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The Ramanujan AGM continued fraction is a construct

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η +
...

enjoying attractive algebraic properties, such as a striking
arithmetic-geometric mean (AGM) relation and elegant connec-
tions with elliptic-function theory. But the fraction also presents
an intriguing computational challenge. Herein we show how to
rapidly evaluate R for any triple of positive reals a, b, η. Even
in the problematic scenario when a ≈ b certain transformations
allow rapid evaluation. In this process we find, for example,
that when aη = bη = a rational number, Rη is essentially an L-
series that can be cast as a finite sum of fundamental numbers.
We ultimately exhibit an algorithm that yields D good digits of
R in O(D) iterations where the implied big-O constant is in-
dependent of the positive-real triple a, b, η. Finally, we address
the evidently profound theoretical and computational dilemmas
attendant on complex parameters, indicating how one might ex-
tend the AGM relation for complex parameter domains.

1. INTRODUCTION

In Entry 12 of Chapter 18 of Ramanujan’s Second Note-
book [Berndt 99b] one finds the beautiful construct

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

(1–1)

which we interpret—in most but not all of the present
treatment—for real a, b, η > 0. Remarkably, for the indi-
cated parameter space, R satisfies an AGM relation

Rη

(
a + b

2
,
√

ab

)
=

Rη(a, b) + Rη(b, a)
2

. (1–2)
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This relation is one of many expedients we shall develop
when computing Rη. It will turn out that the computa-
tionally difficult cases can be summarized in the phrase
“b is near to a,” including the case a = b. What we shall
eventually exhibit is a computational algorithm that is
uniformly of geometric convergence (i.e., the error after n

steps is O (θ−n) for some real θ > 1) across the entire pos-
itive quadrant a, b > 0. Along the way, we find attractive
identities, such as the expression of any R1(r, r), where
r is rational, as a finite series of fundamental numbers.
Finally, we consider complex a, b and note the consider-
able difficulties in such analysis; accordingly, we prove
results and posit various conjectures pertaining to frac-
tion convergence and the domain of validity for the AGM
relation (1–2).

We would be remiss in not adding this perspective:
the present research began when the authors realized—
via numerical experimentation—that R1(1, 1) “seemed
to be” the number log 2. Such is the value of experiment:
one can be led thereby into deep waters.

2. PRELIMINARIES

An initial observation is that

Rη(a, b) = R1(a/η, b/η),

as can be formally inferred by cancellation of the η ele-
ments down through the continued-fraction form. Such
manipulations are valid when the continued fraction Rη

converges. One way to prove convergence—at least for
positive, real a and b—is to put the entity a/R1 in RCF
(reduced continued fraction) form, meaning

R1(a, b) =
a

[A0;A1, A2, A3, . . . ]
(2–1)

:=
a

A0 +
1

A1 +
1

A2 +
1

A3 + ...
where the elements Ai are all positive reals. (We take the
more restricted, classical mnemonic SCF (simple contin-
ued fraction) to denote the instance of an RCF where
each Ai is a positive integer; in our present case, though,
the Ai are not generally integers.) Inspection of Ramanu-
jan’s pattern for R reveals that the RCF elements can be
given explicitly:

An =
n!2

(n/2)!4
4−n bn

an
∼ 2

πn

bn

an
, n even,

An =
((n − 1)/2!)4

n!2
4n−1 an−1

bn+1
∼ π

2abn

an

bn
, n odd.

Here we have indicated also the asymptotic behavior of
the An. This element representation leads immediately
to the following:

Theorem 2.1. For any positive real pair a, b, the continued
fraction R1(a, b) converges (to a finite limit).

Remark 2.2. In continued-fraction theory there is the
concept of converging on the extended complexes, includ-
ing ∞ (see Section 9), so we have emphasized a finite limit
in Theorem 2.1.

Proof: It is known that an RCF with positive real ele-
ments converges to a finite limit iff

∑
Ai diverges (this is

the Seidel–Stern theorem [Khintchine 64, Lorentzen and
Waadeland 92]). In our case, such divergence is evident
for any choice of real a, b > 0.

Indeed, the divergence of
∑

Ai is only logarithmic for a =
b, and this is a true indication of slow convergence (we
wax more quantitatively later). Sure enough, our interest
in the computational aspect started with the question of
how to rapidly evaluate

R(a) := R1(a, a)

for positive real a and, thereby, to prove some suspected
identities. We shall encounter later a different contin-
ued fraction for R(a), as well as other computationally
efficient constructs.

