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We give presentations for the braid groups associated with the
complex reflection groups G24 and Ga7. For the cases of Gag,
Gs1, Gss, and Gss, we give (strongly supported) conjectures.
These presentations were obtained with VKCURVE, a GAP pack-
age implementing Van Kampen’s method.

1. INTRODUCTION

To any complex reflection group W C GL(V), one may
attach a braid group B(W), defined as the fundamental
group of the space of regular orbits for the action of W
on V [Broué et al. 98].

The “ordinary” braid group on n strings, introduced
by [Artin 47], corresponds to the case of the symmet-
ric group &,,, in its monomial reflection representation
in GL,,(C). More generally, any Coxeter group can be
seen as a complex reflection group, by complexifying the
reflection representation. It is proved in [Brieskorn 71]
that the corresponding braid group can be described
by an Artin presentation, obtained by “forgetting” the
quadratic relations in the Coxeter presentation.

Many geometric properties of Coxeter groups still hold
for arbitrary complex reflection groups. Various authors,
including Coxeter himself, have described “Coxeter-like”
presentations for complex reflection groups. Of course,
one would like to have not just a “Coxeter-like” presen-
tation for W, but also an “Artin-like” presentation for
B(W).

The problem can be reduced to the irreducible case.
Irreducible complex reflection groups have been classi-
fied by [Shephard et al. 54]: there is an infinite family
G(de, e,r) (which contains the infinite families of Coxeter
groups), plus 34 exceptional groups Gy, ...,G3s7 (among
them are the exceptional Coxeter groups).

Before this note, presentations were known for all but
6 exceptional groups (see the tables of [Broué et al. 98]):
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e the braid group of G(de, e, r) is computed in [Broué
et al. 98]. The proof makes use of fibration argu-
ments, taking advantage of the fact that G(de,e,r)
is monomial.

e the first exceptional groups (G4 to Gag) are two-
dimensional. The spaces of regular orbits are com-
plements of (fairly elementary) complex algebraic
curves; the braid groups have been computed by
[Bannai 76|, using Zariski/Van Kampen method.

e among the 15 higher-dimensional exceptional
groups, six are Coxeter groups; Brieskorn’s theorem
applies to them. In addition, three more groups hap-
pen to have orbit spaces isomorphic to orbit spaces
of certain Coxeter groups (this was observed by [Or-
lik and Solomon 88]).

e the six remaining groups are Gay4, Ga7, Gag, Gs1,
G’337 and G34.
groups are given in [Broué et al. 98] (except a con-

No presentations for their braid

jectural one for Ga1).

In the present note, we describe presentations for the
first two of the six remaining groups and conjectural pre-
sentations for the last four. The evidence for our conjec-
tures is very strong, and only a minute step of the proof
is missing.

2. THE PRESENTATIONS

Before listing the individual presentations, it is worth
noting that they share some common features: the num-
ber of generators is equal to the rank of the group (ex-
cept for G31, where an additional generator is needed);
the generators correspond geometrically to generators-
of-the-monodromy (in the sense of [Broué et al. 98] and
[Bessis 01]) or equivalently braid reflections (this nicer
terminology was introduced in [Broué 00]); the relations
are positive and homogeneous; by adding quadratic rela-
tions to the presentation, one gets a presentation for the
reflection group; the product of the generators, taken in
a certain order, has a central power. Existence of such
presentations was proved in [Bessis 01]. All presentations
below satisfy all these properties.

2.1 The Three-Dimensional Group G4

Theorem 2.1. The braid group associated with the com-
plex reflection group Ga4 admits the presentation

<s,t,u

stst = tsts, susu = usus, tutu = utut,
stustus = tustust = ustustu '

These relations imply that (stu)” is central.

We suggest representing this presentation by the fol-
lowing diagram:

S t
Playing with the above presentation, one may obtain
other ones that are less symmetrical but also interest-
ing. For example, replacing ¢ by usts~tu~! gives (after
simplication)

<s,t,u

Also, replacing t by susts™'u

<s,t,u

2.2 The Three-Dimensional Group G27

sustustus = ustustust

sts = tst, tut = utu, susu = usus, >
-1

s~ yields

sutsuts = usutsut

sts = tst, tutu = utut, susu = usus, >

For Gy7, we couldn’t find a nice symmetrical presenta-
tion, involving only classical braid relations and cyclic
three-terms relations.

Theorem 2.2. The braid group associated with the com-
plex reflection group Gaor admits the presentations

<s,t,u
<s,t,u
<s,t,u

In each of these presentations, the element (stu)® is cen-

stst = tsts, tut = utu, sus = usu,
stustustusts = tstustustust

ststs = tstst, tut = utu, sus = usu,
ststustust = tstustustu

stustut = ustustu

ststs = tstst, tutu = utut, sus = usu, >

tral.

