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The cut locus from a point on the surface of a convex polyhe-
dron is a tree containing a line segment beginning at every ver-
tex. In the limit of infinitely small triangles, the cut locus from
a point on a triangulation of a smooth surface therefore tends to
become dense in the smooth surface, whereas the cut locus from
the same point on the smooth surface is also a tree, but of finite
length. We introduce a method for avoiding this problem. The
method involves introducing a minimal angular resolution and
discarding those points of the cut locus on the triangulation for
which the angle measured between the shortest geodesic curves
meeting at these points is smaller than the given angular reso-
lution. We also describe software based upon this method that
allows one to visualize the cut locus from a point on a surface
of the form (x/a)n + (y/b)n + (z/c)n = 1, where n is a positive
even integer. We use the software to support a new conjecture
that the cut locus of a general ellipsoid is a subarc of a curvature
line of the ellipsoid.

1. INTRODUCTION

The cut locus is a fundamental object of study in global
differential geometry [Berger 00], which has applications
reaching all the way to parasitology [Dujardin and Duriez
95]. It is closely related to Voronoi diagrams [Aurenham-
mer 91], the notion of “ridge trees” [Agarwal et al. 97],
and the medial axis transform [Wolter and Friese 00].
The cut locus also naturally appears in the recognition
problem of computer vision [Pennec 98].

The cut locus from a point p on a surface is the closure
of the set of all points that have at least two shortest
paths connecting them to p [Wolter 79]. A cut point of p

along a geodesic (shortest, or locally length-minimizing
path) passing through p is the first point on the geodesic
where it ceases to minimize its arc length to p, and the
cut locus of p is the set of all cut points of p [Kobayashi
67]. For a more technical definition, see Section 4 of
Chapter III of [Sakai 96].
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FIGURE 1. The cut locus from a point (not visible, but
on the other side) on the surface of a polyhedron. Note
that every vertex is the beginning of a branch of the cut
locus.

It is known [Buchner 77, Buchner 78] (see also [Ozols
74]) that generic cut loci in low-dimensional manifolds
are triangulable and structurally stable. In dimension
two, a generic cut locus is simple to describe: each point
q has a neighborhood in the cut locus that is either (i) a
straight line through q, (ii) a straight line starting at q,
or (iii) three straight lines meeting at q to form a “Y.”
See also [Bishop 77], where it is shown that ordinary cut
points of a point m are dense in the cut locus of m.

The tool presented here is the second in a series of soft-
ware tools written for the visualization of the cut locus
from a point on a two-dimensional surface. Loki [Sinclair
and Tanaka 02] is a rather large and complex C++ pro-
gram, which can compute the cut locus on a torus-like
surface from a closed-form parametrization or metric to
great accuracy. However, Loki’s complexity makes it dif-
ficult to adapt it to other surfaces. It is also quite slow
in producing low-resolution data.

Thaw (the name of the software tool to be presented
here—see Figure 3) is intended to be the prototype of a
more “quick and dirty” but also more flexible approach.
Its starting point was actually considered quite unlikely
at the time Loki was written: to use a triangulation of
a surface, rather than closed-form parametrizations or
metrics, as the surface description. It is well known that
the cut locus from a point on the surface of a polyhedron
(see Figure 1) contains many more line segments than
the cut locus of a corresponding smooth surface, to the
point that it does not seem practicable to compute an
approximation to the smooth surface’s cut locus via this
route. This becomes particularly clear when one recalls
that the cut locus of a two-dimensional submanifold of
R

3 with nondegenerate distance-squared function is of
measure zero [Hendricks 92], but also that the cut locus
of a polyhedral surface of positive curvature has a branch

q

p

�

FIGURE 2. Let p be a point on a two-surface and q a point
of its cut locus with two equal-length shortest segments
between p and q. Let α be the angle at which these
geodesics meet at q. We only accept this point q if α >
∆θ, where ∆θ is the minimal angular resolution.

beginning at every vertex [Agarwal et al. 97]. In the limit
of infinitely many triangles, one can therefore expect that
the cut locus of the polyhedral surface comes to fill the
entire surface. One would appear to be in danger of being
overwhelmed by branches that belong to the cut locus of
the triangulations but not of the smooth surface.

However, some further thought led us to the conclu-
sion that it might be possible nonetheless. Thaw is in-
deed able to approximate the cut locus of a surface that
is approximated only by a triangulation. This has been
made possible by a procedure that blurs or melts (indeed
thaws) away those branches that belong to the cut locus
of the triangulation but not of the smooth surface.

