 −x1x2x3 −x1x2x3x4

−x1 − x2 x3 x4

x1x2 −x2x3 x3x4

−x1x3 −x2x4

x1x2x3x4

∗ A′
2 = x1

−x1 x2

x1 −x1x2 −x1x2x3

x1 − x2 x3 − x4

x1 −x1x2 −x2x3 −x3x4

−x1 − x2 x1x3 x2x4

x1 x1x2 −x1x2x3 x1x2x3x4

−x1 x2 − x3 − x4

x1 −x1x2 −x2x3 x3x4

x1 − x2 x1x3 −x2x4

x1 −x1x2 −x1x2x3 −x1x2x3x4

−x1 − x2 x3 x4

x1x2 −x2x3 x3x4

−x1x3 −x2x4

x1x2x3x4

FIGURE 6.

We do this by induction on n, starting at n = 92. In
order to construct all strongly balanced binary sequences
of length 92, we use the method of Section 3 implemented
in the given Mathematica functions. For example,
issuing the command strong[92] to Mathematica
will output exactly four sequences, namely Q1[92],
Q2[92], Q3[92], and Q4[92]. This computation uses
exact integer arithmetic only. This establishes the case
n = 92.

Let n ≥ 92 with n ≡ 0 mod 4. It remains to show
that, if X = Qi[n] for some i ∈ {1, 2, 3, 4}, then there is
a unique extension X ′ of X, of length n+4, such that X ′

is (simply, hence strongly) balanced, and X ′ = Qi[n+4].
(In fact, this statement already holds true for n ≥ 52 if
i = 1 or 3, and for n ≥ 64 if i = 2 or 4.)

Once again, we restrict our attention to Q1, so X =
Q1[n]. We denote an arbitrary extension of length n + 4
of X as the concatenation Y = Y (x1, x2, x3, x4) =
Xx1x2x3x4, where x1, x2, x3, and x4 are unknown bi-
nary digits satisfying x2

i = 1. Our task is to determine
those values of xi ∈ {±1} for which S(∆Y ) = 0.

In order to do this, we need to determine the structure
of the derived triangle ∆Y (x1, x2, x3, x4) in terms of the
unknown x1, x2, x3, and x4.

Claim 6.5. For every n ∈ N, n ≡ 0 mod 4, the last strip
Sn+1(x1, x2, x3, x4) of the triangle ∆(Q1[n]x1x2x3x4) has
the following structure:

Sn+1(x1, x2, x3, x4) =⎧⎨
⎩

C ′
1 + (k − 2)C ′

2 + C ′
3 if n = 12k

A′
1 + (k − 1)A′

2 + A′
3 if n = 12k + 4

B′
1 + (k − 1)B′

2 + B′
3 if n = 12k + 8,

where A′
1, B′

1, and C ′
1 are trapezoids and A′

2, B′
2, C ′

2,
A′

3, B′
3, and C ′

3 parallelograms. These components have
the same size as the corresponding components Ai, Bi,
and Ci, and are depicted in Figures 6–9.

Not surprisingly, A′
i, B

′
i, and C ′

i share similar prop-
erties as Ai, Bi, and Ci, i.e., the bottom of A′

1 (respec-
tively, B′

1, C
′
1) is equal to the bottom of A′

2 (respectively,
B′

2, C
′
2), and the 12-tuple composed by the last 12 digits
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∗ A′
3 = x1

