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The Ramanujan continued fraction
a
b2
4a®
0+ 9b°
n+t

Ry(a,b) =

n+
n+

is interesting in many ways; e.g., for certain complex param-
eters (1,a,b) one has an attractive AGM relation R, (a,b) +
Ry(b,a) = 2R, <(a +b)/2, \/@). Alas, for some parameters
the continued fraction R, does not converge; moreover, there
are converging instances where the AGM relation itself does
not hold. To unravel these dilemmas we herein establish con-
vergence theorems, the central result being that R1 converges
whenever |a| # |b|. Such analysis leads naturally to the conjec-
ture that divergence occurs whenever a = be’® with cos? ¢ # 1
(which conjecture has been proven in a separate work) [Bor-
wein et al. 04b.] We further conjecture that for a/b lying in
a certain—and rather picturesque—complex domain, we have
both convergence and the truth of the AGM relation.

1. BACKGROUND

In a companion treatment [Borwein et al. 04a] we focused
on evaluation of the continued fraction

a
b2 (171)
40>

1+ o’
1+

Rl (CL, b) =

1+
1+

for real parameters a and b. Note that, formally,
Ry(a,b) = Ri(a/n,b/n) so that with impunity we may
focus upon the fraction displayed in the abstract, with
1 := 1; thus, we have a two-complex-parameter problem.
For complex parameters (a,b) convergence of R; turns
out to be—both historically and currently—problematic.
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A formal AGM relation—known to be true at least for
positive real a and b [Borwein et al. 04a]—reads

R, (a;—b7@> _ Ra(a,b) ;—Rl(b,a).

(1-2)

Yet, one wishes the three relevant fractions to converge
prior to any resolution of the truth of such an AGM re-
lation. So, we are primarily concerned with a precise
determination of the convergence domain

Do := {(a,b) € C x C: Ry(a,b) converges on C},

where € := C U {oo} denotes the extended complex field.
It is important to note what is meant by “convergence”
on C in the modern complex-continued-fraction context.
If p, /qn is the nth convergent to Ry (we remind ourselves
in Section 3 of the definition of such convergents), we say
that Rq converges if p, /g, has a limit in C. Thus, diver-
gence (nonconvergence) must be oscillatory—say bifur-
cated or chaotic (later, we exhibit examples of such diver-
gence scenarios). This modern definition of convergence
conveniently handles situations, such as the instance that
b?/(1+4a?/+...) converges to a value (—1) € C, whence
R1 = oo still converges on C.

Some preliminary nomenclature is relevant. We shall
often refer to real cuts, that is sets («, 3) for reals o < 3;
when we say a complex number z belongs to («, (),
we mean z must be real with z € (a,b) in the usual
sense of real-interval membership. For example, z is
pure-imaginary—i.e., z = 0 + iy with real y # 0—iff
2% € (—00,0). Also the cut (—oo,—1/4) (and its closure
(=00, —1/4]) will loom importantly in our convergence
analysis.

We are eventually motivated to consider a special set
‘H that turns out to be the open exterior of a cardioid-
knot (the picturesque character of H is exhibited in the
companion treatment [Borwein et al. 04a]) as

H:={z€C:|Vz/(1+2)] <1/2},

where we note for the moment that the classical AGM
inequality (a+b)/2 > v/ab for positive real a # b is true in
the sense of magnitude—i.e., |(a +b)/2| > ‘\/%‘—When
a/beH.

We next establish two-complex-parameter domain def-
initions

Dy :={(a,b) € C xC : |a|] # |b|},
D3 := {(a,b) €C xC:a®=b> ¢ (—00,0)},

Dl = DQ @] Dg.

Our central result will be that
Dy C Dy,

and we are eventually led to conjecture that, in fact,
Dy = Dy, which would establish the precise conver-
gence domain for R (a,b). As intimated in our abstract,
this conjecture has been resolved in a separate treat-
ment [Borwein et al. 04b] that employs apparatus from
Section 5.

It is a tribute to the profundity of the Ramanu-
jan construction that in the following treatment we
need to rely upon some of the deepest theorems in
complex-continued-fraction theory, including Stieltjes-
fraction theorems, convergence-set results such as the
“parabola-sequence” and “oval” theorems, and yet other
results from the finest of the complex-fraction literature.

