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We generate extensions of Q with Galois group SL3(F2) giving
rise to three-dimensional mod 2 Galois representations with suf-
ficiently low level to allow the computational testing of a conjec-
ture of Ash, Doud, Pollack, and Sinnott relating such represen-
tations to mod 2 arithmetic cohomology. We test the conjecture
for these examples and offer a refinement of the conjecture that
resolves ambiguities in the predicted weight.

1. INTRODUCTION AND STATEMENT
OF THE CONJECTURE

The purpose of this paper is to test the main conjecture
of [Ash et al. 02] in characteristic 2. This conjecture
(which we will refer to as the Ash-Doud-Pollack-Sinnott
or ADPS conjecture) asserts the existence of Hecke coho-
mology eigenclasses in the mod p cohomology of certain
arithmetic subgroups of GLn attached to n-dimensional
mod p representations of the absolute Galois group of
Q. The conjecture essentially boils down to Serre’s con-
jecture if n = 2. In [Ash et al. 02] the conjecture was
tested in hundreds of three-dimensional examples with p

an odd prime. Because the computer programs at that
time couldn’t handle it, the case of p = 2 was not treated
in that paper.

In an earlier paper [Ash and McConnell 92], mod 2
cohomology was computed for GL3 up to level 151, but
only for trivial coefficient modules. All the Galois rep-
resentations into SL3(F2) attached to these cohomology
eigenclasses that we were able to find at that time had
reducible image. Until the research reported upon here it
was an open question whether this would always be the
case, at least for trivial coefficients. We now see that lev-
els up to 151 were simply too small to provide examples
of Galois representations with image SL3(F2).

In the current paper we restrict ourselves to Galois
representations whose image is the full group SL3(F2). To
generate examples of such representations, we searched
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through parameterized families of polynomials with Ga-
lois group equal to SL3(F2) (referred to from now on
as SL3(F2)-polynomials) published by Malle [Malle 00]
to find those for which the ADPS conjecture predicts
a corresponding Hecke cohomology class with a level
small enough to allow feasible computations. In practice,
this meant keeping the level below 500. To do this, we
excluded representations that were wildly ramified out-
side 2.

In the end we tested 27 polynomials, including 7 that
were suggested by the referee. Our results are tabu-
lated in Section 5 below. Concisely, one may say that
the ADPS conjecture was again vindicated by the exper-
imental evidence. In particular, we shall see that coho-
mology classes with trivial coefficients can be attached
to irreducible SL3(F2)-representations.

We now give the the precise set-up of the ADPS con-
jecture in the special case of a Galois representation with
irreducible image in GLn(F2).

Let Γ0(N) be the subgroup of matrices in SLn(Z)
whose first row is congruent to (∗, 0, . . . , 0) modulo N .
Define SN to be the subsemigroup of integral matrices
in GLn(Q) satisfying the same congruence condition and
having positive determinant relatively prime to N .

Let H(N) denote the F̄2-algebra of double cosets
Γ0(N)SNΓ0(N). Then H(N) is a commutative algebra
that acts on the cohomology and homology of Γ0(N) with
coefficients in any F̄2[SN ] module. When a double coset
is acting on cohomology or homology, we call it a Hecke
operator. Clearly, H(N) contains all double cosets of the
form Γ0(N)D(�, k)Γ0(N), where � is a prime not dividing
N , 0 ≤ k ≤ n, and

D(�, k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
�

. . .
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the diagonal matrix with the first n−k diagonal entries
equal to 1 and the last k diagonal entries equal to �.
When we consider the double coset generated by D(�, k)
as a Hecke operator, we call it T (�, k).

Definition 1.1. Let V be an H(2N)-module, and suppose
that v ∈ V is a simultaneous eigenvector for all T (�, k)
and that T (�, k)v = a(�, k)v with a(�, k) ∈ F̄2 for all
� � |2N prime and all 0 ≤ k ≤ n. If

ρ : GQ → GLn(F̄2)

is a representation unramified outside 2N , and
n∑

k=0

(−1)k�k(k−1)/2a(�, k)Xk = det(I − ρ(Frob�)X)

for all � � |2N , then we say that ρ is attached to v (or that
v corresponds to ρ).

Now let
ρ : GQ → GLn(F̄2)

be a continuous irreducible representation. We will define
a level associated to ρ exactly as Serre does in [Serre 87].

For each prime q �= 2 fix an embedding of GQq
into GQ

as the decomposition group of a prime above q and, for
i ≥ 0, let gi = |ρ(Gq,i)|, where the Gq,i are the ramifica-
tion subgroups of GQq

with the lower numbering. Let M

be an n-dimensional F̄2-vector space and choose a basis
of M so that GQ acts on M via ρ in the natural way.
Define

nq =
∞∑

i=0

gi

g0
dim M/Mρ(Gq,i).

The sum defining nq is actually a finite sum, since even-
tually the ρ(Gq,i) are trivial.