The cut loci from points on polyhedral surfaces of
positive curvature are quite well understood [Volkov and
Podgornova 71], and there has been much work on the
question of counting and finding shortest paths on such
surfaces [Sharir and Schorr 86, Mitchell et al. 87, Mount
90, Agarwal et al. 97, Kaneva and O’Rourke 00]. We are,
however, interested in the cut loci of smooth surfaces ap-
proximated by polyhedral surfaces, rather than the cut
loci of the polyhedral surfaces themselves. This is an
important distinction [Polthier and Schmies 99]. If we
were primarily interested in the cut loci of polyhedral
surfaces, then we could make use of highly efficient al-
gorithms for computing the length of the shortest path
on these surfaces [Agarwal et al. 97, Kapoor 99, Kaneva
and O’Rourke 00], but we will actually need a list of all
locally minimal paths between two points (up to some
given length).
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At present, Thaw is only capable of handling triangu-
lations in which the sum of the angles at every vertex is
less than 2π (i.e., convex surfaces). We have based our
algorithm upon the mathematical formulation of [Agar-
wal et al. 97], which in turn builds upon the work of
[Sharir and Schorr 86] and [Mitchell et al. 87], where
cut loci (called ridges) on polyhedral surfaces are defined
for convex polyhedra. In the convex case, the cut locus
from a point is the closure of the set of points to which
there are two or more minimizers, where a shortest path
cannot pass through a vertex of the surface (Lemma 4.1
of [Sharir and Schorr 86]). In the nonconvex case, we
have the possibility of the shortest path passing through
a vertex. As Huygen’s principle tells us (see, for exam-
ple, Section 86 of [Coulson 55] for a definition), each point
on a wavefront can be considered as the source point of a
new (initially circular) wavefront. [Kaneva and O’Rourke
00] discuss the nontrivial implementation extensions that
were necessary to allow them to find shortest paths on
nonconvex surfaces. When extending the definition of the
cut locus to nonconvex surfaces, constructing candidate
shortest paths is more difficult because we do not a priori
know the angle through which a candidate path may pass
through any given vertex. All we know is that this angle
is greater than or equal to π (Lemma 3.4 of [Mitchell et al.
87]). However, once the set of candidate shortest paths
has thus been extended, if the definition of the cut locus
remains unchanged as the closure of the set of points to
which there are two or more minimizers, then the cut
locus is not necessarily a one-dimensional graph but can
contain an open set. In other words, it is not obvious
how to extend the definition of the cut locus to general
polyhedral surfaces. We will not attempt to answer this
question here, since we are in fact only interested in the
cut loci of smooth convex surfaces. Our algorithm will
correspond to the definition given above, which is appro-
priate for smooth surfaces and convex polyhedra.

Our restriction to convex surfaces may be removed in
future versions of Thaw, but this first requires the intro-
duction of new elements to emulate Huygen’s principle at
those vertices with angle sum greater than 2π. The al-
gorithms of [Kaneva and O’Rourke 00], [Kapoor 99] and
[Sava and Fomel 98] are of interest in this context. Sec-
ond, it would require a good definition of the cut locus
on negatively curved polyhedral surfaces.

Thaw is, however, already able to approximate the cut
loci of surfaces Loki cannot handle, has already had some
influence on recent analytical work, and has allowed us to
experimentally confirm the conjecture that the cut loci
of general ellipsoids are subarcs of curvature lines (see

the Remark to Proposition 3.5.4 of [Klingenberg 82] for
a definition).

Note that the problem of finding the cut locus of a
solid ellipsoid from its surface has already been solved
[Degen 97], but we are interested in the cut locus on the
surface of an ellipsoid from a point on that surface.

The cut loci from points on the surface of general ellip-
soids have been studied for some time (see Section 3.5 of
[Klingenberg 82]). For example, it is known that the cut
locus of an umbilic point of an ellipsoid coincides with
the antipodal umbilic point, and the cut loci from cer-
tain points on ellipsoids of revolution are known to be
arcs (Remarks to Theorem 2.1.14 in [Klingenberg 82]).

In [Polthier and Schmies 98], the concept of “straight-
est geodesics” was defined, these having the advantage
of being unique solutions to the initial value problem for
geodesics on polyhedral surfaces. They were used, in con-
junction with an adaptive particle propagation scheme
similar to [Lambare et al. 96], to compute the evolu-
tion of distance circles on polyhedral surfaces [Polthier
and Schmies 99]. As we do, Polthier and Schmies also
faced the problem of the local branching of the wavefront
related to the discretization introduced by approximat-
ing a smooth geometry with a polyhedral surface. Their
solution was to use a reasonably fine mesh to suppress
the type of local branching related to the discretization,
and then, when constructing the branched texture map
used to visualize evolving waves, to introduce a threshold
(in Section 5.1 of [Polthier and Schmies 99]) that effec-
tively smoothes the Lagrangian manifold (see Section 4
of [Lambare et al. 96] for a definition). This threshold
applies to both angle and time. Polthier and Schmies
always apply their threshold formula, but, in the case
of smooth surfaces, they also use a finer mesh in order
to enable the threshold formula to work more accurately
and to be able to really distinguish between polyhedral
and geometric conjugate points.

Our work differs from that of Polthier and Schmies
in that their aim was to visualize the geodesic flow and
its branching behaviour, whereas ours is to compute ap-
proximations to cut loci on smooth surfaces. The quite
specific demands of computing an approximation to the
cut locus led us to take a different approach. In partic-
ular, we find that computed approximations to cut loci
are extremely sensitive to any errors caused by the rep-
resentation used to approximate wavefronts.