These presentations could be symbolized by the fol-
lowing diagrams:

2.3 The Four-Dimensional Group G2g

The presentation for Gag given in [Broué et al. 98] was
not conjectured to give (by forgetting the quadratic re-
lations) a presentation for the braid group. Surprisingly,
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our computations happened to give precisely this presen-
tation.

Conjecture 2.3. The braid group associated with the com-
plex reflection group Gag admits the presentation

<5, t,u,v

These relations imply that (stuv)® is central.

tvtv = vtvt, su = us, SV = Vs,

sts = tst, tut = utu, uvu = vuv, >
utvutv = tvutvu

Broué, Malle, and Rouquier used the following dia-
gram to symbolize this presentation:

u

S t v

2.4 The Four-Dimensional Group G35,

The following is consistent with the conjectural presen-
tation from [Broué et al. 98], but this time there is some
computational evidence behind the conjecture.

Conjecture 2.4. The braid group associated with the com-
plex reflection group Gs1 admits the presentation

<s,t,u,v,w

These relations imply that (stuwv)

VWV = WVW, SV = vs,tv = vt,

sts = tst, tut = utu, uvu = vuw, >
tw = wt, SuwW = UWws = WSy

6 s central.

The corresponding Broué-Malle-Rouquier diagram is:

VAN

t U v

Remark 2.5. Since our generators are braid reflections,
they map to generating reflections in the reflection group.
It is well known that, even though it is four-dimensional,
G'31 cannot be generated by fewer than 5 reflections.

2.5 The Five-Dimensional Group G33

The relations in the presentation below do not coincide
with the homogeneous part of the Broué-Malle-Rouquier
presentation of G'33. However, the relations involving ¢, u,
and w coincide with the Broué-Malle-Rouquier relations

for the braid group of G(3, 3, 3) (the similar remarks also
apply to Gsq).

Conjecture 2.6. The braid group associated with the com-
plex reflection group Gs3 admits the presentation

<s,t,u,v, w

These relations imply that (stuvw)

sts = tst, tut = utu, uvu = vuv,
wiw = twt, wuw = vwu, Su = us,
sU = vs,tv = v, ws = SW, WV = VW
tuwtuw = vwtuwt = witvwitu

9 4s central.

The relation uwtuwt = wtuwtu is redundant.
We suggest representing this presentation by the fol-
lowing diagram:

S t (7 (Y

Following [Broué et al. 98] where a second diagram
for G33 is given (to account for some parabolic subgroups
missing in their first diagram), it is not difficult to obtain
the equivalent presentation

<s, t,u, v, w

which contains a parabolic subdiagram of type Ds. (A
similar diagram may be derived from the conjectural pre-
sentation for B(Gs4) given below).

vt = tv, uv = vu, tu = ut,
WU = UW, WSW = SWS, SUS = USU,
sSvs = Vsv, sts = tst, vwv = wow,
twt = wtw, twvstw = wvstwv

)

2.6 The Six-Dimensional Group G4

Conjecture 2.7. The braid group associated with the com-
plex reflection group Gss admits the presentation

relations of Gz +
s, t,u,v,w, x| rvr = VIV, TS = ST, Tt = t*, .

IV = V2, 2W = WT

7

These relations imply that (stuvwz)’ is central.

We suggest representing this presentation by the fol-
lowing diagram:
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3. DEFINITIONS AND PRELIMINARY WORK

Our strategy of proof is, basically, brute force. Let V be
a C-vector space of dimension r, and let W C GL(V') be
a complex reflection group. The algebra C[V]"V of invari-
ant polynomial functions is isomorphic to a polynomial
algebra [Shephard et al. 54]; let f1,..., f. be homoge-
neous polynomials such that C[V]W = C[f1,..., f.].

Let A be the set of all reflecting hyperplanes. For
each H € A, the pointwise stabilizer Wy of H in W is
a cyclic subgroup of order ep; choose Iy a linear form
with kernel H. Let V™8 :=V — Jyc 4 H. The regular
orbits space is V'8 /W. We have [] 4 157 € C[V]V, so
there is a unique polynomial A € C[X1, ..., X,] such that
[uealy” = A(fr,- .., fr). We call A the discriminant
of W (with respect to f1,..., f.). Clearly, V*¢/W is
isomorphic, as an algebraic variety, to the complement of
the hypersurface H defined in C" by the equation A = 0.