Definition 1.2. With ρ as above, define the level

N(ρ) =
∏
q �=2

qnq .

Note that this product is actually finite, since ρ is ram-
ified at only finitely many primes and nq is 0 at primes
where ρ is unramified.

Before stating the conjecture, we note that there are
exactly four irreducible representations of GL3(F2) over
F̄2. These are the trivial representation, the three-
dimensional standard representation and its dual, and
the eight-dimensional Steinberg representation. When
thought of as restrictions to GL3(F2) of highest weight
representations of GL3(F̄2) these are the representa-
tions with highest weights (0, 0, 0), (1, 0, 0), (1, 1, 0), and
(2, 1, 0), respectively. We denote the representation with
highest weight (a, b, c) by F (a, b, c).

We may now state the ADPS conjecture for p = 2
where the image of ρ is SL3(F2):

Conjecture 1.3. Let ρ : GQ → SL3(F2) be a continuous
surjective Galois representation. Further, let N = N(ρ)
be the level of ρ. Then for at least one irreducible rep-
resentation V of GL3(F2), ρ is attached to a cohomology
eigenclass in H∗(Γ0(N), V ).
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Given a Galois representation ρ, the full ADPS con-
jecture predicts not only a level but also a nebentype
character and a collection of weights (i.e., irreducible co-
efficient modules). When ρ takes values over F2, however,
the nebentype is automatically trivial, and the weight is
completely undetermined because of the ambiguity of the
“prime” notation (see [Ash et al. 02] for the definitions of
nebentype and “prime” notation, which we will not need
again in this paper.) Below we discuss which weights are
observed to provide the predicted cohomology, and we
refine the conjecture in this context.

In practice, we can only check the equality of Hecke
and characteristic polynomials that is required by the
definition of “attached” for primes � up to some bound.
For this paper we checked all � ≤ 47. When these polyno-
mials coincide for all � ≤ 47 we shall say that the Galois
representation “appears” to be attached to the Hecke co-
homology eigenclass.

Our paper is organized as follows: in Section 2 we
present our predictions regarding which of the four
weights to expect for a given Galois representation. In
Section 3 we discuss Malle’s parametrized families of
SL3(F2)-polynomials and how we sifted through them to
find ones that predicted small levels. In Section 4 we
discuss the methods used to compute the mod 2 arith-
metic cohomology for Γ0(N) ⊂ GL3(Z). In Section 5 we
present our results.

2. REFINING THE WEIGHT PREDICTION

Given a Galois representation ρ : GQ → SL3(F̄2), the
ADPS conjecture does not predict for which of the four
possible weights we should find a corresponding Hecke
eigenclass. After reviewing about half the data from our
calculations, we saw how to adapt Serre’s discussion of
peu ramifée versus très ramifée from [Serre 87] to re-
fine the ADPS conjecture in the special case ρ : GQ →
SL3(F2) to predict exactly which weights to expect, de-
pending only on ρ|I2. This refinement then correctly pre-
dicted the weights for the remaining data. There are,
nonetheless, some cases of the refinement that did not
occur in our data. We indicate which these are in our
discussion below—our predictions for these cases remain
unsupported guesses.

Let’s arrange the four possible weights in a diamond
pattern:

F (2, 1, 0)

F (1, 1, 0) F (1, 0, 0)

F (0, 0, 0)

Note that the two weights in the middle are interchanged
by the outer automorphism τ of SL3(F2) given by the
composition of transpose-inverse and the long Weyl ele-
ment. (So τ preserves the Borel subgroup of upper tri-
angular matrices.) The other two weights are self-dual.
We set ρτ = τ ◦ ρ.

It follows from a duality result [Ash et al. 02, Theorem
3.10] that if either representation ρ or ρτ is attached to a
cohomology class with weight F (0, 0, 0) or F (2, 1, 0) then
the other representation is as well. Likewise if ρ or ρτ

is attached to a cohomology class with weight F (1, 0, 0)
then the other representation is attached to a class with
weight F (1, 1, 0), and conversely.

When our refined conjecture predicts any weight it
also predicts all the weights above it in the diamond. This
seems to leave us with four possible sets of weights. Two
of these, however, cannot be distinguished without differ-
entiating between ρ and ρτ . While this can be achieved
by comparing the traces of images of elements of order 7
in GQ, it would require making explicit our choice of ρ.
Rather than do this (say by looking at actual permu-
tations of the roots of the SL3(F2)-polynomial defining
ρ) we consider ρ and ρτ together and make one of the
following three predictions:

I both ρ and ρτ have a class attached with every pos-
sible weight.

II ρ has a class attached with weight F (1, 0, 0) or
F (1, 1, 0) and ρτ has a class attached with the other
weight. Both ρ and ρτ have a class attached with
weight F (2, 1, 0).

III ρ and ρτ have a class attached with weight F (2, 1, 0).