Given the known weaknesses of particle (or ray) meth-
ods for approximating wavefronts [Lambare et al. 96],
particularly in the presence of conjugate points, we de-
cided to represent the wavefront exactly (up to numeri-
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FIGURE 3. The effect of increasing ∆θ from 0.005 (top left) to 0.05, 0.5, and 1 (bottom right). The process reminds one
of the melting of an ice crystal—hence the name Thaw.

FIGURE 4. Two adjacent triangles, and the transfer of source data from the left to the right one. In the left diagram, we
can see a source illuminating the left-hand triangle. Its light shines partly onto the right-hand triangle. The right-hand
triangle is therefore also informed about this source, but only about that part of its light (the grey wedge, which should
be imagined to extend infinitely far from the source, which is shown as a black point) that actually shines on it. In the
right diagram, we can see the data the right-hand triangle is given concerning this source.

cal error) as a list of the centres of the circular arcs of
which the actual wavefront is composed, as well as the
angular limits of each arc. We call this a “light source
technique,” since the wavefront from one actual source
on a polyhedral surface appears to an observer living on
the surface as the “light” from many different sources,
each shining within clearly defined angular limits. From
a mathematical point of view, we use essentially the same
definitions as Sections 2.1 and 3.1 of [Agarwal et al. 97],
but with a different implementation. Our algorithm re-

sembles that of [Kapoor 99], which also uses a waveform
propagation method based upon sequences of arcs of cir-
cles, but theirs is more complicated because it also in-
volves the removal of arcs that are irrelevant to their aim
of computing shortest paths and shortest distances (but
not the cut locus). Also, the implementation of Chen and
Han’s shortest path algorithm in [Kaneva and O’Rourke
00] makes use of the concept of a “cone,” and [Sharir and
Schorr 86] define “slices” in their Section 5, both which
are essentially identical to the wedges of our implemen-
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tation (see Figure 4). That we are able to model wave-
fronts exactly, rather than as piecewise geodesic curves
[Polthier and Schmies 99], allows us to significantly re-
duce error in our computation of the cut locus. As will
become clear, there are in fact many further sources of
error, which still make computing an approximation to
the cut locus extremely difficult.

Recall that the mathematical formulation [Agarwal et
al. 97] upon which our method is based applies only
to convex surfaces. Since, however, the cut locus on a
two-dimensional ellipsoid (even on one of revolution) is
still not known [Berger 00], we are still able to address
important mathematical questions even with such a lim-
itation, and we have concentrated instead on questions
of efficiency.

Our technique involves little more than a straight-
forward application of elementary two-dimensional Eu-
clidean geometry, so a thorough mathematical formula-
tion will not be included in this paper. The interested
reader is referred to [Agarwal et al. 97].

2. THE ALGORITHM

Thaw assumes that a surface is approximated by a trian-
gulation embedded in three-space. This condition may
be removed in future versions, since it is not necessary
from a purely mathematical point of view, but it has been
useful during debugging to be able to “see” the surface
being treated.

The central idea is to introduce a minimal angular
resolution ∆θ and to accept only those points of the cut
locus for which the two shortest (and closest) geodesics
meet at greater than this angle. See Figure 2. This ∆θ

essentially cuts off “artificial” line segments of the cut
locus of the given triangulation, such that (one hopes) the
cut locus of the corresponding smooth surface becomes
visible. As will be seen below, Thaw actually makes use
of ∆θ as a “focusing” (or “blurring”) parameter, such
that one has the feeling of focusing a camera on a cut
locus when using the software. See Figure 3 for an idea
of what is meant by this.

On an abstract level, as was the case with Loki, we first
construct an approximation to the exponential map, and
then compute an approximation to the cut locus using
this information. In practice, however, we perform these
two processes simultaneously (computing an approxima-
tion to the cut locus within any triangle as soon as possi-
ble during the construction of the exponential map, and
then discarding that triangle). This reduces memory re-
quirements significantly. Nonetheless, in the following we

will discuss the algorithm as if these two processes were
strictly consecutive.

2.1 Approximating the Exponential Map

For any given triangle, we construct a local two-
dimensional orthogonal coordinate system with distances
inherited from three-space. The origin of these coordi-
nate systems is always one corner of the triangle in ques-
tion.