There is a general method, though not always prac-
tically tractable, to compute the fundamental group of
such a space. First, choose a 2-plane P such that the em-
bedding PN(C" —H) — C" —H is a my-isomorphism (by
a Zariski theorem, this should hold for a generic choice
of P—how exactly this choice can be made is a difficult
issue, which we will discuss later on). Then, use the
Zariski/Van Kampen method to compute the fundamen-
tal group of PN (C" — H).
in the second step are far beyond human capabilities (or

The computations involved

at least beyond our capabilities), especially if one wants
to avoid imprecise arguments. Therefore, we designed a
software package, VKCURVE [Bessis and Michel 03], to
carry out the computations.

3.1 General Remarks about the Implementation

Our computations are performed using the computer al-
gebra software GAP3, which is designed to handle cyclo-
tomic numbers, matrices over these numbers, permuta-
tions, presentations, and all sorts of algebraic objects and
algorithms involving exact computations. The source of
its mathematically advanced functions is public (and in a
rather intelligible language), and any user is free to check
their validity.

Our package VKCURVE builds on the older package
CHEVIE, which implements (among other) complex re-
flection groups, Coxeter groups, and Artin groups.

3.2 Computing the Discriminant

For each of the six groups, the discriminant can be re-
covered from the data given in Appendix B of [Orlik
and Terao 92], where they explain how to construct the

matrix M € M, (C[Xq,...
fields (a.k.a., basic derivations) for the quotient singular-

,X;]) of logarithmic vector

ity (called the discriminant matrix in [Orlik and Terao 92,
Definition 6.67]). The polynomial A is simply the deter-
minant of M.

To prevent typos, we actually re-checked all needed
computations.

We summarize their method. Let d; = deg f;, and
let dj,...,d; be the codegrees of W. We assume that
the degrees are ordered in increasing order (but we do
not assume the same for codegrees). The matrix M is
an r X r-matrix whose (i,7) entry is an homogeneous
invariant polynomial of degree d; + dj.

The six groups have the property that d; < ds, so fi
is unique up to a scalar, and if H = (9;0;f1)i; is the
Hessian matrix of fi, then det H may be chosen as one
of the basic invariants f (which we assume). Then, if
J = (0;fi)sj is the Jacobian matrix of the f;, we have the
following matrix equation ([Orlik and Terao 92, Equa-
tion (1), page 280]):

M = (d, —1)JH ' JC (3-1)

where C'is a matrix of homogeneous invariant polynomi-
als such that degC;; = dq + d;f — d;. Orlik and Terao
note that there exists an ordering of the dj such that
C is the identity matrix, except for some line g where
Ciqg = 0 for i < q, Cyq = fr, and Cyy is a polynomial
in f1,..., fu—1, fxx1,- -, fr for i > ¢ (the degrees of the
entries of C' determine the ordering).

Equation (3-1) is used first to determine C, and
then to determine M. It may be used to determine C'
since it implies the polynomial congruence 0 = JH'tJC
(mod fx), where H' is the cofactor matrix of H; each
nonzero entry of C'is a linear combination of (known from
their degree) monomials in the basic invariants, and the
above polynomial congruence is sufficient to determine
the coefficients of the linear combination.

Example 3.1. Sufficient data to construct the matrix of
basic derivations for Ga4 is given on page 284 in [Orlik
and Terao 92]. Note, however, that the formula given
page 264 in [Orlik and Terao 92] for its determinant con-
tains a typo. The correct formula is

Aoy = —20482% + 220162%> — 600322335
+1728y" — 25627z + 1088z~
+1008zy*2? — 88x2y22 + 23.

To check that such a formula is correct, it suffices to sub-
stitute the invariants: the result should be the product
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8x 12y + 12zy 20y + ﬁxy 24 + 24x — %yQ 1 0
12y 1822 — 97200y2 + 1823 —36 — 367 + 55 —42zy — g5’y 0 1
20y —36 — 72x + 602y? — 3622 f%x — o — 5i4y2 Q—;Oy + ﬁxy + 5i4:r2y 0 1
24+ 24z —42zy —422%y — 60y®  —qy — 2oy — 2%y msay’ 4+ aga? + 2007 + 2% 10

FIGURE 1. Condition for tranversality at infinity of the 2-plane for Gs;.

of the square of the linear forms defining the reflecting
hyperplanes.

In Section 6, we list basic derivations for all exam-
ples (except Gag, for which the matrix is too large to be
printed).

4. CHOOSING THE 2-PLANE
4.1 A General Strategy

An explicit genericity criterion is given in [Dimca 92,
Chapter 4, Theorem 1.17]: it suffices that P is trans-
verse to all the strata of a Whitney stratification of
the hypersurface. The theorem applies to a projective
context. We replace A by a homogeneous polynomial
Ae C[Xo, ..., X,]. The equation A = 0 defines a projec-
tive hypersurface H; we are interested in the complement
C"—H=CP" —HUCP'.