3. SECH-ELLIPTIC FORMS

Using connections between standard Jacobi theta func-
tions θ2, θ3 and elliptic integrals, we can establish various
results; the wonderful sech identities to follow stem from
classical work of Rogers, Stieltjes, Preece, and, of course,
Ramanujan [Berndt 99b] in which one may find the ear-
lier work detailed. We start with the following theorem.

Theorem 3.1. For real y, η > 0 and q := e−πy we have

η
∑
k∈D

sech(kπy/2)
η2 + k2

= Rη(θ2
2(q), θ

2
3(q)),

η
∑
k∈E

sech(kπy/2)
η2 + k2

= Rη(θ2
3(q), θ

2
2(q)),

where D,E denote respectively the odd, even integers.
Accordingly, the Ramanujan AGM identity (1–2) holds
for positive triples η, a, b. �
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Remark 3.2. The following proof for the AGM conclusion
has been interpreted for certain complex a and b some-
times incorrectly in the literature (see Section 9). For the
moment, we are stating the AGM part of Theorem 3.1
for positive reals a and b, with attention paid to complex
parameters later in this work. In the treatment of Berndt
(see proof) the classical work of Stieltjes and Rogers is
seen to imply that the relevant (real-parameter) contin-
ued fractions do converge and equal the sech series via
certain integrals of Jacobi-elliptic functions. Similarly,
[Wall 48] has fraction-integral equality theorems. Such
results have not been completely applied for complex pa-
rameters, and this gives rise to a difficult, conjectural
scenario we address in a later section.

Proof: The sech relations are proved—with somewhat
different but equivalent notation—in Berndt’s treatment
[Berndt 99b, Vol II, Ch. 18] of Ramanujan’s Notebooks.
As for the AGM identity, observe that for 0 < b < a the
assignments

θ2(q)2/θ3(q)2 := b/a,

η := θ2(q)2/b

are possible (since b/a ∈ [0, 1), see [Borwein and Borwein
87]), implicitly define q, η, and, together with the Jacobi
identities

θ2(q)2 + θ3(q)2 = θ3(
√

q)2,

2θ2(q)θ3(q) = θ2(
√

q)2,

and the sech sums in the theorem, yield

R1

(
θ3(q)2/η, θ2(q)2/η

)
+ R1

(
θ2(q)2/η, θ3(q)2/η

)
= 2R1

(
θ3(

√
q)2/(2η), θ2(

√
q)2/(2η)

)
.

Thus, the AGM identity (1–2) holds for any positive
reals a > b. The case 0 < a < b is handled symmet-
rically, starting with θ2(q)2/θ3(q)2 := a/b, or via the θ-
transform.

These sech series can be used in turn to establish two
evaluation series involving the standard elliptic inte-
gral K:

Theorem 3.3. In what follows we intend K := K(k) and
K′ := K(k′) with k′ :=

√
1 − k2. For real 0 < b < a and

k := b/a, we have

R1(a, b) =
πaK

2

∑
n∈Z

sech
(
nπ K′

K

)
K2 + π2a2n2

. (3–1)

On the other hand, for 0 < a < b and k := a/b, we have

R1(a, b) = 2πbK
∑
n∈D

sech
(
nπ K′

2K

)
4K2 + π2b2n2

. (3–2)

Proof: The two series follow from the assignments
θ2
3(q)/η := max(a, b) and θ2

2(q)/η := min(a, b) and the
classical relations

e−πK′/K = q, K =
π

2
θ3(q)2

inserted into the appropriate sech identities from Theo-
rem 3.1.

The sech-elliptic series (3–1) and (3–2) do allow for rapid
computation of R1(a, b) when b is not close to a. Indeed,
to get D good digits for R1, one requires O(DK/K′) sum-
mands. So, yet another motive for the present analysis
was the problem of slow convergence of the sech-elliptic
form for b ≈ a.

Note that we also have attractive evaluations such as

R1

(
1,

1√
2

)
=

π

2
K(1/

√
2)

∑
n∈Z

sech(nπ)
K2(1/

√
2) + n2π2

,

where we remind ourselves that K(1/
√

2) =
Γ2(1/4)/(4

√
π) [Borwein and Borwein 87], with

similar series for R1(1, kN ) at the Nth singular value,
as discussed in [Borwein et al. 04]. A similar relation
for R1

(
1√
2
, 1

)
obtained via (3–2), and via the AGM

relation (1–2), yields in turn the oddity

R1

(
1 +

√
2

2
√

2
,

1
21/4

)
= πK(1/

√
2)

∑
n∈Z

sech(nπ/2)
4K2(1/

√
2) + n2π2

.