A fundamental step of the algorithm is the unfolding of
two adjacent triangles of a triangulation, such that they
both lie in one plane. Everything else involves only two-
dimensional Euclidean geometry (for example, Figure 4
is to be understood literally, with points, lines, and trian-
gles all in the same plane). Take the triangles ABC and
ABD of Figure 5. We would like to rotate ABD around
the common edge AB until D′ (the image of D under this
rotation) lies in the same plane as ABC and in such a way
that the two triangles do not overlap when unfolded. We
make use of the fact that the distances between points
connected by an edge are known—they can be immedi-
ately computed from the triangulation chosen—and that
the triangulation is not singular. Let dAB be the distance
from A to B, dA the distance from D (or D′) to A, and
dB the distance from D (or D′) to B. Then, there are
two points on the plane with distances dA and dB from
A and B respectively. These have coordinates

(
Ax +

�A (Bx − Ax)
dAB

± � (By − Ay)
dAB

,

Ay +
�A (By − Ay)

dAB
± � (Ax − Bx)

dAB

)
,

D
B

C

A

FIGURE 5. Two adjacent triangles of an icosahedron.
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where A has coordinates (Ax, Ay), B has coordinates
(Bx, By),

�A =
d 2

A − d 2
B + d 2

AB

2 dAB
,

and

� =
1
2

√
2 (d 2

A + d 2
B) − d 2

AB − (d 2
A − d 2

B)2

d 2
AB

.

To ensure that there is no overlap, we choose the point
which is further from C. Knowing the coordinates of D′

in terms of the coordinates of A and B in the local co-
ordinate system of triangle ABC allows us to uniquely
determine a linear map from the one triangle’s local co-
ordinate system to the other’s.

We represent these linear maps by a rotation matrix
and an offset vector for each edge of every triangle. We
precompute and store these matrices and vectors so that
the many transformations which must be performed dur-
ing a cut locus computation are as fast as possible. The
associated memory usage does not seem to be a limiting
factor when regarding Thaw’s execution as a whole.

We regard the starting point (the cut locus is from this
point) as a classical source of light, but only allow it to
shine through edges (not vertices, and this is the reason
why Thaw cannot handle triangulations with vertices of
negative curvature yet—see [Agarwal et al. 97]) from
triangle to triangle. Every triangle owns a list of images
of the starting point. Each image is defined in terms
of its coordinates with respect to the current triangle’s
coordinate system.

First, the triangle containing the starting point is as-
signed four light sources with the coordinates of the start-
ing point with respect to this triangle. These four sources
each light up one quadrant (one shines to the right and
upwards, another to the left and upwards, etc.). Then,
each of these sources (and all others which will appear
as the algorithm proceeds) is treated as follows (see Fig-
ure 4):

The light from a source is considered to shine within
a wedge (that is, only in certain directions, these direc-
tions forming a continuous set), the angle at the source
always being less than or equal to π/2. Any edge of
the current triangle through which light from the source
shines outwards is intersected with this wedge to form a
new wedge. The new wedge represents the light shining
from the source into the next triangle sharing this same
edge. The coordinates of the source and the wedge are
converted into coordinates with respect to the other, ad-
jacent triangle, and the new source (and wedge) data is
added to the list of sources of the other triangle.

In this manner, we follow light from the starting point
as it propagates through the surface. A stopping con-
dition for this process is provided by only adding new
source data to a triangle if the distance to the new source
is less than the distance to the closest source so far by
three times the length of the longest edge of the triangle.

2.2 Approximating the Cut Locus

In the following, we will make use of the example of the
non-rotationally-symmetric ellipsoid

x2

12
+

y2

0.92
+

z2

0.42
= 1, (2–1)

upon which we have placed a starting point at

(x, y, z) ≈ (−0.150794, 0.296542, 0.372816 ). (2–2)

Given a triangle with longest edge length r and a point
x inside the triangle, we can compute a number that
should give us an indication of the distance to the cut
locus of the smooth surface. First, we compile a list of
all sources that are visible to (or shine upon) x. See
Figure 6. From those, we identify the source closest to
x, calling it S1, at distance ρ1. Then, we look at all the

FIGURE 6. The fact that we are working with a trian-
gulation of a surface means that if we imagine ourselves
situated in one of the triangles, our view of the starting
point is segmented, as if we had the eyes of an insect.
Therefore, we will see the starting point in many more
different directions than would have been the case if we
were situated inside the smooth surface. In this illustra-
tion, we can see the images of the starting point as seen
by a triangle close to (perhaps including) the cut locus.
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FIGURE 7. Approximations to the cut locus of an ellipsoid from a nonsymmetrically placed starting point. In the left
and right columns, ∆θ = 0.5 and 0.05, respectively. The number of triangles increases as one moves up each column,
from 128 to 32768.
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FIGURE 8. A comparison of two approximations to the same cut locus (see the upper two illustrations in Figure 7 and
Figure 17). On the left ∆θ has been set to 0.5, and on the right it has been set to 0.05. In the middle, both of these
approximations have been plotted together. One can clearly see where the cut locus of the smooth surface probably lies.

other candidate sources that are at least ∆θ away from
S1. Of those, we choose the closest one, at distance ρ2

from x. We then compute the number

r∆θ

|ρ1 − ρ2| + r∆θ
. (2–3)

This is used to assign a shading to the chosen point. The
closer to unity this number is, the closer one should be to
the cut locus. An obvious question is “which cut locus?”
Thaw is based upon the claim that if one takes the limit
of infinitely fine triangulation and ∆θ → 0, then it should
be the cut locus of the smooth surface. We do not prove
this claim in this paper, but the results presented here
(Figures 7 and 8, for example) suggest that a suitably
formulated version of it should be true.