−x1 x2

x1 −x1x2 −x1x2x3

x1 − x2 x3 − x4

x1 −x1x2 −x2x3 −x3x4

−x1 − x2 x1x3 x2x4

x1 x1x2 −x1x2x3 x1x2x3x4

−x1 x2 − x3 − x4

x1 −x1x2 −x2x3 x3x4

x1 − x2 x1x3 −x2x4

x1 −x1x2 −x1x2x3 −x1x2x3x4

x1 − x2 x3 x4

−x1x2 −x2x3 x3x4

x1x3 −x2x4

−x1x2x3x4

∗ B′
1 = x1 x2 x3 x4

x1 x1x2 x2x3 x3x4

−x1 x2 x1x3 x2x4

−x1 −x1x2 x1x2x3 x1x2x3x4

x1 x2 − x3 x4

x1 x1x2 −x2x3 −x3x4

−x1 x2 −x1x3 x2x4

x1 −x1x2 −x1x2x3 −x1x2x3x4

−x1 − x2 x3 x4

x1x2 −x2x3 x3x4

−x1x3 − x2x4

x1x2x3x4

∗ B′
2 = x1

x1 x2

x1 x1x2 −x1x2x3

−x1 x2 −x3 −x4

x1 −x1x2 −x2x3 x3x4

−x1 − x2 x1x3 −x2x4

x1 x1x2 −x1x2x3 −x1x2x3x4

x1 x2 − x3 x4

x1 x1x2 −x2x3 −x3x4

−x1 x2 −x1x3 x2x4

x1 −x1x2 −x1x2x3 −x1x2x3x4

−x1 − x2 x3 x4

x1x2 −x2x3 x3x4

−x1x3 −x2x4

x1x2x3x4

∗ B′
3 = x1

x1 x2

x1 x1x2 −x1x2x3

−x1 x2 −x3 −x4

x1 −x1x2 −x2x3 x3x4

−x1 − x2 x1x3 −x2x4

x1 x1x2 −x1x2x3 −x1x2x3x4

x1 x2 − x3 x4

x1 x1x2 −x2x3 −x3x4

−x1 x2 −x1x3 x2x4

x1 −x1x2 −x1x2x3 −x1x2x3x4

x1 − x2 x3 x4

−x1x2 −x2x3 x3x4

x1x3 −x2x4

−x1x2x3x4

FIGURE 7.

of the right side of C ′
1 is equal to the 12-tuple contain-

ing the digits of the right side of C ′
2. Thus, the proof of

Claim 6.5 is similar to that of Claim 6.3.
We are now in a position to determine the sum

S(∆Q1[n]x1x2x3x4) in terms of the xi. Since we
already know that S(∆Q1[n]) = 0, it follows that
S(∆Q1[n]x1x2x3x4) = S(Sn+1(x1, x2, x3, x4)). From
this remark and Claim 6.5, we have, for all n ≥ 36:

S(∆Q1[n]x1x2x3x4) =⎧⎨
⎩

S(C ′
1) + (k − 2)S(C ′

2) + S(C ′
3) if n = 12k

S(A′
1) + (k − 1)S(A′

2) + S(A′
3) if n = 12k + 4

S(B′
1) + (k − 1)S(B′

2) + S(B′
3) if n = 12k + 8 .

Writing n = 12k + r with r ∈ {0, 4, 8}, we shall use
the notation

wk,r(x1, x2, x3, x4) = S(∆Q1[n]x1x2x3x4).
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∗ C ′
1 = x1 x2 x3 x4

−x1 x1x2 x2x3 x3x4

x1 − x2 x1x3 x2x4

x1 −x1x2 −x1x2x3 x1x2x3x4

x1 − x2 x3 − x4

−x1 −x1x2 −x2x3 −x3x4

−x1 x2 x1x3 x2x4

−x1 −x1x2 x1x2x3 x1x2x3x4

x1 x2 − x3 x4

−x1 x1x2 −x2x3 −x3x4

x1 −x2 −x1x3 x2x4

−x1 −x1x2 x1x2x3 −x1x2x3x4

−x1 x2 − x3 − x4

−x1x2 −x2x3 x3x4

x1x3 −x2x4

−x1x2x3x4

∗ C ′
2 = −x1

x1 x2

−x1 x1x2 x1x2x3

x1 − x2 x3 − x4

−x1 −x1x2 −x2x3 −x3x4

−x1 x2 x1x3 x2x4

−x1 −x1x2 x1x2x3 x1x2x3x4

x1 x2 − x3 x4

−x1 x1x2 −x2x3 −x3x4

x1 −x2 −x1x3 x2x4

−x1 −x1x2 x1x2x3 −x1x2x3x4

−x1 x2 − x3 − x4

−x1x2 −x2x3 x3x4

x1x3 −x2x4

−x1x2x3x4

FIGURE 8.