4. RELATIONS FOR R(a)

Recalling that R(a) := R1(a, a), we next derive relations
for the problematic cases b = a. Interpreting (3–1) as a
Riemann-integral relation in the limit b → a−, we have
(for a > 0) a slew of relations involving the digamma
function ψ := Γ′/Γ [Stromberg 81, Abramovitz and Ste-
gun 70] and the Gauss-hypergeometric F , here presented
in an order that can be serially derived:

R(a) =
∫ ∞

0

sech
(

π x
2 a

)
1 + x2

dx = 2 a

∞∑
k=1

(−1)k+1

1 + (2 k − 1) a

=
1
2

(
ψ

(
3
4

+
1
4a

)
− ψ

(
1
4

+
1
4a

))
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=
2a

1 + a
F

(
1
2a

+
1
2
, 1;

1
2a

+
3
2
;−1

)

= 2
∫ 1

0

t1/a(1 + t2)−1 dt =
∫ ∞

0

e−x/asech(x) dx.

The first series representation or the t-integral can be
used to establish a recurrence

R(a) =
2a

1 + a
−R

(
a

1 + 2a

)
,

while known relations for the digamma [Abramovitz and
Stegun 70, Stromberg 81] can be used—with some sym-
bolic care—to derive

R(a) =
π

2
sec

π

2a

− 2
a2(1 + 8a − 106a2 + 280a3 + 9a4)

1 − 12a + 25a2 + 120a3 − 341a4 − 108a5 + 315a6

+ C(a) (4–1)

where

C(a) =
1
2

∑
n≥1

(ζ(2n + 1) − 1)
(3a − 1)2n − (a − 1)2n

(4a)2n

is a “rational-zeta” series as analyzed in [Borwein et al.
00]. Note that this representation of R(a), while allow-
ing rapid convergence for some a, has sec poles, some of
which are cancelled by the rational function. In any case
we require a > 1/9 for convergence of the rational-zeta
sum; however, as a computational matter, the recurrence
relation above can generally be used to force convergence
of such a rational-zeta series.

The hypergeometric form (4–1) is of special interest,
for there is the Gauss continued fraction for F (γ, 1; 1 +
γ;−1), as discussed in [Borwein and Bailey 03]. With-
out belaboring the reader with details, we simply give a
relevant RCF form, which will later prove useful in con-
vergence analysis:

F (γ, 1; 1 + γ;−1) = [α1, α2, . . . ] (4–2)

=
1

α1 +
1

α2 +
1

α3 +
1

α4 + ...

where α1 = 1, and

αn = ((n − 1)/2)!)−2γ(n − 1 + γ)
(n−3)/2∏

j1

(j + γ)2,

n = 3, 5, 7, . . .

αn =
1
γ

(n/2 − 1)!2(n − 1 + γ)
n/2−1∏

j1

(j + γ)−2,

n = 2, 4, 6, . . . .

An interesting aspect of the formal analysis is based
upon the first sech-integral form for R(a). Expanding
said integral formally, and using a representation of the
Euler number E2n = (−1)n

∫ ∞
0

sech(πx/2)x2n dx, one
obtains

R(a) ∼
∑
n≥0

E2n a2n+1,

where we are indicating an asymptotic series of zero ra-
dius of convergence. (It is a classic theorem of Borel
[Stromberg 81, Borwein et al. 04] that, for every real
sequence (an), there exists a C∞ function f on R such
that f (n)(0) = an.) It is possible to give expressions for
the asymptotic error, such as∣∣∣∣∣R(a) −

N−1∑
n1

E2n a2n+1

∣∣∣∣∣ ≤ |E2N | a2N+1

from [Borwein et al. 04, Borwein et al. 03], but it is also
interesting to employ Padé approximants to the formal
asymptotic series. It turns out that the oft-stated suc-
cess of the Padé approach is exemplified well in our case.
Indeed, if one takes the unique (3, 3) Padé form (meaning
numerator and denominator of R(a)/a each have degree
3 in the variable a2), we obtain

R(a) ≈ a
1 + 90 a2 + 1433 a4 + 2304 a6

1 + 91 a2 + 1519 a4 + 3429 a6
.