First, we stratify C" as follows: for all k € {0,...,r},
set Ej to be the locus where the matrix M has rank k.
This stratification is the quotient modulo W of the strat-
ification of V' by the intersection lattice of A, and hence
is a Whitney stratification. Moreover, the tangent space
of the stratum at a given point is spanned by the columns
of M. With the explicit knowledge of this matrix, there
is no major difficulty in checking transversality of a given
2-plane.

Example 4.1. For G351, one may check that the transver-
sality at infinity is statisfied by the 2-plane of the equa-
tions

z =y
t l1+zx.

The affine tranversality condition for this 2-plane is that,
for each value of x and y, the matrix in Figure 1 has
rank 4 (the matrix of basic derivations for Gg; is given
in Section 6), where the first four columns generate the
tangent vector to the local stratum of the discriminant

and the last two columns generate the tangent vector
space to the 2-plane.

To apply [Dimca 92, Chapter 4, Theorem 1.17], we
also need a stratification of the hyperplane at infinity
CP™ 1. Let Ho = HNCP 1. We view Hoo as an
algebraic hypersurface in CP" !, defined by the equation
VA =0, where A, is the homogeneous part of highest
degree of A and /A is a reduced version of A,,. We
set Ny—1 := CP" "1 —Hoo, No—3 := (Hoo)sing U M,—2 and
NT,Q = Hoo - Nrfg.

Together, the M;’s and the N;’s form a stratification
(without border condition), with incidence diagram:

=

= =
|

= =
|

2 2 =
|

We mark W where we know that the incidence satisfies
Whitney’s conditions. We have already explained why
the first column is a Whitney stratification. It is trivial
that M, is Whitney over N,_; and that N,._; is Whit-
ney over N,_s. By splitting N,._3 into smaller strata,
we may ensure that everything below N,._, and M, _5 is
Whitney (see, for example, the construction explained at
the beginning of [Gibson et al. 76]).

Question 4.2. Does M, _; satisfy Whitney’s conditions
over N,_o?
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oy (B, yo) ——>m1 (L — L NH, o) —>11 (E, (x0,Y0)) ——>m1 (E, yo) —1

FIGURE 2. Exact sequence for the fibration of E — E.

Note that, since A, is not reduced, the points of N,._s
are not smooth in H, so the answer is not that trivial.
It is a pity that no software is available to answer such a
question, on specific examples with explicit equations.

Example 4.3. For G3;, we represent points of CP5 by
5-tuples (h,z,y, z,t), with either h = 1 (affine portion)
or h =0 (space at infinity). The strata M; have explicit
equations, using the matrix given in Section 6. The affine
hypersurface H is given by h = 1 and A(z,y, z,t) = 0,
where A is the determinant of the relevant matrix from
Section 6. We have A, = —%ﬂz% — %x6y237 thus a
reduced equation for He is xz(3zt + 2yz) (and h = 0).
One may prove (by means of Grobner basis) that if a
sequence (1, oy, Y, Zms tm )menN of points in My U M7 U
My converges to (0,7,7%,z,t), then either (z,7) = (0,0),
or (z,z) = (0,0), or (¢,,z) = (0,0). This locus actually
coincides with (Hoo)sing, thus N,_g is the complement
in Hs of this locus (this explains why the particular 2-
plane given earlier avoids N,_3: the points at infinity
of the 2-plane have the form (0, z,y,y,x), where either
x # 0 or y # 0). Question 4.2 specializes to: iS Hsmooth
Whitney over (Hoo )smooth?

We may now explain what we have checked and what
is missing to turn our conjectures into theorems:

e for all six examples, our presentations were obtained
by applying Van Kampen’s method to the algebraic
curves obtained with particular 2-planes.

e for all six examples, we have checked that
the 2-planes are transversal to the affine strata

Mo, ..., M,.

e for all examples but Gs4, we have computed (by
means of Grobner basis) equations for N,_1, N,._o,
and N,_3 and checked that our 2-planes are also
transversal to these strata. Transversality implies
that the 2-planes do not intersect N,_3 and, there-
fore, remain transversal to the Whitney refinement
of N,_3. Therefore, if Question 4.2 had a positive
answer, our conjectures would be theorems (except

for G34)

e note that it is easy to check that our 2-planes give
generators of the fundamental group, and any ho-

motopy in the 2-plane is a homotopy in C”. There-
fore, we know for sure that there are presentations
for the braid groups obtained by adding relations to
our conjectural presentations. On the other hand,
we have checked that adding quadratic relations to
our conjectural presentations yields actual presenta-
tions for the complex reflection group. Any missed
relation should be trivial in this quotient.