We explain below how to predict I, II, or III based
on ρ|I2 . In each case we’ve tested, the weights we’ve
predicted turn out to be precisely those that have classes
with the corresponding ρ or ρτ attached. In a number
of cases these classes appeared with multiplicity greater
than 1, but we have no explanation for this.

Recall that the niveau of ρ is defined to be the smallest
integer m such that ρ on tame inertia factors through
F̄×

2 → F×
2m . In our case, if the ramification index e of the

prime 2 in the fixed field of the kernel of ρ factors as 2bt,
with t odd, then the niveau is 1, 2, 3 when t is 1, 3, 7,
respectively.

The representation ρ has niveau 1 if and only if ρ(I2)
is a 2-group. If ρ does not have niveau 1 we predict case I.
If ρ does have niveau 1 we will base our prediction on the
nature of the ramification of certain quadratic extensions
associated to ρ.
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Let E/Q2 be an unramified extension, and let
E(

√
b)/E be a ramified quadratic extension. We say

E(
√

b) is “peu ramifée” if v2(b) is even, or equivalently if
b can be taken to be a unit. We say it is “très ramifée”
otherwise.

Let D2 be a decomposition group at a prime above 2
and set K to be the fixed field of the kernel of ρ|D2 , a
finite extension of Q2. Let E be the maximal unramified
subextension of K/Q2, so that the Galois group of K/E

is ρ(I2) where I2 = G2,0.
Since the 2-Sylow subgroup of SL3(F2) is isomorphic

to the dihedral group D4 of size 8, if ρ(I2) is a 2-group
it must be isomorphic to a subgroup of D4.

1. If ρ(I2) ∼= C2 has size 2, then K itself is a rami-
fied quadratic extension of E. We say that ρ is peu
ramifée or très ramifée according to which K/E is.
This case did not arise in any of our examples.

2. If ρ(I2) ∼= C4 is cyclic of size 4 there is a unique
quadratic subextension L of K/E. Then L/E is
ramified and we say that ρ is peu ramifée or très
ramifée according to which L/E is. Our only exam-
ples turned out to be très ramifée.

3. If ρ(I2) ∼= V4 is isomorphic to the Klein four group,
then K/E has three quadratic subextensions, all of
which are ramified. These extensions are obtained
by adjoining the square roots of b1, b2, and b1b2 to
E so they are either all peu ramifée or exactly two
of them are très ramifée. In the former case we say
that ρ is peu-peu ramifée and in the later case we
say that ρ is peu-très ramifée. Our only example
turned out to be peu-peu ramifée.

We can get further information in this case by look-
ing at ρ(D2), which can be isomorphic to S4, A4,D4,
or V4. If ρ(D2) ∼= S4 or A4, then the three elements
of order 2 in ρ(I2) are all conjugate in ρ(D2). Thus
the three quadratic subextensions of K/E are all iso-
morphic (over Q2, but not over E). Thus if any of
them are très ramifée they must all be très ramifée.
This isn’t possible, so we conclude that in this case
ρ is peu-peu ramifée.

If ρ(D2) ∼= V4, then E = Q2. So the three ram-
ified quadratic subextensions of K/E are actually
quadratic extensions of Q2. The only peu ramifée
extensions of Q2 are Q2(

√
3) and Q2(

√
7). If K/Q2

has these as subfields, then the third quadratic sub-
field must be Q2(

√
21) = Q2(

√
5) which is unram-

ified. This contradicts the fact that Q2 = Kρ(I2),

and so we conclude that in this case ρ is peu-très
ramifée.

If ρ(D2) ∼= D4 (unfortunate clash of notations), then
ρ can be peu-peu ramifée or peu-très ramifée.

4. If ρ(I2) ∼= D4 is isomorphic to the dihedral group of
size 8, then since ρ(I2) � ρ(D2) but D4 ��S4 we see
that ρ(D2) = ρ(I2). Thus E = Q2. Now ρ(I2) has
two subgroups isomorphic to V4; these are conjugate
under τ . Let L1 and L2 be the fixed fields of these
two subgroups. So L1 and L2 are ramified quadratic
extensions of Q2. If both L1/Q2 and L2/Q2 are peu
ramifée then, as above, K would contain the unrami-
fied quadratic field Q2(

√
5). So at least one of L1 and

L2 is très ramifée. We say ρ is peu-très ramifée if one
of L1/E and L2/E is peu ramifée and the other is
très ramifée, and ρ is très-très ramifée if both L1/E

and L2/E are très ramifée. We have examples here
of both types.

We can now make our desired predictions:

1. If ρ is peu ramifée or peu-peu ramifée, we predict
case I.

2. If ρ is peu-très ramifée, we predict case II.

3. If ρ is très ramifée or très-très ramifée, we predict
case III.

We conclude this section by explaining how we de-
termined into which of these cases the Galois represen-
tations in our table fall. We will work through three
examples, one with ρ(I2) ∼= V4, one with ρ(I2) ∼= C4 and
one with ρ(I2) ∼= D4. All of our niveau 1 examples can
be handled using one of these three discussions. In these
discussions we make use of the p-adic fields calculator
on the Jones/Roberts web page [Jones and Roberts 03],
which we denote by J/R.