Even this simple approximant is remarkably good for
small a (e.g., yielding R(1/10) ≈ 0.09904494, which is
correct to the implied precision). For something like
R(1/2) and the (30, 30) Padé approximant—so that nu-
merator and denominator have degree 30 in a2—one ob-
tains 4 good digits. Though the convergence rate is
slower for larger a, the method does give rapid means
of, say, graphing the R function to reasonable precision.

Having briefly discussed a formal expansion at a = 0,
can one establish an asymptotic form for large a? The
answer is yes—except that, through a typical develop-
ment for asymptotic forms, we are rewarded with more,
namely a convergent expansion for all a > 1. Using our
second sech integral R(a) =

∫ ∞
0

e−x/asechx dx, we can
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again use the Euler numbers and known Hurwitz-zeta
evaluations of sech-power integrals for odd powers to ob-
tain a convergent series valid at least for real a > 1:

R(a) =
π

2
sec

( π

2a

)
− 2

∑
m∈D+

η(m + 1)
am

= 2
∑
k≥0

η(k + 1)
(−1

a

)k

(4–3)

where D+ denotes the positive odd integers and η(s) :=
1/1s − 1/3s + 1/5s − . . . (this standard alternating zeta
function η is not to be confused with Ramanujan’s η pa-
rameter). Remarkably, we find that the leading terms for
large a involve the Catalan constant G := η(2) as

R(a) =
π

2
− 2G

a
+

π3

16a2
− . . . ,

a development certainly difficult to infer by casual in-
spection of the Ramanujan fraction. (Even the asymp-
tote R(∞) = π/2 is difficult to so infer, although such
is clear from various of the previous representations for
R(a).)

Using recurrence relations together with various ex-
pansions, we have derived certain results pertaining to
the derivatives of R, notably

R′(1) = 8(1 − G),

R′(1/2) = π2/24.

To close this section we note that a peculiar prop-
erty of the digamma ψ leads to an exact evaluation
of the imaginary part of R(a) when a lies on the cir-
cle C1/2 := {z : |z − 1/2| = 1/2} in the complex
plane. Because imaginary parts of certain digamma eval-
uations can be expressed in closed form [Abramovitz and
Stegun 70, Stromberg 81], we have, for a ∈ C1/2 and
y := i(1 − 1/a) (which y is therefore real),

Im(R(a)) = −1
y

+
π

2
cosech

(πy

2

)
.

Thus, we have an elementary form for Im(R) on a certain
continuum set. Admittedly we have not yet discussed
convergence for complex parameters in depth; we do that
later in Section 9.

5. THE R FUNCTION AT RATIONAL ARGUMENTS

From the first summation in the R(a)-relations in the
beginning of Section 4, we have, for positive integers p, q,

R
(

p

q

)
= 2p

(
1

q + p
− 1

q + 3p
+

1
q + 5p

− . . .

)
,

which is essentially in the form of a particular L-function.
One way to evaluate L-functions in finite form is to ap-
ply Fourier-transform techniques to pick out the correct
terms from a general logarithmic series. (We note that
an equivalent, elementary form for the digamma at ra-
tional arguments is a celebrated result of Gauss.) In our
case

R
(

p

q

)
=

∑
0 < odd k <4p

e−2πik(q+p)/(4p)

×
(
− log(1 − e2πik/(4p)) −

q+p−1∑
n=1

e2πikn/(4p)/n

)
.

After various simplifications, especially forcing every-
thing to be real-valued, we arrive at a finite series in
fundamental numbers, namely

R
(

p

q

)
= −2p

p+q−1∑
n=1

1
n

(δn≡p+q mod 4p − δn≡3p+q mod 4p)

(5–1)

− 2
∑

0 <odd k<2p

(
cos

(
(p + q)kπ

2p

)

× log
(

2 sin
(

πk

4p

))
− π

(
1
2
− k

4p

)
sin

(
(p + q)kπ

2p

))
.

Note that when q = 1—that is, when we seek R(p) for
some integer p—the first, rational sum vanishes. The
manifestly finite series (5–1) (of O(p + q) total terms)
leads quickly to exact evaluations such as

R(1/4) =
π

2
− 4

3
, R(1/3) = 1 − log 2,

R(1/2) = 2−π/2, R(2/3) = 4− π√
2
−
√

2 log(1+
√

2),

R(1) = log 2, R(3/2) = π +
√

3 log (2 −
√

3),

R(2) =
√

2
{π

2
− log(1 +

√
2)

}
, R(3) =

π√
3
− log 2,

and, of course, many other attractive forms. It is not
hard to establish from the finite series (5–1) that, for
positive integer q, one has

R(1/q) = rational + (−1)(q−1)/2 log 2, q odd,

R(1/q) = rational + (−1)q/2 π/2, q even.