4.2 A Strategy for Three-Dimensional Groups

Another, more algebraic, approach can be used to find
good 2-planes. Although we may start the discussion
with any of our examples, it will be conclusive only
for three-dimensional groups. We work with the set-
ting and notations from [Bessis 01, Section 2.2]: we
have A € C[Xy,...,X,] (A plays the part of the poly-
nomial P of loc. cit.).
X := X,, we choose a generic (in the sense of loc.

We distinguish the variable

cit.) line L of direction X. Viewed as a polynomial
in only the variable X (with coefficients involving the
other variables), P has a discriminant Disc(Px). Let
E := {v € C"|P(v) # 0,Disc(Px)(v) # 0}. We denote
by p the projection (z1,...,2,) — (21,...,2,-1). Let
E = p(E).

whose exact sequence ends as shown in Figure 2. In our

The map p induces a fibration £ — F,

setting, A is monic in X (since d, is regular, it follows
from [Bessis 01, Lemma 1.6]). It is then easy to construct
a section s : w1 (E,yo) — m1(E, (20,%0)) of ps.

The basespace E is the complement in C"~! of the
hypersurface of equation Disc(Ax) = 0. In our setting,
Disc(Ax) is a weighted homogeneous polynomial.

When 7 = 3, this implies that m2(E, y) = 0 (comple-
ments of weighted homogeneous curves are K (m,1)). We
then have a semidirect product structure

m1(E, (%0,90)) ~ m (L — LN H,x0) x m(E,yo).

To obtain a presentation for 7(C" — H), one starts with
a presentation for m (E, (o, o)) and adds relations forc-
ing elements of 71 (F, yo) to become trivial. It is an easy
exercise to check, in this setting, that any 2-plane P sat-
isfying;:

(i) the line L is contained in P, and

(ii) the image line p(P) is such that p(P) N E — E is
mi-surjective,
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is good for our purposes. In our examples, it is easy to
construct such planes, since Disc(Ax) is monic in one
of the remaining variables. This is how we obtained, for
Go4 and Ga7, theorems rather than conjectures.

Note that, for other groups, all assumptions used here
(including the monicity of Disc(Ax)) remain valid, ex-
cept that we do not know whether 7 (E, yo) = 0. Instead
of answering Question 4.2, checking that mo(E,y) = 0
would turn our conjectures into theorems.

5. THE PACKAGE VKCURVE

Once a 2-plane P has been chosen, it is enough to feed
VKCURVE with the equation of the curve P N"H to ob-
tain a presentation of w1 (P — (P N'H)).

Example 5.1. For G371, when computing the determinant
of M3, and evaluating at z = y and t = 1 + x, we obtain
the following equation for P N H:

Al = 746496 + 3732480z — 31119362y

93281756 , 58341596 )
o zy” + o7 zy” + 74649602
17556484
— 384y% — 93342722%y% + 2—7x2y4
43196 , ,° 5 756138248 4 ,
5 + 74645762 T
192792964 16
Tx3y4 + 8—1w3y6 + 37309442
139967996 , 84021416 , , 82088 , ,
st 7 o7 Y T oY
43192 1720
44192 5 5,2 5,4
+ 744192z +—27my —27x
124412 95896 s
- 777600800y°
g1~ T vt Y
8 o4 10364 o 4 g, 4 g
R T T i
8 8 4 8,2 4 9
sy TtV T

On a 3 GHz Pentium IV, VKCURVE needs about one
hour to deal with this example.

Writing VKCURVE was of course the most difficult
part of our work. This software accepts as input any
square-free polynomial in Q[¢][X, Y] and computes a pre-
sentation for the fundamental group of the complement of
the corresponding complex algebraic curve. The program
does not use floating point computations (even when
computing monodromy braids); therefore, there is no is-
sue of numerical accuracy, and the result is “certified” to
be correct (provided that our implementation does not
contain mathematical errors).

The remainder of this section is an overview of the
algorithms used in VKCURVE. We rely on the version of
Van Kampen’s method exposed in [Bessis 03, Procedure
4], where it is decomposed into four steps.

5.1 Implementing Steps 1 and 2

Starting with our polynomial P € Q[i][X,Y], we view it
as a one-variable polynomial in Q[¢][Y][X] and compute
its discriminant A € Q[i][Y]. The discriminant A may
not be reduced; to compute approximations yi,...,y, €
Ql¢] of its complex roots yq, . ..
method to the reduced polynomial Ay obtained by divid-
ing A by the resultant of A and A’. As is proved in the
beautiful article [Hubbard et al. 01], Newton’s method
can be made into a failsafe algorithm producing arbi-
trarily good approximations of 1, ..., Y.