Example 2.1. The representation ρ corresponding to
polynomial number 2, of level 181. We use the local fields
calculator (J/R) to identify the field K as the splitting
field over Q2 of the quartic polynomial x4 + 6x2 + 10.
We thus see that ρ(D2) ∼= D4. The calculator also tells
us that ρ(I2) ∼= D4 (so K is totally ramified). Further,
we are given both the discriminant subfield of K and the
unique quadratic subfield of the quartic extension of Q2

generated by a root of f . Looking at the subgroup lattice
of D4 and using some elementary Galois theory it is easy
to see that these are the two quadratic extensions, called
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L1 and L2 above, which determine the type of ramifica-
tion of ρ. In this case the two fields are Q2(

√−1) and
Q2(

√
10). Since one of these is peu ramifée and the other

is très ramifée, ρ is peu-très ramifée. The 14 other ex-
amples with ρ(I2) ∼= D4 are handled in exactly the same
manner.

Example 2.2. The representation ρ corresponding to
polynomial number 12, of level 313. Here J/R tells
us that K is the splitting field of x4 + 8x + 104, that
ρ(D2) ∼= D4, and that ρ(I2) ∼= C4 is cyclic of size 4.
Of course, the field E = Kρ(I2) must be Q2(

√
5) since

it is an unramified quadratic extension of Q2. Further
we are told by J/R that the fields L1 and L2 fixed by
the two subgroups of D4 isomorphic to V4 are Q2(

√−10)
and Q2(

√−2). Again looking at the subgroup lattice
of D4 we see that the quadratic subfield L of K/E

is L1L2=Q2(
√−10,

√−2) = Q2(
√

5,
√−2) = E(

√−2).
Thus K/E is très ramifée, and so ρ is très ramifée.

Example 2.3. The representation ρ corresponding to
polynomial number 19, of level 383. This time J/R tells
us that ρ(D2) ∼= A4 and ρ(I2) ∼= V4. Thus as we’ve seen
above ρ must be peu-peu ramifée.

3. FINDING EXAMPLES

Our goal is to check the ADPS conjecture for p = 2
for Galois representations with image SL3(F2). To do
so, we need to produce polynomials over Q whose split-
ting fields have Galois group SL3(F2). Noting that
SL3(F2) ∼= PSL2(F7), we used the four parameterized
families of septic polynomials in Z[x] with Galois group
PSL2(F7) found in Malle’s paper [Malle 00]. We used
PARI/GP and Theorem 3.2 below to search among these
polynomials for ones with levels low enough for our com-
putational methods (< 500).

Theorem 3.2 allows us to easily calculate the level
of a tamely ramified representation. We also, however,
computed the levels of several wildly ramified represen-
tations. Since wildly ramified primes tend to appear in
the level with much higher exponents than tamely rami-
fied primes, the wildly ramified representations we looked
at all had levels much higher than 500. We therefore
restricted our search to number fields ramified only at
primes not equal to 3 or 7. This allowed us to use The-
orem 3.2 and PARI’s nfdisc command to determine the
level and throw out those with level above 500.

In searching the polynomial families, for both three-
parameter families we varied all three parameters over

the integers between −30 and 30, and for the four-
parameter family all four parameters varied over the in-
tegers between −20 and 20. Perhaps surprisingly, even
large parameter values sometimes yielded levels less than
500, but the yield became sparser as the parameter val-
ues increased in absolute value. In fact, many different
sets of parameter values, both from the same family and
from different families, often gave different polynomials
that generated the same field. The higher parameter val-
ues often just yielded repeats of fields already generated
by polynomials with smaller parameter values. In the
one-parameter family, we ranged the parameters from
−10, 000 to 10, 000 and tried rational values of height
≤ 50 but no polynomials determining fields with levels
≤ 500 were found.

Since for each SL3(F2)-field there are two nonisomor-
phic septic subfields fixed by the two index 7 parabolic
subgroups, there will always be two distinct degree 7 sub-
fields with the same SL3(F2) splitting field. This explains
why we often found two distinct septic fields ramified
at the same primes and, in fact, with the same split-
ting field. In other cases, our search did not locate the
“twin.” (Note that we’ve only listed one polynomial for
each distinct splitting field in Table 3, but in Tables 1
and 2, we’ve included one polynomial for each distinct
septic subfield.)

It seems likely that we would find even more fields
if we expanded the parameter search space further. In-
deed, the referee kindly suggested seven additional poly-
nomials whose levels are under 500, including one which
is (tamely) ramified at 7. We have verified our refined
conjecture for the corresponding representations, and in-
clude these polynomials in our tables.