2. THE INSTANCE a? = b?

Assume a? = b2. Clearly, if Ry (a,b) converges then, by
the very definition of the R, fraction, each of the four
constructs Rq(%a, £b) converges (to £R1(a,b)). So, it
suffices to analyze just

a — 1 a1z
Rafoa) — "y

1+1+ gy z
1+

=14 5(2),

where o, := n?, z := a2, and S is a classical Stieltjes

fraction (as all o, are positive real). We are led immedi-
ately to the following theorem:

Theorem 2.1. a/Ri(a,a) converges to a holomorphic
function of a® on either half-plane Re(a) > 0 or Re(a) <
0, and so, for a*> = b*, Ri(a,b) converges for all
(CL, b) € Ds.

Remark 2.2. Thus, R (a,a) converges on C for all a not
pure-imaginary: i.e., a2 € (—o0,0).

Proof: This all follows from the Stieltjes theorem
[Lorentzen and Waadeland 92, Theorem 22, page 138]. O

We can go further, to establish convergence bounds in
the following form:

Theorem 2.3. For (a,b) € D3, so that b = ta and a is
not pure-imaginary, the convergents to S satisfy

2|a|? sec O

n4/(1+ 1116]a|? sec? 9) '

(@) - 22

where @ = min(|arg(a)|, |arg(—a)]).
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Proof: This follows directly from the Gragg-Warner
bounds [Lorentzen and Waadeland 92, page 140] for
Stieltjes fractions. O

This result can be compared to similar convergence
bounds for Ri(a,a), for real a, in the companion treat-
04a]. The situation is, when
a? = b2, and a is not pure-imaginary, we do have conver-

ment [Borwein et al.

gence, but said convergence is “poor,” i.e., not geometric
(by geometric we mean the error relevant to the p,/q,
approximant would be O (~™) for some real 6 > 1).

3. EVEN/ODD FRACTIONS

For a continued fraction

ai
a2

a3
Gy

1+

T =
1+

14

1+

a convenient formula with which one may ignite conver-
gence analyses is the classical relation (for n > 1)

n
S e U U % (3-1)
qn dn—1 qndn—1
with the standard assignments (po,qo) := (0,1) and

(p1,q1) = (a1,1), and recurrences (for n > 2) in the

form (pn,qn) = (Pn—1,9n—1) + an(Pn—2, ¢n—2). We shall
say that any continued fraction converges absolutely if

oo

D

n=1

& Pn—-1

qn qn—1

< o0

As pointed out in [Lorentzen and Waadeland 92, page
128], if a fraction converges absolutely, then it converges
to a finite limit. Similarly, if  has a finite value and
S| —pn/an| < 00, then x is absolutely convergent, since
|Pn/Gn — Pn—1/@n-1| < |2 = pn/gn| + |2 — Pn-1/qn-1|.

Now, a typical scenario for divergence of x is that the
even convergents pa,/qe, (to the “even part” of z) and
the odd convergents pan11/qan+1 (to the “odd” part) ap-
proach distinct limits. If, however, the even/odd parts
converge absolutely, that is we have both

i P2nt2  P2n 00, i Pan43  P2nt1 < o0,
n=0 qon+2 qon n—0 don+3 q2n+1
(3-2)

then much can be gleaned in regard to convergence of
the original fraction x, especially if one also knows the

Stern-Stolz construct

i ﬁ |ak|(71)nik+l .

n=1k=1

(3-3)

A powerful result in this regard is the following lemma

orentzen an aadelan , Lemma 19, page ,
L d Waadeland 92, L 19 127
[Jones and Thron 80):

Lemma 3.1. (Jones-Thron.) If the even/odd parts of
x converge absolutely in the sense of (3-2), then x con-
verges if and only if the Stern-Stolz series (3-3) diverges
to infinity.

To employ the Jones-Thron result for the Ramanujan
fraction, we first write for positive odd integer M
a
b2
4a?
1+ -+ Su(a,b)

Ri(a,b) = (3-4)

1+

1+

where

M2b2

(M +1)%a®
(M + 2)2b2

M 2,2
14 M +3)%a”
14+

S]\/[(a,b) =
1+

1+

We shall focus upon these “tail fractions” Sys(a,b), first
dispensing with the Stern-Stolz series issue. Happily, for
these tails Sp; we always have divergence to infinity of
(3-3), as stated in the following theorem:

Theorem 3.2. For any positive odd M, the Stern-Stolz
series (3-8) for Syi(a,b) diverges to infinity.