Since we will reuse them later, we recall a few trivi-

, Yr, we apply Newton’s

alities about complex polynomials. Let P € C[Z]. Let
ai,...,a, be the complex roots of P. Let z € C. If
P'(z) # 0, we set Np(z) := z — 5,((2)).
the first order approximation of P around z, we expect
P(Np(z)) to be close to 0. Newton’s method consists

of starting with zp € C (chosen randomly, or smartly

Considering

as in [Hubbard et al. 01]) and constructing iteratively
Zm+1 := Np(2m ), hoping that (z,,) will converge towards
a root of P—which indeed happens for “many” choices
of zg. How may we decide that a given z, is a “good

enough” approximation?

Lemma 5.2. Assume P has n distinct roots aq, ..., ay,.
Let z € C, with P'(z) # 0. Then, there exists o €
{a1,...,an} such that |z —al <n ‘ 5,((22)) .

Proof: If P(z) = 0, the result is trivial. Otherwise, we
have 2 — S Choose ¢ such that, for all

P(z) =1 z—qy
J, |z —ai] < |z —«qj]. By trlangular 1nequahty, W >
P’ P
‘ PG|~ S e 2 | B |~ (0= Dy The result
follows.

Although elementary, this lemma provides a very inex-
pensive (in terms of computational time) test for deciding
whether a tentative list &y, ..., &, of complex numbers
“separates” the roots (i.e., whether there exists 1, ..., ¢,
such that the disks D(d;,¢e;) do not overlap and each of
them contains a root of P).

Instead of working with the exact Newton’s method,
we use a truncated version, where Np(z) is replaced by
an approximate (a+ib)10*, where a,b € Z and k is an in-

teger slightly smaller than log;, ‘I;T()) . This is to avoid
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the very fast increase of the denominators when the exact
method is carried out in Q[i]: the complexity of the exact
method is very good from the “abstract” viewpoint (the
number of iterations), but in practice really bad (each in-
dividual iteration involves costly operations on very big
integers). Of course, our modification does not make the
method less rigorous, since the test can be performed ex-
actly. The main difference between our implementation
and floating point is that & is modified dynamically and
has no preassigned bound.

Once separating approximates ¢, .. ., 9, € Q[i] of the
roots of A have been obtained, Step 2 of [Bessis 03, Pro-
cedure 4] is performed as follows: first, we construct the
Voronoi cells around 91, . . .
of the affine segments bounding the Voronoi cells, we
construct, for each i, a loop ~; representing a meridian
around 7;; it is easy to make sure that we recover a merid-
ian around the actual y;.

, Yr; then, concatenating some

5.2 Step 3: Computing Monodromy Braids

[Bessis 03, Procedure 12] decomposes Step 3 into smaller
steps a—e. Only Substep a is not a straightforward alge-
braic manipulation, and most of the computational time
is spent there. The problem is as follows: let [yo,y1]
be one of the affine segments involved in the ~;. For
t € [0,1], denote by P, € Q[i][X] the polynomial ob-
tained by evaluating P at Y = (1 — t)yo + ty1. We want
to compute the word in Artin generators corresponding
to the real projection of the braid obtained by tracking
the roots of P, when ¢ runs over [0, 1].

S Zn € Q]

Concretely, using Lemma

As we have seen above, we may find =, ..
separating the roots of Fp.
5.2, we iterate a truncated Newton method until, when
‘m;—%' (this is a simple way, though
not optimal, to ensure that Vi, j, |x; — x| > &; +¢;), we

we set ¢; 1= inf;;

have

Z,

Po(x;)
Py(z;)

&q

-
For each i, consider the polynomial
Q= 2|Pl(w) | — n?|Pi(a)|? € Qi)

By assumption, we have Vi, Q;(0) > 0. Whenever t; €
[0,1] N Q is such that V¢ € [0, to], Vi, Q;(t) > 0, we know
that, for ¢ € [0, o], the strings of the monodromy braids
will be in the cylinders of radius &; around the z;. This
fragment of the monodromy braid can be replaced by the
constant braid with strings fixed at the positions given by
the z;. Set y := (1 —t0)yo +y1, ; := Np, (z;). Though
the z; already separate the roots of P;,, the z should be

“better” approximates. We compute new radii €} sepa-

rating the z; and iterate, studying now the monodromy

!
ne

braid over [y}, y1], with initial approximates x,...,x
Eventually, we hope that after some number of iterations,
to = 1 will suit.

The main difficulty is to find an actual ¢y such that
for all t € [0,t0],Vi,Q;(t) > 0. One the one hand, we
want it to be as large as possible, to avoid unnecessary
iterations; on the other hand, computing the largest the-
oretical value for ¢y, for example using Sturm sequences,
is very costly. Finding a good balance is a delicate art.
The curious reader may have a look at the source of
the VKCURVE function FollowMonodromy, where a very
naive method is used, together with careful coding and
adaptative heuristics (note that, in FollowMonodromy,
one actually computes a distinct ¢y for each individual
string: the above description is simplified for the sake of
clarity).