∗ C ′
3 = −x1

x1 x2

−x1 x1x2 x1x2x3

x1 − x2 x3 − x4

−x1 −x1x2 −x2x3 −x3x4

−x1 x2 x1x3 x2x4

−x1 −x1x2 x1x2x3 x1x2x3x4

x1 x2 − x3 x4

−x1 x1x2 −x2x3 −x3x4

x1 −x2 −x1x3 x2x4

−x1 −x1x2 x1x2x3 −x1x2x3x4

x1 x2 − x3 − x4

x1x2 −x2x3 x3x4

−x1x3 −x2x4

x1x2x3x4

FIGURE 9.

Computing explicitly S(A′
i), S(B′

i), S(C ′
i) from the

above figures, we get:

wk,0(x1, x2, x3, x4) = 5x1 + x2(−1 + x1)

+ x3(1 − x1 + x2 − 2x1x2) + x4(1 + x2 + x3 + 3x1x2x3)

+ k[−4x1 + 2x2(1 − x1) + x3(−1 + x1 − 3x2 + 3x1x2)

+ x4(−1 + x2 − x3 − x1x2x3)] ,

wk,4(x1, x2, x3, x4) = 3x1 + x2(1 + x1)

+ x3(2 + 2x1 + x1x2) + 2x4(1 + x3)

+ k[4x1 − 2x2(1 + x1) + x3(1 + x1 − 3x2 − 3x1x2)

+ x4(−1 − x2 + x3 + x1x2x3)] ,

wk,8(x1, x2, x3, x4) = 3x1 + x2(3 − x1)

+ x3(1 + x1 − x2) + x4(3 + x2 + x3 − x1x2x3)

+ k[4x1 + 2x2(1 + x1) + x3(−1 − x1 − 3x2 − 3x1x2)

+ x4(1 − x2 + x3 − x1x2x3)] .

Successively replacing (x1, x2, x3, x4) by each of the
16 binary sequences of length 4, we obtain 48 polynomial
functions of degree 1 in k. We must then determine the
zeroes of these polynomials.

Case 1. r = 0, i.e., we consider sequences of the
type Q1[12k]x1x2x3x4. We obtain the following values
of wk,0(x1, x2, x3, x4) = S(∆Q1[12k]x1x2x3x4):

wk,0(1, 1, 1, 1) = 10 − 6k
wk,0(1, 1, 1,−1) = −2 − 2k
wk,0(1, 1,−1, 1) = 4 − 2k
wk,0(1, 1,−1,−1) = 8 − 6k
wk,0(1,−1, 1, 1) = 4 − 6k
wk,0(1,−1, 1,−1) = 8 − 2k
wk,0(1,−1,−1, 1) = 6 − 6k
wk,0(1,−1,−1,−1) = 2 − 2k
wk,0(−1, 1, 1, 1) = −2
wk,0(−1, 1, 1,−1) = −2
wk,0(−1, 1,−1, 1) = −8 + 16k
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wk,0(−1, 1,−1,−1) = −16 + 16k
wk,0(−1,−1, 1, 1) = 0
wk,0(−1,−1, 1,−1) = −8 + 8k
wk,0(−1,−1,−1, 1) = −6 − 4k
wk,0(−1,−1,−1,−1) = 2 − 4k.

Given that wk,0(−1,−1, 1, 1) = 0, independently of
k, we see that the sequence Q1[12k] − − + + is (sim-
ply, hence strongly) balanced. But, as easily checked,
Q1[12k]−−++ = Q1[12k+4]. The 15 other polynomials
may vanish for small values of k, yielding “exotic” short
strongly balanced sequences. However, direct inspection
reveals that none of these other functions vanishes for
k ≥ 5.