Remark 3.3. The companion treatment [Borwein et al.
04a] gives precise, equivalent asymptotics for M = 1.

Proof: The nth summand of the Stern-Stolz series (3-3)
is, for n even,

)

T(M/2)T(M/2 +nj2 + 1/2)) (b/a)"

(I‘(M/Q +n/2)D(M/2 +1/2)

while for odd index n the summand is

1 D(M/2+n/2)T(M/2+1) 2 et
M2 (F(M/Q F1/2T(M/2+n/2 + 1/2)) (a/t)

Now, by the standard Stirling formula, each of the
squared-gamma factors is asymptotic to (constant) x1/n,
so that the sum (3-3) is divergent to infinity. O
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a?b? (M +2n — 1)2(M + 2n)?

ceyv(n) = 7

14 (M +2n)20% + (M + 2n + 1)2a2)(1 + (M + 2n — 2)2b% + (M + 2n — 1)%2a2)’

dy(n) :=cy(—M —n+1).
FIGURE 1.

We now establish exact expressions for the even and
odd parts of Sys(a, b) for positive odd M. Using standard
even/odd decompositions [Lorentzen and Waadeland 92,
pages 83-85], we have

Sy (a,b) =
M?p?
14+ (M+1)2a2+ (14 (M +1)%2a% + M2b?)Fyy’
S3i(a,b) = M2V + (1+ (M — 1)%a® + M*6*)G

where we define

and

with the definitions of cpr(n) and dps(n) as in Figure 1.
With a view to Lemma 3.1, our aim is to show that,
for certain parameter pairs (a,b), both S§¥* and S5
converge absolutely (and hence to finite values in C). In
such cases we have S§y" = S334 as well.
A key function of which we shall make both computa-
tional and theoretical use is

a?b?

(a2 + 02)2’
for this is the asymptotic large-n limit of either ¢ps(n) or
dpr(n) when a? +b2 # 0. In fact, for a® + b2 # 0 we have

ey (n),dyr(n) ~ c(a,b) + O(1/(M + n)).

A useful collection of straightforward results is the
following:

c(a,b) = — (3-5)

(3-6)

Lemma 3.4. We have c(a,b) € (—oo,—1/4] if and only
if la| # |b|. In particular, if a/b = €', then c(a,b) =
—(1/4)sec? ¢. Finally, if c(a,b) & (oo, —1/4], then the
two roots of w* —w—c(a,b) = 0 are unequal in magnitude.

Proof: If a real p has —p € (oo, —1/4], the supposition
a2b2/(a2 =+ b2)2 =p
means, with p > 1/4,

p (12p:|:i\/—4p1)1/2
a =
2p ’

so that |a/b| = 1.
(and so the sec-identity is immediate from Definition
(3-5)) and in the case where ¢ is real, we have c(a,b) =
—1sec? ¢ € (—oo, —1/4]. Finally, the quadratic roots are
w=(1/2) (1 +
observation in the complex plane that |1 — z| = |1 + z] if

For the converse, with a = be'®

1+ 4c(a, b)) It is a simple geometric

and only if Re(z) = 0. Thus, the roots can only be equal
in magnitude if ¢(a, b) is real and < —1/4. O

4. ~-FRACTIONS

With a view to the even/odd decompositions Fy; and
Gy of the previous section, we introduce the concept of
a ~y-fraction, as

. mn
V2
1+ 3

1
+1+...

X =

(4-1)

where the v elements approach a finite complex limit, say
v, — ¢ € C. For our analysis, it is a welcome property of
the Ramanujan fraction R4 that both Fi; and Gy of the
previous section are, for a? + b? # 0, gamma-fractions,
with v, — ¢(a,b).