These facts can also be derived on knowledge of R(1) =
log 2, R(1/2) = 2 − π/2, and the recurrence

R
(

1
q

)
=

2
q − 1

−R
(

1
q − 2

)
.
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On the other hand, one of the more alluring integer-
argument evaluations involves the golden mean τ =
(1 +

√
5)/2, since

R(5) =
π√
τ
√

5
+ log 2 −

√
5 log τ,

although such evaluations—stemming from (5–1)—can
involve quite delicate symbolic manipulations. We have
not analyzed the possibility of evaluating R(a) for irra-
tional a via the expedient of approximating a first via
high-resolution rationals and then using (5–1), although
such a development would be of both computational and
theoretical interest.

Incidentally, armed with exact knowledge of R(p/q)
we find some interesting Gauss-fraction results, in the
form of rational multiples of F (γ, 1; 1 + γ;−1) =
[α1, α2, . . . ]; for example, on the basis of (4–2) we have

R(1) = log 2 =
1

1 +
1

2 +
1

3 +
1

1 + ...

.

But alas, the beginnings of this continued fraction are
misleading; subsequent elements an go according to

log 2 = [1, 2, 3, 1, 5,
2
3
, 7,

1
2
, 9,

2
5
, . . . ],

since αn = n and αn = 4/n as n is odd and even, respec-
tively. Similarly, one can derive

2 − log 4 = [13, r2, 23, r4, 33, r6, 43, . . . ],

where the even-indexed fraction elements r2n are certain
rationals. Though these RCFs are not SCFs (integer el-
ements), the growths of the αn still provide a clue to the
convergence rate, which we study in a subsequent section.

6. TRANSFORMATION OF R1(a, b)

There is one remaining avenue that must be traversed
in order to provide a uniformly rapid evaluation scheme
for R1(a, b) with positive real a and b. We have men-
tioned that the sech-elliptic series (3–1) (also (3–2)) will
converge slowly when b ≈ a, yet in Sections 4 and 5 we
successfully addressed the case b = a. So, we now pro-
ceed to establish a series representation for the case b < a

with b very near to a. We employ the wonderful fact that
sech is its own Fourier transform, in that∫ ∞

−∞
eiγxsech(λx) dx =

π

λ
sech

πγ

2λ
.

Using this relation, one can perform a Poisson transform
of the sech-elliptic series (3–1). The success of the trans-
form depends on knowing the 2-parameter integral

I(λ, γ) =
∫ ∞

−∞

sechλx

1 + x2
eiγxdx.

One may write down a differential equation with source

−∂2I

∂γ2
+ I =

π

λ
sech

πγ

2λ

and solve this—after some delicate machinations—to
yield

I(λ, γ) =
π

cos λ
e−γ +

2π

λ

∑
d∈D+

(−1)(d−1)/2e−πdγ/(2λ)

1 − π2d2/(4λ2)
,

where D+ denotes the positive odd integers. In the event
that λ = πD/2 for some odd D, the 1/ cos pole conve-
niently cancels a corresponding pole in the summation,
and the result can be inferred either by avoiding d = D

in the sum and inserting a precise residual term

∆I = π(−1)(D−1)/2e−γ(γ + 1/2)/λ,

or, more simply, by taking a numerical limit as λ →
πD/2. When γ → 0, we can recover from the sum, via
analytic relations for ψ(z), the ψ-function form of the
integral of (sechλx)/(1 + x2). Via the Poisson transfor-
mation of (3–1), we thus obtain, for 0 < b < a,

R1(a, b) = R
( πa

2K′
)

+
π

cos K′
a

1
e2K/a − 1

+ 8πaK′ ∑
d∈D+

(−1)(d−1)/2

4K′2 − π2d2a2

1
eπdK/K′ − 1

,

(6–1)

where again k := b/a,K := K(k),K′ := K(k′), and
D+ denotes the positive odd integers. A similar Pois-
son transform can be obtained from (3–2) in the case
b > a. Such transformations appear recondite, but we
have achieved what we desired: convergence is rapid for
b ≈ a.