Now let ρ : GQ → SL3(F2) be a surjective Galois rep-
resentation, and suppose that ρ is not wildly ramified at
any odd primes. We present the results that allow us to
compute the level of ρ in terms of a degree-seven subfield
of the fixed field of ρ.

Theorem 3.1. Let f be a degree-seven monic integral poly-
nomial. Let F/Q be the field extension generated by a
root of f . Let K be the Galois closure of F , and assume
Gal(K/Q) ∼= SL3(F2). Let q be an odd rational prime,
tamely ramified in K. Let ρ : GQ → SL3(F2) be a Galois
representation whose fixed field is K. Let νq be the ex-
ponent of q in the Serre conductor of ρ and let N be the
level predicted by the ADPS conjecture. If e = |Iq|, then
νq, and therefore the exact power of q dividing N , can be
determined as follows.
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1. If e = 2, then νq = 1. Hence q ‖ N .

2. If e = 3, then νq = 2. Hence q2 ‖ N .

3. If e = 4, then νq = 2. Hence q2 ‖ N .

4. If e = 7, then νq = 3. Hence q3 ‖ N .

Proof: Recall that for p = 2, the level predicted by the
ADPS conjecture is

N =
∏

q �= 2
q|disc(F )

qνq ,

where

νq =
∞∑

k=0

|Ik|
|I0| (3 − dim(F3

2)
Ik).

Here I0 = Iq ⊃ I1 ⊃ I2 ⊃ · · · are the higher inertia
groups. In the tame case, Ik = 0 if k > 0, so

νq = (3 − dim(F3
2)

Iq ).

Therefore, to find νq we only need to find the dimen-
sion of the fixed space of Iq (i.e., the dimension of the
1-eigenspace of a generator g of Iq) for each possible in-
ertial degree e.

1. Assume e = 2. Up to conjugation,

g =

⎛
⎝

1 1 0
0 1 0
0 0 1

⎞
⎠

in SL3(F2). So the dimension of the fixed space of
Iq is 2, and therefore νq = 1, and q ‖ N .

2. Assume e = 4. Up to conjugation,

g =

⎛
⎝

1 1 0
0 1 1
0 0 1

⎞
⎠

in SL3(F2). So the dimension of the fixed space of
Iq is 1, and therefore νq = 2, and q2 ‖ N .

3. Assume e = 3. Up to conjugation,

g =

⎛
⎝

0 1 0
1 1 0
0 0 1

⎞
⎠

in SL3(F2). So the dimension of the fixed space of
Iq is 1, and therefore νq = 2, and q2 ‖ N .

4. Assume e = 7. An element of order 7 in SL3(F2) has
seventh roots of unity as eigenvalues. After a base
change to F8/F2 and letting σ generate the Galois
group of F8/F2, we find that

g =

⎛
⎝

ζ7 0 0
0 σ(ζ7) 0
0 0 σ2(ζ7)

⎞
⎠ ,

for some nontrivial seventh root of unity ζ7. The
group generated by this element has trivial fixed
space on F3

8 , so νq = 3. Hence, q3 ‖ N .

The following theorem was pointed out to us by the
referee, for whose help we are grateful.

Theorem 3.2. Let f , F , K, and ρ be as in Theorem 3.1,
and suppose ρ is not wildly ramified at any odd primes.
Then the level N(ρ) of ρ predicted by the ADPS conjec-
ture is the square root of the odd part of the discriminant
d(F ).

Proof: Let q be an odd rational prime that is ramified
in K. Then since q is tamely ramified the inertia group
Iq ⊂ Gal(K/Q) is cyclic. Let σ be a generator of Iq, and
let l1, . . . , ln be sizes of the orbits of σ on the roots of f .
It is well known that the precise power of q dividing d(F )
is

∑n
i=1(li − 1).

Moreover, the sizes of the orbits of σ on the roots of
f are determined by the order e of σ. We have

1. if e = 2, then σ has two orbits of size 2 and three
fixed points. Thus q2 ‖ d(F ).

2. if e = 3, then σ has two orbits of size 3 and one fixed
point. Thus q4 ‖ d(F ).

3. if e = 4, then σ has one orbit of size 4, one orbit of
size 2, and one fixed point. Thus q4 ‖ d(F ).

4. if e = 7, then σ has a single orbit, of size 7. Thus
q6 ‖ d(F ).

Comparing this with Theorem 3.1 we see that the ex-
act power of q dividing d(F ) is the square of the exact
power of q dividing N(ρ). This proves the theorem.

4. COMPUTING THE COHOMOLOGY

Our computations of the mod 2 arithmetic cohomology
of the Γ0(N) were carried out using programs based on
those written for the calculations in [Ash et al. 02]. We
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will review the basic approach taken by the original pro-
grams (see [Ash et al. 02, Section 8] for more details)
and then mention a few of the particular adaptations we
made in the new version.