It is instructive to consider first the canonical case in
which the gamma-fraction = has v, = c for alln € Z7,
whence we have the classical result (see, e.g., [Wall 48]):

Theorem 4.1. Assume that every v, = c with ¢ ¢
(=00, —1/4) (note here the real cut is open). Then x
given by (4—1) converges absolutely to the value r — 1,
where r is the larger (in magnitude—see Lemma 3.4) of
the roots (1 + \/1+740) /2 of w* —w —c=0. In partic-

ular, the convergents of x satisfy

Zﬁ _ Pn—-1
dn qn—1

_ _ o2l 2"
= [r@—s/m? |2,
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where s # r is the other quadratic root (and by Lemma
3.4, |s| < |r|).

Remark 4.2. For ¢ = —1/4 exactly, the fraction z does
converge (to the value x = —1/2), but not absolutely.
In fact, [1/2 + pn/qn| = 1/(2n + 2) for all n > 0, and
this slow convergence is a hint as to how nonabsolute
convergence might occur for some continued fractions
(4-1) with =, — ¢ more intricately.

Proof: All follows from a closed form for the convergents
Pn/@n to z, namely

P = c(r" = s")/(r = s),

g = (" ="/ (r — ),

and from the fact that |r| > |s|. O

It turns out that, for any ¢ € (—oo,—1/4), we have
divergence [Wall 48]; for example, with ¢ := —1/2 one

has

pn _ 1 sin(nm/4)

G Vasn((n+ Ur/d)
whose values oscillate endlessly though {0, —1/2, -1, co}.
Such observations and Theorem 4.1 completely settle the
convergence problem for v-fractions with all ~,, = c.

A computational digression is relevant here: it is of
interest that the function ¢(a,b) defined in (3-5) can be
used to accelerate rather sluggish situations, in the fol-
lowing way (a similar idea is enunciated in our compan-
ion treatment [Borwein et al. 04a] for Gauss continued
fractions). We use (3-5) as an approximation to cps(n)
for some large n, so that, when a? # b2, the continued
fraction Ry(a, b) can be calculated according to the chain
starting with (3—4), and M = 1—but at a key juncture—
using the fact that a periodic fraction defined as

c(a,b)
c(a,b)
e

z(a,b) :=
1+

is given (via Theorem 4.1) by
2 b2

x(a7b>:_a2+b2 or - a? 4+ b2’

whichever is larger in magnitude. We may therefore
attempt to calculate

a
Rl(aa b) = b2 P

1+ 1+4a2+(1+4a2+b2)Fy

with an approximation presumed accurate for suitably
large n; namely, we use the finite continued fraction de-

velopment
1
F1 ~ CI( )
1 c1(2)
Jr
1. (n—1)
1+ x(a,b)

That is, in this computational procedure the tail fraction
from c¢;(n) inclusive is replaced by the number x(a,b).
This expedient of tail approximation really does improve
matters when |a| = |b|. For example, for a = b =1 and
the known evaluation R1(1,1) = log2 (see [Borwein et
al. 04a]), we found that pigoo/qi000 is correct only to
about 3 good decimals for the original continued fraction
(1-1); yet, the same amount of work using the even con-
vergents pagoo/q2000, but also doing the tail-substitution
with 2(1,1) = —1/2, yields ten good decimals. Inciden-
tally, rate-bounding in regard to the “oval” theorems in
the literature [Lorentzen and Waadeland 92, pages 141
146] can be used to effect good bounds on the rate of
convergence of such approximations.

We now revert to the theoretical avenue by observing
that a relevant set of complex numbers not on a certain
real cut can be characterized by

{ceC:c¢(—o0,—1/4]} =
{ceC:lc] <1/4}U{ceC: |arg(c)| < 7}.

There is overlap in this union, but convenient theorems
are possible for each component of said union.

Theorem 4.3. Assume |c| < 1/4 and set e :=1/4—|c|. If
in the vy-fraction (4—1) we have

|7 — | < /2
then x s absolutely convergent, with

2
1+ 2e)2n’

Dn Pn—-1

dn dn—1

<7

Proof: Employing the Sleszyﬁski—Pringsheim expedient
[Lorentzen and Waadeland 92, page 35| for such bounded
elements -, we write the equivalent form

27

472
43

24 ...

2+
2+
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and observe for this continued fraction that

‘Qn| > 2|Qn71| - (1 - 25)|Qn72|'
Thus, |gn| > (1 + 2¢)|gn—1] and so, by (3-1),

]ﬁ . Pn—1 g HZ:l Yk
Gn  Qn—1 2 (14 2¢)2n=3"
and the result follows. O

To complete this foray for the set {¢ & (—o0,—1/4]},
we now establish the following theorem:

Theorem 4.4. Assume 0 := |arg(c)| < 7 and that for the
~-fraction x (4—1) we have

|V — | < h:= §COSQ(0/2).