Consequently, Q1[12k + 4] is the unique balanced ex-
tension of length 12k + 4 of Q1[12k], provided k ≥ 5.
Note that, in the context of this proof, we have k ≥ 7 in
fact, since we are assuming n ≥ 92.

Case 2. r = 4, i.e., we consider the binary sequences
Q1[12k + 4]x1x2x3x4. We obtain the following values of
wk,4(x1, x2, x3, x4):

wk,4(1, 1, 1, 1) = 14 − 4k
wk,4(1, 1, 1,−1) = 6 − 4k
wk,4(1, 1,−1, 1) = 0
wk,4(1, 1,−1,−1) = 8k
wk,4(1,−1, 1, 1) = 8 + 16k
wk,4(1,−1, 1,−1) = 16k
wk,4(1,−1,−1, 1) = −2
wk,4(1,−1,−1,−1) = −2
wk,4(−1, 1, 1, 1) = −6k
wk,4(−1, 1, 1,−1) = −8 − 2k
wk,4(−1, 1,−1, 1) = −2 − 6k
wk,4(−1, 1,−1,−1) = −2 − 2k
wk,4(−1,−1, 1, 1) = 2 − 2k
wk,4(−1,−1, 1,−1) = −6 − 6k
wk,4(−1,−1,−1, 1) = −4 − 6k
wk,4(−1,−1,−1,−1) = −4 − 2k.

Here we have wk,4(1, 1,−1, 1) = 0, independently of
k. Thus, the sequence Q1[12k + 4] + + − + is (simply,
hence strongly) balanced. Again, one easily checks that
Q1[12k+4]++−+ = Q1[12k+8]. The other 15 functions
do not vanish for k ≥ 2.

Therefore, Q1[12k+8] is the unique balanced extension
of length 12k + 8 of Q1[12k + 4], provided k ≥ 2.

Case 3. r = 8, i.e., we consider the binary se-
quences Q1[12k + 8]x1x2x3x4. Here are the values of
wk,8(x1, x2, x3, x4):

wk,8(1, 1, 1, 1) = 10
wk,8(1, 1, 1,−1) = 2
wk,8(1, 1,−1, 1) = 8 + 16k
wk,8(1, 1,−1,−1) = 16k
wk,8(1,−1, 1, 1) = 8 + 8k
wk,8(1,−1, 1,−1) = 0
wk,8(1,−1,−1, 1) = −2 − 4k
wk,8(1,−1,−1,−1) = −2 − 4k
wk,8(−1, 1, 1, 1) = 6 − 2k
wk,8(−1, 1, 1,−1) = −6 − 6k
wk,8(−1, 1,−1, 1) = 4 − 6k
wk,8(−1, 1,−1,−1) = −2k
wk,8(−1,−1, 1, 1) = −4 − 2k
wk,8(−1,−1, 1,−1) = −8 − 6k
wk,8(−1,−1,−1, 1) = −6 − 2k
wk,8(−1,−1,−1,−1) = −10 − 6k.

Again, wk,8(1,−1, 1,−1) = 0, but none of the other 15
functions vanish for k ≥ 4. Moreover, Q1[12k + 8] +−+
− = Q1[12k + 12]. Therefore, Q1[12k + 12] is the unique
balanced extension of length 12k + 12 of Q1[12k + 8] for
k ≥ 4.

With the above three cases, we have verified that, for
every n ≡ 0 mod 4 with n ≥ 52, the sequence Q1[n]
admits a unique balanced binary extension of length n+4,
namely Q1[n + 4].

Similar phenomena as those described here for Q1 oc-
cur for the other sequences Q2, Q3, Q4, R1, . . . , R12 and
for the supplementary strongly balanced sequences de-
scribed in Theorem 2.2. This explains why, after a some-
what chaotic initial behavior, the set SB(n) of strongly
balanced binary sequences of length n ultimately be-
comes periodic.
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