In fact, we do not compute cohomology groups
at all, but rather work with the homology groups
H∗(Γ0(N),M) to which they are naturally dual. More-
over, we only compute H3. This is simpler than comput-
ing H1 or H2 since the virtual cohomological dimension
of SL3(Z) is 3. Since we are only interested in irreducible
Galois representations here, testing our conjecture for H3

is equivalent to testing it for H∗ [Ash and Sinnott 00].
Finally, as explained below, what we actually compute is
the Γ0(N)-invariants in H3(∆,M), where ∆ is a torsion-
free normal subgroup of finite index in Γ0(N).

We use the SL3 variant of Theorem 2.1 of [Allison et
al. 98] to identify the Γ0(N)-invariants of H3(∆,M) with
the subspace of all v ∈ V such that

v · d = v for all diagonal matrices d ∈ SL3(Z), (4–1)

v · z = −v for all monomial matrices of order 2

in SL3(Z), (4–2)

v + v · h + v · (h2) = 0, (4–3)

where

h =

⎛
⎝

0 −1 0
1 −1 0
0 0 1

⎞
⎠ .

This is the space on which we act our Hecke operators
and look for suitable eigenclasses.

In [Ash et al. 02, Section 8] we explain in detail the
models we use for the modules V that arise, as well as
our methods for solving the linear algebra problem above.
Since we are working in characteristic 2 we are no longer
able to use a projection operator to find the solutions
to Equations (4–1) and (4–2), but instead use the same
approach for these as we do for Equation (4–3).

Although the linear algebra involved is abstractly a
simple row reduction, the size of the matrices involved
has prompted us to balance the concerns of memory us-
age against runtime. For instance, in the course of com-
puting with N = 443 and M = F (2, 1, 0) we needed to
find the kernel of a 1, 573, 544 × 66, 009 matrix. This is
far too large for us to store in resident memory, especially
since the matrix becomes less sparse as the row reduction
proceeds. As explained in [Ash et al. 02] our programs
make use of disk storage and swap parts of the matrix in
and out of resident memory as the calculation proceeds.
The new versions of the program expand on this idea and

also use the disk to store bases for subspaces that arise
during the calculation of the kernel (see [Ash et al. 02,
page 575]). We have also adjusted some of our algorithms
to cut down on the number of disk swaps required and
more efficiently access the data structures in which the
resident portions of the matrix are being stored.

The computation of the actions of the Hecke opera-
tors on the homology group is done exactly as in [Ash et
al. 02], except that as a final optimization in all of the
programs we have taken advantage of the fact that our
coefficients are numbers modulo 2 to hard code the field
arithmetic and reduce storage size.

5. RESULTS

The following tables contain the results of our calcu-
lations. Table 1 describes the SL3(F2)-polynomials we
found that give feasible levels, indicating how these poly-
nomials arise from the families in [Malle 00] and giving
the decomposition of the primes 2 and N (the level) in
the septic extension of Q defined by the polynomial. Ta-
ble 2 gives the actual coefficients of these polynomials,
as well as of seven addition polynomials suggested by the
referee. Both tables list the predicted level of the corre-
sponding Galois representation.

Table 3 contains one row for each of the distinct
SL3(F2)-fields we investigated. Each such field corre-
sponds to two Galois representations, called ρ and ρτ

above. For each field, we list the inertia group at 2 and
the common niveau of ρ and ρτ , and indicate the com-
mon peu ramifée/très ramifée nature of ρ and ρτ . We
also list the weights for which we observed a cohomology
eigenclass apparently attached to ρ or ρτ .

As we described in Section 2 if either ρ or ρτ is at-
tached to a cohomology class with weight F (0, 0, 0) or
F (2, 1, 0), then the other representation is as well. Like-
wise if ρ or ρτ is attached to a cohomology class with
weight F (1, 0, 0), then the other representation is at-
tached to a class with weight F (1, 1, 0), and conversely.
Our data bears this out in every case, so that, for exam-
ple, when the first entry in Table 3 indicates that the ob-
served weights are F (1, 0, 0), F (1, 1, 0), and F (2, 1, 0) we
are saying that both ρ and ρτ appear for weight F (2, 1, 0),
one of ρ and ρτ appears for weight F (1, 0, 0), and the
other appears for F (1, 1, 0).