Then x is absolutely convergent, with

1 le| + h
<_

Vh (L4 R/ (lef + h))»=t

‘ Pn
o Pn
In

Proof: This follows quickly from the parabola-sequence
theorem [Lorentzen and Waadeland 92, Theorem 21,
pages 136-137], with the multiplier assignment g := 1/3.

O

Now we have the central result of the present treat-
ment:

Theorem 4.5. For |a| # |b|, the Ramanujan fraction
Ri(a,b) converges on C.

Proof: By Lemma 3.4, |a] # |b| implies c(a,b) &
(—o00,—1/4]. By Lemma 3.1 and Theorems 4.3 and 4.4,
and by the observation that for sufficiently large odd M
the bounds on |y, —¢(a, b)| in the two stated theorems are
indeed met either for 7y, := car(n) or for v, := dp(n), we
have absolute convergence of the even/odd parts of Sy;
hence, convergence of the original fraction Ry (a,b). O

Corollary 4.6. Dy C Dy, that is, Ri(a,b) converges on 14
if la| # |b] or a® = b* with a not pure-imaginary.

Proof: This follows from Theorems 2.1 and 4.5. U

5. DIVERGENCE
A special case of divergence of R; runs as follows:
Theorem 5.1. If a is pure-imaginary, that is a® €

(—00,0), then the fraction Rq(a,a) diverges. In particu-
lar, R1(4,%) diverges.

Proof: We have in this case

1 1 1

Now, the Jacobsen-Masson theory (see [Lorentzen and

Waadeland 92, Theorem 32, page 159] and references
therein) shows that, if negative-real fraction elements

ci(n) are eventually less than —1 — —T

1 — 7o,z for some real
r > 1, then the fraction diverges. Thus, S{'*"(a,a)
diverges, and so Ri(a,a) cannot converge. (Similarly,

the odd part S¢9¢ diverges.) O

In attempting to establish divergence for other param-
eter pairs, in particular the cases a = bi, we developed
means to combine computation and theory and prove in-
equality of the even/odd parts, even though both parts
often themselves converge. The technique starts with the
assumption of a fraction (4-1), but not a gamma-fraction,
as vy, — 00; instead,

Yr = (N + 5n)2a

which assignment—when we know ¢;(n) and di(n) for
cases a = bi—implicitly defines the pertubations J,,. An
attractive recurrence-transformation results if we define
pn, implicitly by

n+1

dn = Pn H(]+6j)’

j=1

while the usual recurrence ¢, = ¢p—1 + VYngn—2 for gy =
q1 = 1 yields

_ Pn—1+ (n + 6n)pnf2

Pn n+14 0,11

In turn, we have an exact formula

N R
" dn qn—1 Prpn-1n+1+ 6n+1

For suitably bounded |0,| and for p, confined to, say,
a circle in the proper right half-plane, the series for the
fraction = ) ., A, is convergent; moreover, we can
establish bounds on the error relevant to the p, /qn ap-
proximant. QOur technique, then, is to calculate the
even/odd parts to some level n and bound the error such
that we know rigorously the inequality of said even/odd
parts.

An exemplary application of this computational-
theoretical fusion is the following:

Theorem 5.2.
diverge.

Both Ri(1,i) and Ry(e™/4 e~im/4)
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Remark 5.3. The second case of the theorem contra-

dicts previous literature claims that convergence occurs
for Re(a), Re(b) > 0; see [Borwein et al. 04a].

Proof: For (a,b) = (1,4) we have

-1
even 1 . —
Sl ( 71) 5—|—4F17
where )
Fl = Cl( )
1 c1(2)
RE)
14—
1+
with, here,
 n(2n+1)?
BT

(and note that relation (3-6) does not apply, as a®+b* =
0). This F; does converge to a finite value according to
the above analysis involving the p,, or to the “parabola”
theorem [Lorentzen and Waadeland 92, Theorem 20,
page 130]. In this particular case, (a,b) = (1,1), the er-
2 < cl(n) <
n? + 1/4, so the recursion ¢, = ¢,—1 + c1(n)gn_2 >
Gn-1 + n%qn_o tells us that, in fact, ¢, > (n + 1)!/2.
Thus, we have (the first inequality here is allowed when
all fraction elements are positive real)

H;'I:1 c1(J)

dndn—1

ror analysis can be simplified. We have n

d

< b
n+1

=
an

for a positive constant d. The convergence is “slow” and
nonabsolute, but one may use this convergence bound to-
gether with computation up to appropriate n to establish

S¢Un(1,4) € [—0.15, —0.14].