This process is repeated for many points on every tri-
angle. All of the illustrations of cut loci presented here
have been produced in this manner. Of course, the den-
sity of points chosen will have an influence on the quality
of the illustration. Any gaps in what must otherwise be
continuous lines (there is such a gap in the lower left-
hand corner of Figure 1) are due to the choice of points
of evaluation and are not actual gaps (which a cut locus
cannot have).

2.3 Checking against Loki

As we have already mentioned, Loki [Sinclair and Tanaka
02] is unable to compute the cut locus on a surface dif-
feomorphic to a sphere, since it can only handle a single
chart. We can, however, slightly alter Loki and instead
compute a subset of the cut locus (up to some distance
ρ from the starting point) by computing the exponen-
tial map only up to this distance ρ, chosen such that the
chart used does not become too singular.

For example, we can parametrize the surface given by
(2–1) by the mapping

(u, v) �→ (
x(u, v), y(u, v), z(u, v)

)
, (2–4)

whereby

x(u, v) ≈ −0.150794 + 0.019671/t(u, v),

+ 0.387865 · u/t(u, v) − 0.329491 · v/t(u, v)
(2–5)

y(u, v) ≈ 0.296542 − 0.047757/t(u, v)

− 0.762751 · u/t(u, v) − 0.135715 · v/t(u, v),
(2–6)

z(u, v) ≈ 0.372816

− 0.303958/t(u, v) + 0.144943 · u/t(u, v), (2–7)



Itoh and Sinclair: Thaw: A Tool for Approximating Cut Loci on a Triangulation of a Surface 317

–0.4 –0.2 0 0.2 0.4

x

–0.3

–0.2

–0.1

y

FIGURE 9. Here one can see the coordinates of points that we claim to be close to the cut locus of the smooth surface
(2–1). The z-coordinates of these points are given by z = −0.4 ·√1 − x2 − y2/0.92. The white curve superimposed upon
these points is a subset (including the conjugate points, but only up to a distance of 2.1 from the starting point) of the
same cut locus computed using a slightly modified version of Loki [Sinclair and Tanaka 02] provided here as a check.

FIGURE 10. The grid used to approximate the cut locus of the surface x1000 + y1000 + z1000 = 1 from the point
(0.632455, 0.948683, 1.000000) with N = 0.

and

t(u, v) ≈ 0.398410 + 0.002086 v − 0.305684u

+ 0.686150u2 + 0.090094 v2. (2–8)

Note that (0, 0) �→ (−0.150794, 0.296542, 0.372816 ),
which is the starting point given in (2–2).

Using this parametrization, one can compute the ex-
ponential map using Loki up to a distance of ρ = 2.1, and
therefore compute those points of the cut locus which lie
a distance not more than 2.1 from the starting point. See
Figure 9 for the actual comparison. Thaw and Loki are
seen to agree.

2.4 The Computational Grid

Thaw triangulates adaptively (see Figure 11), using a
simple but effective strategy. We begin with a regu-
lar triangulation of the unit cube (Figure 10), and then

project points onto the surface at hand. Each triangle is
then subdivided into four (triangles) by introducing one
point on each edge. This is done recursively N times. We
now have a number of points on the surface, connected
to form the triangulation, but we have the freedom to
move these points as long as we do not make any of the
triangles degenerate; we can do this with the aim of min-
imizing discretization error. Thaw does this in a sim-
ple manner. Remember that subdivision is performed by
choosing one point on each edge. Thaw takes each such
edge and tries seven equidistant points, linearly interpo-
lating between the endpoints of the edge. Each point is
projected onto the surface, and the distance from the sur-
face is recorded. The one which maximizes this distance
is then chosen (being considered to be the point at which
subdivision will have the most effect).

Note that we do not necessarily guarantee that the
sum of angles at any vertex is actually less than or equal
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FIGURE 11. The grid used to compute the cut locus of the surface x6 + (y/0.7)6 + (z/0.2)6 = 1 from the point
(−0.573639, 0.521062, 0.192467) with N = 3.

to 2π, and that may appear to be a fatal oversight, since
it allows gaps to develop in the wavefront (although these
will close quickly due to the convexity of the smooth sur-
face being approximated). One must keep two things
in mind. One is that the surface being triangulated is
convex, so any such errors will disappear rapidly as the
number of triangles increases. The other, perhaps more
important, observation is that we find that the new er-
ror introduced by such large angles is actually (in all the
cases we have studied) significantly less than the reduc-
tion in error adaptivity brings. In other words, there is
a reduction in total error.

3. THE CUT LOCUS OF A ZOLL SURFACE
OF REVOLUTION

Our next example will be of a surface whose cut locus is
known explicitly. This example is taken from Chapter 4
of [Besse 78], where the cut locus is given in Figures 4.37
and 4.38. We will use the same notation here.