7. CONVERGENCE RESULTS FOR REAL PARAMETERS

For an RCF of the form x = [a0, a1, . . . ] (so that each ai

is nonnegative and real but not necessarily an integer),
one has the usual recurrence relations for convergents

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2,



Borwein et al: On the Ramanujan AGM Fraction, I: The Real-Parameter Case 281

with (p0, p−1, q0, q−1) := (a0, 1, 1, 0). We also have the
approximation rule∣∣∣∣x − pn

qn

∣∣∣∣ <
1

qnqn+1
,

so that convergence rates can be bounded by virtue of the
growth of qn. One may iterate the recurrence in various
ways, obtaining, for example,

qn = (1 + anan−1 + an/an−2)qn−2 − (an/an−2)qn−4,

a relation involving all even or all odd indices on q. An
immediate application is the following theorem:

Theorem 7.1. For the RCF form of the Gauss continued
fraction, F (γ, 1; 1 + γ;−1) = [α1, α2, . . . ], and for γ >

1/2 we have ∣∣∣∣F − pn

qn

∣∣∣∣ <
c

8n/2
,

where c is an absolute constant.

Remark 7.2. One can likely obtain sharper bounds, or
better γ-dependent bounds. We intend here just to show
geometric convergence; i.e., we intend to show that the
number of good digits grows at least linearly in the num-
ber of iterates. Also note that, for the R(a) evaluation
of interest, γ = 1/2 + 1/(2a); thus, the condition on γ is
natural.

Proof: From the element assignments following (4–2) we
have

αnαn−1 =
4

(n − 1)2
(n − 1 + γ)(n − 2 + γ), n odd > 1,

αnαn−1 =
1

(n/2 − 1 + γ)2
(n− 1 + γ)(n− 2 + γ), n even.

We also have q1 = 1 and q2 = 1 + 1/γ > 2 so that, for
sufficiently large n, we have

αnαn−1 + 1 > 4 or 2

as n is odd or even, respectively. From qn > (αnαn−1 +
1)qn−2 the desired bound follows.

It is appropriate here to mention a clever com-
putational acceleration for Gauss continued fractions,
as described in [Borwein and Bailey 03, Andrews et
al. 99, Lorentzen and Waadeland 92]. Consider the
previously displayed Gauss continued fraction log 2 =

[1, 2, 3, 1, 5, 2/3, . . . ]. Generally a “tail” tN of this con-
struct, meaning a subfraction starting from the N -th el-
ement, runs like so:

tN :=
1

4
N

+
1

N + 1 +
1

4
N + 2

+
1

N + 3 + ...

.

But—and here is the clever idea from the literature—this
tail tN should be near to the periodic continued fraction
[4/N,N, 4/N,N, . . . ] = N(

√
2−1)/2. This suggests that,

if we are evaluating the Gauss continued fraction and we
stop at element 4/N , this one element should be replaced
with 2(1 +

√
2)/N . Indeed, in our own numerical experi-

ments this expedient always adds a few digits of precision.
What is more, as suggested in [Lorentzen and Waadeland
92], there are higher-order manifestations of this idea,
e.g., the use of longer periods for the tail subfraction. As
the reference shows via experimentation, the acceleration
can become significant. Note also that our companion
treatment [Borwein and Crandall 03] describes a similar
speedup for the R continued fraction itself, even when
parameters are allowed to become complex.

Now we move on to the convergence of the RCF arising
from Ramanujan’s original construct, namely

a

R1(a, b)
= [A0;A1, A2, A3, . . . ],

with the Ai defined as in Section 2. It turns out that the
qn convergents consist of linear combinations of terms
aibj where i and j are even integers and that certain
terms with explicit coefficients can be isolated, leading
to

qn ≥ 1 +
bn−2

an

n∏
m even

(1 − 1/m)2 > 1 +
1
2n

bn−2

an
,

n even,

qn ≥ 1/b2+
an−1

bn+1

n−1∏
m even

(m/(m+1))2 > 1/b2+
1
n

an−1

bn+1
,

n odd.

Such observations lead to a convergence theorem for the
original Ramanujan construct:

Theorem 7.3. For the Ramanujan RCF, a/R1(a, b) =
[A0;A1, A2, A3, . . . ], we have for positive reals b > a∣∣∣∣ a

R1(a, b)
− pn

qn

∣∣∣∣ <
2nb4

(b/a)n
,
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while for positive reals a > b we have∣∣∣∣ a

R1(a, b)
− pn

qn

∣∣∣∣ <
nb/a

(a/b)n
.

Remark 7.4. Again, it should be possible to prove sharper
bounds, our motive here being merely to establish essen-
tial geometric convergence of the literal continued frac-
tion when a and b are not near each other.