We stress again that when we say a class appears to
be attached to a Galois representation, we mean that the
corresponding Hecke and Frobenius polynomials agree for
� ≤ 47.
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polynomial parameters decomposition at 2 decomposition at N N

3-parameter family (1)
5 -2,2,2 (6, 1), (1, 1) (2, 2), (1, 1), (1, 1), (1, 1) 251
6 1,-1,-8 (4, 1), (3, 1) (2, 1), (2, 1), (1, 2), (1, 1) 251
15 -1,1,1 (7, 1) (2, 2), (1, 1), (1, 1), (1, 1) 317
18 8,4,8 (2, 3), (1, 1) (2, 2), (1, 1), (1, 1), (1, 1) 383
24 -1,-1,-17 (7, 1) (2, 2), (1, 2), (1, 1) 443
27 -1,-1,-10 (4, 1), (3, 1) (2, 1), (2, 1), (1, 1), (1, 1), (1, 1) 487
31 4,4,-16 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 499
32 2,2,4 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 499

3-parameter family (2)
12 2,-2,4 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 313
13 2,-2,-4 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 313
14 -2,1,-1 (7, 1) (2, 1), (2, 1), (1, 2), (1, 1) 317
19 -3,-1,-4 (4, 1), (1, 3) (2, 1), (2, 1), (1, 2), (1, 1) 383
22 4,-2,4 (4, 1), (2, 1), (1, 1) (2, 1), (2, 1), (1, 1), (1, 1), (1, 1) 443
23 2,-1,1 (7, 1) (2, 2), (1, 2), (1, 1) 443
25 0,-1,7 (7, 1) (2, 1), (2, 1), (1, 2), (1, 1) 457
29 1,-2,4 (4, 1), (3, 1) (2, 2), (1, 2), (1, 1) 491
30 -1,1,1 (6, 1), (1, 1) (2, 2), (1, 2), (1, 1) 491

4-parameter family
1 -4,0,1,20 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 181
2 4,0,1,-2 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 181
3 -1,-4,2,2 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 227
4 -4,-4,-2,0 (4, 1), (2, 1), (1, 1) (2, 2), (1, 1), (1, 1), (1, 1) 239
7 -4,0,2,4 (4, 1), (2, 1), (1, 1) (2, 1), (2, 1), (1, 2), (1, 1) 257
8 -2,0,1,-2 (4, 1), (2, 1), (1, 1) (2, 2), (1, 1), (1, 1), (1, 1) 257
9 -4,0,2,-4 (4, 1), (3, 1) (2, 2), (1, 2), (1, 1) 277
10 -2,0,1,0 (6, 1), (1, 1) (2, 2), (1, 2), (1, 1) 277
11 -2,-4,2,8 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 307
16 -4,0,1,12 (6, 1), (1, 1) (2, 1), (2, 1), (1, 2), (1, 1) 331
17 -1,-4,1,4 (4, 1), (3, 1) (2, 2), (1, 1), (1, 1), (1, 1) 331
20 -4,8,4,-16 (4, 1), (2, 1), (1, 1) (2, 1), (2, 1), (1, 1), (1, 1), (1, 1) 389
21 1,2,2,17 (4, 1), (2, 1), (1, 1) (2, 1), (2, 1), (1, 2), (1, 1) 421
26 -2,0,1,8 (6, 1), (1, 1) (2, 1), (2, 1), (1, 2), (1, 1) 461
28 -8,0,4,16 (6, 1), (1, 1) (2, 1), (2, 1), (1, 1), (1, 1), (1, 1) 487

TABLE 1. One polynomial for each distinct septic subfield, keyed by number to the polynomials listed in Table 2. The
families are listed in the order they appear in [Malle 00], the numberings to distinguish between the three-parameter
families being our own. Polynomials 33–39 were provided by the referee and do not appear in this table.
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polynomial field discriminant N