On the other hand, one may show in similar fashion that
—1
c1(=2)
c1(=3)
—4
)
1+

S0dd(1,4) = -1+

€[-1.5,-1.4],
1+
1+

so S1(1,¢) is shown to have distinct even/odd parts. Since
Ri(a,b) = a/(14+S51(a,b)), we thus see that the even/odd
parts of Ry are known as

REV™(1,4) ~ 1.167,

RM(1,7) ~ —2.38...,

both provably correct to the implied precision; thus,
R1(1,4) diverges.
For (a,b) = (e!™/4,e~""/*) the parabola theorem ap-

plies with

Tl2 n 2
er(n) : 2nen )

= d = c1(—n);
_2_Z+(4_42)n+8n27 1(“) Cl( TL),

so, both F} and G converge to finite values. This conver-
gence can also be shown via the aformentioned definition
Yo = (n + §,)? with

5, = \/i/8 +0(1/n?).

The computation-bounding technique for, say, n = 10°
and a suitable error bound (we omit the details on bound-
ing of p,) yields

REven (e'™/4, e=im/4) ~ (.8185 4 0.867,

R (/4 e7™/1) ~ —0.103 + 0.5834,

both approximations correct to the implied precision.
Thus, R, does not converge for the given parameter pair.
O

Such isolated divergence results, together with exten-
sive computations, have led us to the following conjec-
ture. (Again, a separate work has resolved a good deal
of conjecture; in particular, Conjectures 5.4 and 5.5, and
the implicit conjecture in Remark 5.6, are now proven
[Borwein et al. 04b]).

Conjecture 5.4. Dy = D;. Equivalently, given Corollary
4.6, Ri(a,b) diverges if a/b = e'* with cos®> ¢ # 1.

We have been able to refine Conjecture 5.4—which
would completely settle the convergence question for the
Ramanujan fraction—down to the following (experimen-
tally motivated) form, amounting to a dynamical equiv-
alent for divergence:

Conjecture 5.5. For complex nonzero a and real ¢ with
cos?¢p # 1, ora € T and cos®> ¢ = 1, and any complex
initial values (ro, 1), the sequence (ry,) determined by the
recurrence (n > 1),

2
n
T a1y T s e
2 2i¢p
n-e
= ————Tp1+ —5—"n- dd
CL(’I’L—Fl/Q)Tn 1+n2_1/4rn 2, TN odd,

is bounded in C.
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Remark 5.6. One could also posit that a recurrence

_ Pn—1 + NWpPn—2
n+1

n )

with w,, = a2 or w, = a?e?? as n is even/odd respec-
tively, has p, = O(a™/+/n), yielding an equivalent anal-
ysis. The advantage of the particular recurrence form
in Conjecture 5.5 is the simple goal of boundedness of
the |r,|, while the advantage of the p-recurrence sug-
gested here is that the algebra is less recondite. We note
that Conjecture 5.5 has been indirectly settled, via The-
orems 5.1 and 5.2 (and the analysis in the following The-
orem 5.6), for the cases a pure-imaginary and ¢ = 0,
(a,¢) = (1,7/2), and (a, ¢) = (i, —7/2). Also, though
we believe the boundedness of the r, is independent of
initial values, we could, if necessary, posit a conjecture
having rg := 1/T'(3/2) and r; := 1/(aI'(5/2)) (or for the
alternative p sequence, po := 1 and p; := 1/2), for such
initial values are consistent with ¢y = ¢; := 1 for the
original fraction.

The fascinating recurrence in Conjecture 5.5—or its
various equivalent recurrences as in Remark 5.6—give
rise to the next theorem:

Theorem 5.7. Conjecture 5.5 implies Conjecture 5.4, i.e.,
that DO = Dl.