The surface is a Zoll surface of revolution, with

h(cos r) = cos r
sin2 r

2

and an embedding in R
3:

x(r, θ) = sin r cos θ,

y(r, θ) = sin r sin θ,

z(r, θ) =
1
2

∫ r

π/2

(1 + cos u)

·
√

(1 − cos u)(2 − cos u) (2 + cos u + cos2 u) du.

We compute the cut locus from the point

(rp, θp) =
(π

2
, 0

)
.

As shown in complete detail in Section D of Chapter 4 of
[Besse 78], the cut locus is a “Y.” This provides us with
an excellent nontrivial example with which to test our
algorithm. See Figures 12 and 13. Thaw is able to repro-
duce the known results. It is, however, not our intention
to reinvent the wheel, and for that reason the final ver-
sion of Thaw is not designed to study such surfaces about
which essentially everything is already known.

FIGURE 12. The cut locus from a point on a Zoll surface
of revolution with h(cos r) = cos r·(sin2 r)/2, correspond-
ing to Figures 4.37 and 4.38 in [Besse 78].
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FIGURE 13. Left: A polar representation of the cut locus from a point on a Zoll surface of Revolution, corresponding
to Figure 4.37 in [Besse 78]. Note that our figure has an arbitrary rotation. The circles mark the distances 1, 2, and 3
from the starting point. Right: The cut locus from a point on a Zoll surface of revolution, corresponding to Figure 4.38
in [Besse 78]. Note the “goat’s beard” near (π, 0.8). It is a typical Thaw artifact at a conjugate point.

FIGURE 14. The cut locus from a point on a Zoll surface of revolution, computed using different numbers of triangles
(N = 5 and N = 6 on the left and right respectively). These illustrations were produced with a different shading algorithm
than that used to produce Figure 12. The fact that the “goat’s beard” is an artifact is easily seen by studying both of
the illustrations above.

3.1 Blurring Artifacts

The “goat’s beard” artifact in Figure 13 is perhaps cause
for concern, although the nature of the algorithms that
we are using is such that artifacts cannot be completely
avoided. What is unsatisfactory about this particular
artifact is that it appears to be a clear indication of a
feature which does not in fact exist. The reason for its
clarity is the rule that we are using to determine when
to leave a point on the surface uncoloured or to apply
Expression (2–3). That rule states that there must be
at least two source images, separated by at least ∆θ.
This means that neighbouring points which differ only

slightly (one sees two sources separated by slightly more,
the other by slightly less of an angle) are rendered quite
differently, since one of them may be coloured while the
other may not be. In the case of Figure 13, points be-
longing to the “goat’s beard” are coloured almost black,
while their neighbours are not coloured at all, leaving the
impression of a very clear boundary around the artifact.

It was therefore decided to change the colouring al-
gorithm to make artifacts less clear (and therefore less
misleading), while leaving the colouring of points that
are on the cut locus essentially unchanged. What we do
is the following:
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1. find the closest source image (at distance ρ1 and
angle θ1).

2. for every other source image (at distance ρj and an-
gle θj), compute the colouring

min {arccos(cos(θ1 − θj))/∆θ, 1}2 · ρ1 · ∆θ

10 [ρj − ρ1 + ρ1(∆θ/10)]
(3–1)

and then take the maximum (darkest) over all j.

The result can be seen in Figure 14. In comparing the
left and right illustrations in this figure, one can see that
the artifact is surrounded by white “streamers,” which
quickly disappear as the number of triangles increases.
At the same time, the black lines making up the artifact
also are seen to shorten dramatically with increasing N.
It is quite clear from these illustrations that the “goat’s
beard” is probably an artifact. To that extent, we have
achieved what we wanted with (3–1).

4. THE CUT LOCUS OF AN UMBILIC POINT
OF A GENERAL ELLIPSOID

It is a well-known fact that the cut locus from an umbilic
point on a general ellipsoid consists of only one point:
the conjugate point that is the antipodal umbilic point
[Klingenberg 82]. Our experience with a Zoll surface of
revolution suggests that Thaw has greatest difficulty in
identifying conjugate points. It would, therefore, seem
that approximating the cut locus from an umbilic point
of a general ellipsoid is an excellent test case to examine.
We believe that such difficult tests are vitally important
in establishing the limits of and also confirming the ro-
bustness of our algorithm.

We take the surface( x

0.2

)2

+
( y

0.6

)2

+ z2 = 1 (4–1)

and the umbilic point at (−0.115470, 0, 0.816497) as our
starting point.

Thaw’s output is summarized in Figure 15, and its
performance in Section 7.1. One notices that Thaw does
indeed converge quite slowly, but apparently to the cor-
rect result.

5. THE CUT LOCI OF GENERAL ELLIPSOIDS

We begin with two conjectures, proving the first and pro-
viding experimental support for the other:

Proposition 5.1. For any surface given by (x/a)2m +
(y/b)2m + (z/c)2m = 1, where m is a positive integer,

the cut locus from any point (x0, y0, z0) on the surface
contains the antipodal point (−x0,−y0,−z0).