5.3 Step 4: Writing and Simplifying the Presentation

Working with GAP, it is then straightforward to write a
presentation. However, this presentation is much more
complicated than desirable. Since no “normal form” the-
ory exists for arbitrary group presentations, it is not clear
how one can simplify it and obtain one of our “pretty”
presentations. Fortunately, some natural heuristics (typ-
ically, replace a generator by its conjugate by another
generator, try to simplify, and iterate in the regions of
the tree of all possibilities where the total length of the
presentation tends to decrease) happen to be quite ef-
fective in dealing with the (highly redundant) presen-
tations obtained with Van Kampen’s method. Playing
with these (non-deterministic) heuristics, which are part
of VKCURVE, we obtained quite easily a few “simple”
presentations. At this point, in the absence of a general
combinatorial theory of generalized braid groups, there
is some arbitrariness in deciding which one should be re-
tained; in most cases though, one of them clearly emerged
as being the “prettiest.”

6. EXPLICIT MATRICES OF
BASIC DERIVATIONS

6.1 The Group G24

With Klein’s matrices (as in [Orlik and Terao 92]) the
first invariant is fi = 23y + zy® + z23. The others are
f2 = det(Hessian(f1))/108 and bord(fi, f2)/36.

The basic derivations are in Figure 3(a).
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4z 61>
6y —z
14z

(a)

265

14z — 3622y
128zy? — 724

128xy> — 6222 — Tzty  287xyz — 3523y% — 294y* + 726

6z 1292 30z + 234x3y
12y —4z —34xz — 136222y% + 15693 4+ 90024y — 27020
—3dayz — 13622%y° + 782% 2+  4836xy* + 330y%z — 3349x2yz — 1772723y +
30z 156yt + 900zty? — 27025y 2013z%z + 71102°y* + 13527y — 8102°
(b)
320z 640y2 960z + 2y 1600t + 8yz
1| 640y 4096000t + 225280y + 1280232 64xz + da3y —640tz + 16zy2z + 153622
80 | 960z —12800tx — 640zxyz 200t — 5yz + 322 —10ty + 10tz? — 8x22
1600t —51200tz — 640txy — 1280yz2  —10ty + Sta? — 4xz? T2tz — 962>
(c)
2160z 3240ty 5400z + 2zy 6480t — 2y
1| 3240y 4860tz? — 2624400022  —9720t + 323 —11340zz — 322y
270 | 5400z 16200x2% — 97202 —txr — 5yz ty + 5%z
6480t —11340txz — 16200yz> —5ty —2x%z 2zyz + 5tr? + 540022
(d)
512z T768yz 1280z + (%)xy 1536t — 4y 2304u — 4ty
1 768y —663552u + 1152222 768t — 223 8064zz — 622y —6tz? + 2304022
158 1280z 768tz — 1152ux (%)tw + 3yz 576u — ty + 9222 6uy + 36222 — 4t2
1536t  —3456uy + 8064xz?  576u + 3ty — bx?z  —15xyz + 9tx? + 1152022 —42txz + 18u 22 + 108y22
2304u  —3456tu + 2304023 6uy — 42> 18uz? — 12y22 9uxz — 48t2>

()

FIGURE 3. Basic derivations of (a) Ga4, (b) Ga7, (c) Gag, (d) Ga1, and (e) Gss.

6.2 The Group G2r

With Wiman’s matrices (as in [Orlik and Terao 92]),
the first invariant is f; = —135xyz* — 45229222 +
1023y 4+ 92%2 + 9y®z + 2725, The others are fo, =
det(Hessian(f1))/6750 and bord(f1, f2)/5400.

The basic derivations are in Figure 3(b).

6.3 The Groups G2g and G3;

For the data relative to Gag and Gsy, see [Maschke 87].
The group Gs; is generated by the matrices T and
Ue?™/8 in Maschke’s notations.

Gag is the subgroup that leaves invariant ®,, which

we take as the first invariant. @ Then, we choose
(—1/20736) det(Hessian(®;)) = (4F5 —®2)/3. We do not

choose Fio but the simpler ((®3 — 3%, Fg)/2 + F12)/108.
We do not choose Fyy but the simpler (Fog—FgF12)/1296.
For G371 we choose Fy and Fio. Then as for Gog we
choose (Fao— F5F12)/1296; the fourth is still (as in [Orlik
and Terao 92]) det(Hessian(F8))/265531392.
The basic derivations of Ga9 and G3; are in Figures
3(c) and 3(d), respectively.