Proof: The given approximation bounds follow directly
upon inspection of the products qnqn+1.

As we previously have intimated, convergence for a = b

is slow. What we can prove is the following:

Theorem 7.5. For real a > 0 the Ramanujan RCF,
a/R(a), has ∣∣∣∣ a

R(a)
− pn

qn

∣∣∣∣ <
c(a)
nh(a)

,

where c(a) and h(a) are n-independent, positive con-
stants. The exponent h(a) can be taken to be
c0 min(1, 4π2/a2) where the constant c0 is absolute.

Remark 7.6. Note that the convergence bound is compu-
tationally poor; still, as we have noted, convergence does
occur. The relevant exponent h(a) could be sharpened—
or made more explicit—with more work; we only exhibit
the theorem for theoretical completeness. Indeed, for
a = b, or even a ≈ b, we have many other rapidly con-
vergent options.

Proof: With a view to induction, assume that for some
constants (n-independent) d(a) and g(a) and for n ∈
[1, N − 1], we have qn < dng. Note that the element
asymptotics following (2–1) mean that An > f(a)/n for
an n-independent f . Then we have a bound for the next
qN :

qN >
f

N
d(N − 1)g + d(N − 2)g.

Using the fact that, for g < 1, 0 < x ≤ 1/2, we have
(1−x)g > 1−gx−gx2; the constants d and g can evidently
be arranged such that qN > dNg and the induction goes
through.

To clarify the import of the above theorems, consider
the following: the Gauss continued fraction for R(a) ex-
hibits (at least) geometric convergence, as does the orig-
inal Ramanujan form R(a, b) when a/b or b/a is signif-
icantly greater than unity. When a = b, we do have
convergence although, as suggested by Theorem 7.5, the
convergence is far below geometric.

8. A UNIFORMLY CONVERGENT ALGORITHM

We are now in a position to establish a complete algo-
rithm for evaluating the original Ramanujan AGM con-
tinued fraction Rη(a, b) for positive real parameters. The
convergence is uniform, in that for any positive real triple
η, a, b we expect rapid convergence in the sense of D good
digits in less than cD computational iterations, where c is
an absolute constant independent of the magnitudes of η,
a, and b. (Here, by iterations we mean either continued-
fraction recurrence steps or series-summand additions.)

Algorithm 8.1. (Algorithm for evaluation of Rη(a, b)
with real η, a, b > 0.)

0. Observe that Rη(a, b) = R1(a/η, b/η), so that with
impunity we may assume η = 1 and subsequently evalu-
ate only R1;

1. If (a/b > 2 or b/a > 2), return the original continued
fraction (1-1), or equivalently (2-1);

2. If (a = b) {
if (a = p/q rational), return finite form (5–1);

else return the Gauss RCF (4–2) or rational-zeta
form (4–1) or (4–3)
or some other scheme such as rapid ψ

computations, etc.;
}

3. if (b < a) {
if (b is not too close to a), return sech-elliptic result
(3–1);

else return Poisson-transform result (6–1);
}

4. (Here, we must have b > a) Return, as in (1–2),
2R1

(
(a + b)/2,

√
ab

)
−R1(b, a).

It is an implicit tribute to the ingenuity of Ramanujan
that the final algorithm step allows the entire procedure
to go through for any positive real parameters. One could
avoid Step 4 by invoking a Poisson transformation of
(3–2), but the Ramanujan AGM identity simplifies the
procedure.

9. COMPLEX PARAMETERS

The issue of complex parameters a, b, and η is profound,
as we have discovered via both theoretical forays and ex-
tensive numerical experimentation. A companion treat-
ment [Borwein and Crandall 03] deals with convergence
issues, with theorems and conjectures we summarize be-
low, where we remind ourselves that convergence of a
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complex continued fraction is often interpreted in a mod-
ern way as convergence of the pn/qn on the extended
complexes Ĉ := C∪{∞} (so that divergence in such cases
must be oscillatory, e.g., bifurcated or chaotic):

• The continued fraction R(a) := R1(a, a) converges
on C (i.e., to a finite complex value) for all a not
purely imaginary, i.e., a2 
∈ (−∞, 0).

• The continued fraction R1(a, b) converges on Ĉ for
all |a| 
= |b|. It is proven (see [Borwein and Cran-
dall 03])—via a dynamical-recurrence equivalent of
divergence—that the precise domain of convergence
is

D1 := {(a, b) ∈ C × C : |a| 
= |b| or

(a2 = b2 
∈ (−∞, 0))}.