Proof: Let f : (x, y, z) �→ (−x,−y,−z) be the rever-
sion. Take a shortest geodesic γ(t) from (x0, y0, z0) to
(−x0,−y0,−z0). Note that f(γ(t)) is a shortest geodesic
from (−x0,−y0,−z0) to (x0, y0, z0). Then, γ(t) and
f(γ(−t)) are two shortest geodesics from (x0, y0, z0) to
(−x0,−y0,−z0).

This first arose (for us) as a conjecture from observa-
tions of our experimental data. Once it was proven, we
used it as a check in the development of Thaw.

Conjecture 5.2. On a general ellipsoid (x/a)2 + (y/b)2 +
(z/c)2 = 1, (a > b > c > 0), for any point p;u1 = a, u2 =
b, which is not an umbilic point, contained in the upper
half, the cut locus of p is an arc on u1 = a (a curva-
ture line) in the lower half, where (u1, u2) are the elliptic
coordinates.

See Definition 3.5.3 in [Klingenberg 82] for a definition
of elliptic coordinates. We will use the notation of Section
3.5 of [Klingenberg 82] in the remainder of this section.
In that notation, the surface defined by (4–1) becomes

x2
0

0.04
+

x2
1

0.36
+ x2

2 =
x2

0

a0
+

x2
1

a1
+

x2
2

a2
= 1 (5–1)

(in other words, (a0, a1, a2) = (0.04, 0.36, 1.0)).
We choose a starting point at random:

(x0, x1, x2) = (−0.151128,−0.350718, 0.295520).

This has elliptic coordinates

(u1, u2) = (0.237164, 0.929661).

According to our conjecture, the cut locus should be an
arc on u1 = 0.237164. As Figure 16 quite clearly shows,
the match is striking.

As our second example, we return to the surface given
by (2–1),

x2
0

0.16
+

x2
1

0.81
+ x2

2 = 1, (5–2)

and also use the same starting point given by (2–2). In
elliptic coordinates, this starting point is at

(u1, u2) = (0.7339745189, 0.9863580085).

According to our conjecture, the cut locus should be an
arc on u1 = 0.7339745189. Figure 17 also confirms this.

These, and many other entirely similar examples, have
convinced us that the conjecture is true.
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N = 5

N = 4

N = 3

N = 2

N = 1

FIGURE 15. Approximations, involving ever greater numbers of triangles, of the cut locus of an umbilic point of the
general ellipsoid given by (x/0.2)2 + (y/0.6)2 + z2 = 1. It is a well-known fact that the cut locus is a single point, shown
as a large white dot.
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FIGURE 16. The cut locus from the point with elliptic co-
ordinates (u1, u2) = (0.237164, 0.929661) on the surface
given by x2

0/0.04+x2
1/0.36+x2

2 = 1 as computed by Thaw,
beneath the white curvature line given by u1 = 0.237164.

6. CUT LOCI ON QUARTIC OR EVEN
HIGHER-ORDER SURFACES

We hope that Thaw will be of use in investigating the
cut locus on surfaces with n = 2m ≥ 4, about which
relatively little is known. Figure 18 illustrates the cut
locus from a point on the quartic surface

x4 + y4 + z4 = 1.

The growth of memory and CPU time with the num-
ber of triangles (increasing N) of this example will be
presented in Section 7.1.

7. THE SOFTWARE

Thaw approximates the cut loci of given surfaces by spec-
ifying the three positive coefficients a, b, and c, and the
even positive integer power n = 2m in

(x

a

)n

+
(y

b

)n

+
(z

c

)n

= 1. (7–1)

FIGURE 17. The cut locus from the point with elliptic
coordinates (u1, u2) = (0.7339745189, 0.9863580085) on
the surface given by x2

0/0.16 + x2
1/0.81 + x2

2 = 1 as com-
puted by Thaw, beneath the white curvature line given
by u1 = 0.7339745189.

N (the number of subdivisions performed in generating
the computational grid—see Section 2.4) and D (an in-
teger that controls the density of points at which (2–3)
or (3–1) are evaluated) are parameters. The output file
thaw.wrl is a Virtual Reality Modeling Language file
[VRML 97] and is a full three-dimensional description of
the surface and cut locus approximation.

Thaw is freely available and can be obtained by con-
tacting R. Sinclair. There are three programs that work
together to allow one to work efficiently. These are the
following:

• thaw.c contains the source of the actual program
Thaw. It outputs to two files:

– thaw.wrl, which is an ASCII file containing
a three-dimensional VRML description of the
output which one can view using an internet
browser with suitable plugin. This truly three-
dimensional illustration can be rotated and ex-
amined at will. The starting point from which
the cut locus has been computed is displayed
as a small blue sphere on the surface. Its an-
tipodal point (see Proposition 5.1) is displayed
as a small green sphere.
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FIGURE 18. The cut locus from the starting point (0.533843, 0.800764, 0.844080) on the surface given by x4 + y4 + z4 = 1.