1 x7 − x6 − 4x5 + 6x4 − 2x3 + −6x2 + 8x − 4 212 ∗ 1812 181
2 x7 − x6 − 2x5 − 2x4 + x3 + 3x2 + 6x + 2 " 181
3 x7 − x6 − 4x5 + 4x4 − x3 + x2 + 6x + 2 214 ∗ 2272 227
4 x7 − 3x6 + 12x4 − 15x3 − 7x2 + 24x − 8 212 ∗ 2392 239
5 x7 − 2x6 − 3x5 + 10x4 − 9x3 + 2x2 + 5x − 2 210 ∗ 2512 251
6 x7 − 3x6 + x5 + 3x4 − 2x3 + 2x2 − 2x − 2 " 251
7 x7 − x6 + x5 + 11x4 − 24x3 + 32x2 − 20x + 4 214 ∗ 2572 257
8 x7 − x6 − 5x5 + 9x4 + 5x3 − 21x2 + 3x + 1 " 257
9 x7 − x6 − 5x5 + 7x4 − 7x3 + 3x2 − x − 1 210 ∗ 2772 277
10 x7 − 3x6 + 4x5 − 2x4 − 8x3 + 16x2 + 2x − 2 " 277
11 x7 − 3x6 + 2x5 − 6x4 − 3x3 − 3x2 − 6x − 2 212 ∗ 3072 307
12 x7 − 3x6 + 6x5 − 14x4 + 13x3 − 15x2 + 24x − 4 214 ∗ 3132 313
13 x7 − 3x6 + 6x5 − 6x4 − 11x3 + 9x2 + 16x − 4 " 313
14 x7 − 2x6 + 2x4 − 2x3 + 2x2 − 2 26 ∗ 3172 317
15 x7 − 3x6 + 3x5 − x4 − 5x3 + 5x2 + 3x − 1 " 317
16 x7 − x6 − 4x5 + 6x4 − 8x2 + 6x − 2 210 ∗ 3312 331
17 x7 − 2x6 + 2x5 − 2x4 − 2x3 + 4x2 − 4x − 4 " 331
18 x7 − x6 + 2x5 + 2x4 − 5x3 + 7x2 − 5x + 1 26 ∗ 3832 383
19 x7 − x6 − x5 − 5x4 + 2x3 + 4x2 + 6x + 2 " 383
20 x7 − 2x6 + x5 − 8x3 + 12x2 − 14x + 16 212 ∗ 3892 389
21 x7 − x6 + 2x5 − 11x3 + 7x2 − 16x + 2 212 ∗ 4212 421
22 x7 − 3x6 − 2x5 + 14x4 − 7x3 − 15x2 + 6x + 10 212 ∗ 4432 443
23 x7 − 3x6 + 3x5 + x4 − 3x3 + x2 − x − 1 26 ∗ 4432 443
24 x7 − 3x6 + x5 + 3x4 − x3 + x2 − 3x − 1 " 443
25 x7 − 2x6 − 2x5 + 6x4 − 4x3 − 2x2 + 4x − 2 26 ∗ 4572 457
26 x7 − x6 − 5x5 + 9x4 − 5x3 − 11x2 + 13x − 9 210 ∗ 4612 461
27 x7 − 3x6 − x5 + 9x4 − 2x3 − 10x2 + 2x + 2 210 ∗ 4872 487
28 x7 − 3x5 − 8x4 + 11x3 + 12x2 − 15x − 8 " 487
29 x7 − 3x6 − x5 + 9x4 − 12x2 + 4 26 ∗ 4912 491
30 x7 − 3x6 + 7x5 − 5x4 + x3 + 7x2 − 3x − 1 " 491
31 x7 − x6 − 6x5 + 18x4 − 34x3 + 42x2 − 28x + 4 214 ∗ 4992 499
32 x7 + 2x6 − 10x5 − 12x4 + 34x3 + 4x2 − 28x + 8 " 499
33 x7 − 3x6 + 10x5 − 10x4 + 7x3 − 13x2 + 4 214 ∗ 52 ∗ 672 335
34 x7 − 7x5 − 2x4 + 20x3 − 4x2 − 18x + 4 212 ∗ 3532 353
35 x7 − 3x6 − 4x5 + 20x4 − 10x3 − 26x2 + 16x + 16 214 ∗ 3832 383
36 x7 − 3x6 − 3x5 + 9x4 + 4x3 − 8x2 + 12x + 20 212 ∗ 4012 401
37 x7 − x6 − 5x5 + 9x4 + x3 − 17x2 + 7x − 3 214 ∗ 72 ∗ 612 427
38 x7 − 3x6 − 4x5 + 28x4 − 15x3 − 35x2 + 38x − 2 214 ∗ 4312 431
39 x7 − x6 − 2x5 + 2x4 − 6x3 − 2x2 + 20x − 4 214 ∗ 4872 487

TABLE 2. One polynomial for each distinct septic subfield that met our criteria, along with the field discriminant and level.
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polynomial level niveau I2 peu/très observed weights

2 181 1 D4 pt b, c, d

3 227 1 D4 tt d

4 239 1 D4 pt b, c, d

5 251 2 A4 − a, b, c, d

8 257 1 D4 tt d

10 277 2 A4 − a, b, c, d

11 307 1 D4 pt b, c, d

12 313 1 C4 t d

15 317 3 C7 − a, b, c, d

17 331 2 A4 − a, b, c, d

19 383 1 V4 pp a, b, c, d

20 389 1 D4 pt b, c, d

21 421 1 D4 pt b, c, d

22 443 1 D4 pt b, c, d

23 443 3 C7 − a, b, c, d

25 457 3 C7 − a, b, c, d

26 461 2 A4 − a, b, c, d

27 487 2 A4 − a, b, c, d

30 491 2 A4 − a, b, c, d

32 499 1 D4 tt d

33 335 1 D4 tt d

34 353 1 D4 pt b, c, d

35 383 1 D4 tt d

36 401 1 D4 pt b, c, d

37 427 1 C4 t d

38 431 1 D4 tt d

39 487 1 D4 tt d

TABLE 3. One polynomial for each distinct splitting field, keyed by number to the polynomials listed in Table 2, along
with the level, niveau, inertia at 2, the peu ramifée/très ramifée classification of ramification at 2, and the observed
weights. The peu ramifée/très ramifée ramification possibilities are abbreviated as: pp = peu-peu, pt = peu-très, t =
très, tt = très-très. The weights are abbreviated as follows: a = F (0, 0, 0), b = F (1, 0, 0), c = F (1, 1, 0), d = F (2, 1, 0).
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