• There are direct means—e.g., inspection of even/odd
fraction parts—to prove that the continued fraction
R1(a, b) does indeed diverge for certain instances of
|a| = |b|, such as

(a, b) = (i, i), (1, i),
(√

i,
√−i

)
,

thus contradicting the claim of [Berndt 99b, p. 165]
that the condition Re(a),Re(b) > 0 suffices for con-
vergence (and, therefore, the domain of validity of
the AGM relation (2–1) comes into question).

• If a/b is in the set H defined

H := {z ∈ C :
∣∣√z/(1 + z)

∣∣ < 1/2},

then, provably, all three of R1(a, b), R1(b, a), and
R1((a + b)/2,

√
ab) converge on Ĉ.

• It is conjectured that, if a/b ∈ H, then (with all
three fractions already known to converge) the AGM
relation (2–1) holds.

Incidentally, the discovered restrictions on the conver-
gence domain are “algorithmically unfortunate,” if you
will, because one might look longingly at the formal re-
lation possibility (note the “ ?=” signaling suspicion),

R1

(√
ab + i

a − b

2
,
√

ab − i
a − b

2

)

+ R1

(√
ab − i

a − b

2
,
√

ab + i
a − b

2

)
?= 2R1

(√
ab,

a + b

2

)
,

FIGURE 1. Where |θ2/θ3| < 1 in the complex q-plane.
Note that the real interval (−c, 1) for some positive real
c is monochrome black.

by which one perhaps hopes to forge a “left-handed”
AGM relation, possibly giving rise to new iterative al-
gorithms. Alas, this reversed AGM relation is generally
false. For one thing, in the case a := 1 + i and b := 1− i

the questionable relation is problematic because neither
of R1(1 ± i, 1 ∓ i) converges, yet the right-hand side
2R1(

√
2, 1) does converge. Secondly, there are examples,

such as R1(2i, 1) + R1(1, 2i) 
= 2R1(1/2 + i, 1 + i), with
all three fractions converging.

An observation that led us to realize such compli-
cations in regard to convergence is that, in the real-
parameter scenario for the sech identities of Theorem 2.1,
one implicitly uses, for positive real a 
= b and perforce
for Jacobi parameter q := min(a, b)/max(a, b) in [0, 1),
the fact that θ2/θ3 < 1. However, if one plots the complex
q such that this θ-ratio has absolute value < 1, one sees
a frightfully complicated fractal structure in the complex
q-plane, as shown in Figure 1. We also exhibit a related
Figure 2, and all this in turn leads into the theory of
modular forms [Borwein and Borwein 87]. It may well
be true, however, that the sech identities (3–1) and (3–2)
always hold for |a| > |b| and |a| < |b|, respectively, with
all R1 fractions converging. This supposition is what
led us to the separate convergence study [Borwein and
Crandall 03].

It is a classic and elementary observation that, for pos-
itive real a and b, the arithmetic mean strictly dominates
the geometric mean. A picturesque interpretation of such
inequality for complex parameters is effected as follows.
Note that

a/b ∈ H implies |(a + b)/2)| > |
√

ab|.
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FIGURE 2. Values of |θ4/θ3| (in first q-quadrant). The
changes in gray-scale represent gradations of values
between zero and one.

Now, H is actually the (open) exterior of a “cardioid-
knot” which in turn is the contour determined by the
polar relation

r2 + (2 cos φ − 4)r + 1 = 0

in the complex plane. One can think of said contour as
the fusion of two contours:

r = 2 − cos θ ±
√

(1 − cos θ)(3 − cos θ),

that is, we fuse the orbits of the ± instances, both for
θ ∈ [0, 2π]. One sees a small loop encompassing the ori-
gin, with left-intercept

√
8− 3 + 0i, and a wider contour

FIGURE 3. A cardioid-knot, the exterior H (in gray)
of which knot is conjectured to ensure the truth of the
Ramanujan AGM relation (1.2); we do know that the
three relevant R1 fractions converge for a/b ∈ H.

whose left-intercept is −3−√
8+0i. So, H consists of all

points outside the cardioid-knot, including the points in
the inner lobe. One can call a point within said lobe an
exterior point on the basis of the classical Jordan-curve
rule: a point is outside a (smooth) contour if a ray to
infinity from said point crosses the contour an even num-
ber of times. (See Figure 3.) We note also that for some
pairs (a, b) with a/b on the knot itself—but not all such
pairs (there is divergence for some such (a, b))—the AGM
relation still appears to hold.
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