6.4 The Group Gs3

We take the matrices and invariants of [Burkhardt 91,
pages 208-209] with the corrections
[Orlik  89]. The third invariant is taken to be
det(Hessian(J4))/63700992 where Jy is the first invari-
ant.

The basic derivations of G are in Figure 3(e).

indicated in



266  Experimental Mathematics, Vol. 13 (2004), No. 3

ACKNOWLEDGMENTS

Work on this project was completed during the first author’s
stays at Institut Girard Desargues (Lyon) and Independent
University of Moscow. Computer resources were provided by
the Institut de Mathématiques de Jussieu (Paris); we thank
the computer support team for the quality of the environment.
We thank Enrique Artal Bartolo, Jorge Carmona Ruber, and
Bernard Teissier for useful discussions.

REFERENCES

[Artin 47] E. Artin. “Theory of Braids.” Ann. of Math. 48:2
(1947), 101-126.

[Bannai 76] E. Bannai. “Fundamental Groups of the Spaces
of Regular Orbits of the Finite Unitary Reflection Groups
of Dimension 2.” J. Math. Soc. Japan 28 (1976), 447-454.

[Bessis 01] D. Bessis. “Zariski Theorems and Diagrams for
Braid Groups.” Invent. Math. 145 (2001), 487-507.

[Bessis 03] D. Bessis. “Variations on Van Kampen’s Method.”
arXiv:math.GR/0301327.

[Bessis and Michel 03] D.  Bessis and J.  Michel.
“VKCURVE, Software  Package for  GAP3.
Available from World Wide Web (http://www

.math.jussieu.fr/~jmichel /vkcurve.html), 2003

[Brieskorn 71] E. Brieskorn. “Die Fundamentalgruppe des
Raumes der reguldren Orbits einer endlichen komplexen
Spiegelungsgruppe.” Invent. Math. 12 (1971), 57-61.

[Broué 00] M. Broué. “Reflection Groups, Braid Groups,
Hecke Algebras, Finite Reductive Groups.” In Cur-
rent Developments in Mathematics, 2000, pp. 1-107,
Somerville, MA: Int. Press, 2001.

[Broué et al. 98] M. Broué, G. Malle and R. Rouquier. “Com-
plex Reflection Groups, Braid Groups, Hecke Algebras.”
J. reine angew. Math. 500 (1998), 127-190.

[Burkhardt 91] H. Burkhardt. “Untersuchungen aus dem Ge-
biete der hyperelliptischen Modulfunctionen I1.” Math.
Annalen 38 (1891), 161-224.

[Dimca 92] A. Dimca. Singularities and Topology of Hyper-
surfaces. Berlin: Springer-Verlag Universitext, 1992.

[Gibson et al. 76] G. Gibson, K. Wirthmiiller, A. du Plessis,
and E. Looijenga. Topological Stability of Smooth Map-
pings, Lecture Notes in Mathematics, 552. Berlin:
Springer-Verlag, 1976.

[Hubbard et al. 01] J. Hubbard, D. Schleicher, and S. Suther-
land. “How to Find All Roots of Complex Polynomials
by Newton’s Method.” Invent. Math. 146 (2001), 1-33.

[Maschke 87] H. Maschke. “Ueber die quaternire, endliche,
lineare Substitutionsgruppe der Borchardt’schen Mod-
uln.” Math. Ann. 30 (1887), 496-515.

[Orlik 89] P. Orlik. “Basic Derivations for Unitary Reflection
Groups,” with an appendix by Hiroaki Terao and Yoichi
Enta. Contemp. Math 90 (1989), 211-228.

[Orlik and Solomon 88] P. Orlik and L. Solomon. “Discrim-
inants in the Invariant Theory of Reflection Groups.”
Nagoya Math. J. 109 (1988), 23-45.

[Orlik and Terao 92] P. Orlik and H. Terao. Arrangements
of Hyperplanes, Grundlehren der mathematischen Wis-
senschaften 300, Berlin: Springer-Verlag, 1992.

[Schonert et al. 94] M. Schonert et al. GAP - Groups, Algo-
rithms, and Programming. Lehrstuhl D fiir Mathematik,
RWTH, Aachen, Germany, fourth edition, 1994.

[Shephard et al. 54] G. C. Shephard and J. A. Todd. “Finite

Unitary Reflection Groups.” Canad. J. Math. 6 (1954),
274-304.

David Bessis, DMA, Ecole normale supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France

(david.bessis@ens.fr)

Jean Michel, LAMFA, Université de Picardie-Jules Verne, 33 Rue Saint-Leu, 80039 Amiens Cedex, France and
Institut de Mathématiques, Université Paris VII, 175 rue du Chevaleret, 75013 Paris, France

(jmichel@math.jussieu.fr)

Received December 11, 2003; accepted February 24, 2004.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