– thaw.eps, which is an encapsulated PostScript
[Adobe 85, Adobe 92] illustration of a polar rep-
resentation of the cut locus.

• post.c makes a two-dimensional encapsulated
PostScript rendering of Thaw’s three-dimensional
output (i.e., of thaw.wrl) with chosen orientation.

• rast.c reduces the size of the PostScript file
thaw.eps such that it can reasonably be included
in a LATEX [Lamport 94] file.

7.1 Performance

Thaw allocates blocks of 16,384 sources at a time. On our
system, such a block fills 1,048,576 bytes (1,024 Kbytes).

We will begin with memory and CPU time data from
the most difficult tests performed so far. These were the
computation of the cut locus of an umbilic point of a
general ellipsoid for various triangulations. See Section 4
and Figure 15.

In examining memory requirements, we must begin
with the size of the executable itself, and the memory
required to store the triangulation of the ellipsoid. These

N memory (Kbytes)
1 360
2 500
3 1,052
4 3,248
5 12,028

TABLE 1. Memory required by the executable and to store
the triangulation of an ellipsoid.

are shown in Table 1. The data are fit well by 300+11.4 ·
4N Kbytes, meaning that we can approximate the memory
usage of Thaw by

300 + (11.4 + C) · 4N Kbytes, (7–2)

where C is a function of the geometry, as we shall see.
In this case of the cut locus of an umbilic point of a

general ellipsoid, the memory usage associated with the
allocation of blocks (Table 2) can be approximated by
C = 49.0 · 4N Kbytes.

The CPU time appears to grow alarmingly as N in-
creases. See Table 2. For N = 5, we have a CPU time
of 62,348 seconds (approximately 17 hours). It appears
that the algorithm’s time complexity is about

62.0 + 0.02 · 20.1N. (7–3)

The fact that the growth is exponential is a result of
our triangulation (subdivision) algorithm as described in
Section 2.4, but one may still feel disappointed. On the
one hand, we must remember that Thaw was never ex-
pected to be highly efficient. Thaw’s strength lies in its
ability to produce reasonable quality diagrams in a short

N triangles CPU time (secs.) memory (blocks)
1 192 62 1
2 768 83 1
3 3,072 176 4
4 12,288 2,466 13
5 49,152 62,348 49

TABLE 2. Computational costs for approximating the cut
locus of an umbilic point of a general ellipsoid.
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amount of time, not in its asymptotic behaviour for large
N. On the other hand, see [Agarwal et al. 97, Mount 90]
for an indication of the complexity issues that we must
face. For example, the construction of a superset of the
shortest-path edge sequences on the surface of a convex
polytope would have a complexity of O((4N)6) [Agarwal
et al. 97]. In other words, Thaw appears to be in the
ballpark of what one can expect.

It is, however, worth looking at a more typical exam-
ple. The illustration of Figure 16 is such a one. There,
N = 5 and D = 2. Twenty blocks were allocated, al-
lowing us to calculate the total memory usage as 32,508
Kbytes. The computation required 28,578 seconds (ap-
proximately 8 hours) of CPU time. This is not unrea-
sonable, if one is prepared for such a wait.

Finally, we imagine that Thaw will most typically be
applied to surfaces such as

x4 + y4 + z4 = 1.

See Figure 18. The CPU time and memory requirements
for this surface are shown in Table 3.

The memory usage associated with the allocation of
blocks can be roughly approximated by 41·4N Kbytes. Us-
ing Equation (7–2), this implies the approximate memory
usage

300 + 52.4 · 4N Kbytes (7–4)

and CPU time of

61.0 + 0.007 · 22.2N (7–5)

for this surface.
In all of the more intensive computations (N ≥ 5),

we find that the simultaneous computation of exponen-
tial map and cut locus approximation (discussed in Sec-
tion 2), which allows those triangles which have already
been processed to be deallocated during processing, usu-
ally results in a reduction in memory usage by a factor
of 8 to 9.

N triangles CPU time (sec) memory (blocks)
1 192 61.160 1
2 768 63.100 1
3 3072 139.440 3
4 12288 1,606.620 8
5 49152 35,506.120 26

TABLE 3. Computational costs for approximating the cut
locus on the surface x4 + y4 + z4 = 1.

8. CONCLUSION

We have shown that it is possible to compute an ap-
proximation to the cut locus from a point on a surface
via a triangulation of the surface and provided a work-
ing software tool: Thaw. What is lacking is a theoretical
justification, and this must be the subject of future work.

We have used Thaw to experimentally confirm a new
conjecture: the cut loci from points on general ellipsoids
are subarcs of curvature lines.

Further work should involve extending the software
so that it can handle triangulations in which there are
vertices with an angle sum of greater than 2π. This,
and an appropriate definition of the cut locus on general
polyhedral surfaces, should enable Thaw to illustrate the
cut loci of quite complicated two-surfaces (such as ones
with high genus).
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