Proof: Let p,/q, be the convergents to the fraction

b2
4a? ’
92
16a2
14—
1+

Sia,b) ==
1+
1+

where a/b = €® with real ¢ and cos? ¢ # 1. We have
qgo = q¢1 = 1. Now define

dn
a"T'(n+3/2)’

Tn =

so that the r, satisfy the recurrences of Conjecture 5.5.
For the S; fraction, we have, for n even, via relation
(371)7

n!? aet"?

T T(n+3/2)T(n+1/2)

Pn Pn-1

dn qn—1

A, =

TnTn—1

Thus, by Conjecture 5.5, A,, is thus bounded below, and
so 81, and hence R, is divergent. O

Conjecture 5.5—which would completely settle the
convergence problem for the Ramanujan fraction—is mo-
tivated by extensive numerical experiments: the r, of
said conjecture appear to be bounded (alternatively, the
pn/a" decay like 1/4/n) in every case we have studied.
One thing we can say at this juncture: the theory of Gill
on Mébius transforms [Gill 73] implies that, for a/b = €i®
with cos? ¢ # 1, then both even and odd parts of Ry(a,b)
do converge. (Indeed, we saw two manifestations of this
in Theorem 5.2.) We are saying via our conjectures that
such even/odd parts should converge to distinct limits.
Thus, there is a kind of “bifurcation” for a/b = ¢'® with
cos?¢ # 1. For the parameter instances a? = b? for
b € Z, it turns out that both even/odd parts of Rq(a,b)
are always bifurcated or in some way chaotic. The reso-
lutions of these various conjectures and ideas follow the
spirit of Theorem 5.7 as applied to specific recurrence
relations [Borwein et al. 04b].

6. AGM RELATION REVISITED

The remarkable AGM relation (1-2) that motivated both
this and the companion [Borwein et al. 04a] treatments
can now be put in perspective:

Theorem 6.1. If a/b € H then each of the three fractions

Ri(a,b), Ri(b,a), and Ry ((mb)/z,@)
converges on é

Proof: For a/b € H none of the relevant parameter pairs
enjoy equal magnitudes, so Theorem 4.5 settles the issue.
O

It is fascinating that, in spite of Theorem 6.1—and
as suggested in the abstract—there are parameter pairs
(a,b) where all three fractions converge and yet the AGM
relation (1-2) is false. For example,

R1(2i,1) + Ry (1,26) # 2Ry (1/2 44,1 + 1),

which can be gleaned easily via some computation and
the relatively strong bounds of Theorem 4.4.

Conjecture 6.2. For a/b € H the AGM relation (1-2)
holds on C (with, as we know, all fractions converging

on C).

In regard to Theorem 6.1 and Conjecture 6.2, one must
take care to observe certain anomalies. For example, it
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turns out that R4 (a,b) converges to infinity when

F2
a:=1 7(1/4)
47T3/2 ’

I2(1/4)

=17

4m3/2\/2’

even though a/b € H; here Conjecture 6.2 remains intact,
in the sense that the AGM relation for this pair (a, b) then
reads oo = oo. Note that for this peculiar parameter pair
(and certain others) the fraction

b2
4a?
9b2
1 2
14 6a
1+

Sl (a, b) =

1+
1+

actually converges to the finite value —1. Such singular-
ities in the AGM relation can also be inferred from the
sech identities (3-1) and (3-2) in the treatment [Borwein
et al. 04a] that reveal the possibility of infinitely many
poles in the summation.

We believe it very likely that Conjecture 6.2 would
follow from careful examination of the analyticity prop-
erties (in 7, a,b) of the aforementioned sech series and
the corresponding properties for the continued fractions
with |a| # |b].

7. OPEN ISSUES

e We still do not know an exact evaluation—in the
sense, say, of closed forms as in [Borwein et al. 04a]
for Ri(a,a) with certain a—for unequal a and b;
except, as we state in Section 6, we do know some
(a,b) with Rq(a,b) = occ.

e Since the conjectures of Section 5 have been resolved
in a separate treatment [Borwein et al. 04b], there
remains Conjecture 6.2, which is open. Aside from
the difficult problem of correctly analyzing sech iden-
tities (see end of Section 6), there is also the dilemma
of what points on the closure of H are valid AGM
points.
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