
Experimenting with Infinite Groups, I
Gilbert Baumslag, Sean Cleary, and George Havas

CONTENTS

1. Introduction
2. Background
3. Experimental Design
4. Computational Results
5. Further Questions
Acknowledgments
References

2000 AMS Subject Classification: Primary 20-04, 20E26;
Secondary 20F05, 20F10

Keywords: Infinite groups, parafree groups, finite quotients

A group is termed parafree if it is residually nilpotent and has the
same nilpotent quotients as a given free group. Since free groups
are residually nilpotent, they are parafree. Nonfree parafree
groups abound and they all have many properties in common
with free groups. Finitely presented parafree groups have solv-
able word problems, but little is known about the conjugacy and
isomorphism problems. The conjugacy problem plays an im-
portant part in determining whether an automorphism is inner,
which we term the inner automorphism problem. We will attack
these and other problems about parafree groups experimentally,
in a series of papers, of which this is the first and which is con-
cerned with the isomorphism problem. The approach that we
take here is to distinguish some parafree groups by computing
the number of epimorphisms onto selected finite groups. It turns
out, rather unexpectedly, that an understanding of the quotients
of certain groups leads to some new results about equations in
free and relatively free groups. We touch on this only lightly
here but will discuss this in more depth in a future paper.

1. INTRODUCTION

One-relator groups form a very interesting setting for un-
derstanding a number of difficult algorithmic problems
about finitely presented groups. The simplest finitely
presented parafree groups are the finitely generated free
groups, for which Dehn’s fundamental algorithmic ques-
tions addressing the word, conjugacy, and isomorphism
problems are trivially solvable. The situation is already
very different in the next-simplest possible set of finitely
presented parafree groups, those defined by a single re-
lation. Magnus [Magnus 30] solved the word problem
for one-relator groups in general but, despite remark-
able progress in a number of cases, the general conju-
gacy problem for one-relator groups remains open. The
even more difficult isomorphism problem for one-relator
groups lies even further out of reach. Here, we consider
a computational approach to the isomorphism problem
for some very restricted classes of one-relator groups by
studying several families of one-relator parafree groups.
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Theoretical approaches have had limited success in deter-
mining when groups in these families are isomorphic, so
we approach this question computationally. Our results
suggest that a one-relator parafree group is determined
by its finite images. More precisely, we suspect that if two
one-relator parafree groups have the same set of finite im-
ages, then they are isomorphic. A slightly different but
more wishful possibility is that if G is finitely generated
and residually finite and if G has the same finite quotients
as a free group, then G is free. Here the hypothesis that
G be finitely generated is essential ([Baumslag 68a]). As
a byproduct of this line of thinking we prove, not sur-
prisingly, that if two finitely generated groups, G and H,
have the same set of finite images and if T is any finite
group, then the number of epimorphisms from G onto T

is the same as the number of epimorphisms from H onto
T . This does not seem to have been noted before.

2. BACKGROUND

Parafree groups have many properties in common with
free groups yet are not necessarily themselves free. These
groups are generally very hard to distinguish from one
another and are even harder to distinguish from free
groups (see [Baumslag 67a, Baumslag 68a, Baumslag
68b, Baumslag 94] and [Baumslag and Cleary 05]). We
begin by introducing some notation in order to define
parafree groups.

Given x and y, elements in a group G, we denote by
xy the conjugate y−1xy of the element x by the element
y, and we denote the commutator x−1y−1xy of x and y

by [x, y]. The lower central series

G = γ1(G) ≥ γ2(G) ≥ . . . ≥ γn(G) ≥ . . .

is defined inductively by

γn+1(G) = gp([x, y] | x ∈ γn(G), y ∈ G).

G is termed residually nilpotent if

∞⋂

n=1

γn(G) = 1.

Equivalently, G is residually nilpotent if given any non-
trivial element g ∈ G, there exists a normal subgroup N

of G such that g /∈ N with G/N nilpotent. In general,
if P is a property or class of groups, then G is termed
residually P if, given any nontrivial element g ∈ G, there
exists a normal subgroup N of G such that g /∈ N with
G/N ∈ P.

We now define a group G to be parafree if G is resid-
ually nilpotent and there exists a free group F such that
G/γn(G) ∼= F/γn(F ) for every integer n ≥ 1. It follows
that G has the same nilpotent factor groups as F , which
means that there is no way to distinguish G from F if we
restrict our attention to nilpotent groups.

2.1 Families of Parafree Groups

There are now many known families of parafree groups.
The primary objective of this paper is to begin to distin-
guish some of the members of these families from each
other and from free groups.

Baumslag [Baumslag 67b] introduced a family of
parafree groups which we denote Gi,j and which is pre-
sented as

Gi,j = 〈a, b, c | a = [ci, a][cj , b]〉.

Baumslag [Baumslag 94] later introduced other fami-
lies which include some we denote Hw and special cases
of these denoted Hi,j , where w is a word in the derived
group and i and j are positive integers. These are pre-
sented as

Hw = 〈a, s, t | a = w[s, t]〉;
Hi,j = 〈a, s, t | a = [ai, tj ][s, t]〉.

Baumslag and Cleary [Baumslag and Cleary 05] intro-
duced several new families of parafree groups, including
some we denote Ki,j , with i and j relatively prime, pre-
sented as

Ki,j = 〈a, s, t | ai[s, a] = tj〉.
All of these groups have lower central series which are

isomorphic to the corresponding quotients for the free
group on two generators.

2.2 Distinguishing Parafree Groups

A natural question when considering various families of
parafree groups is whether or not the groups in these
families are in fact distinct. That is, we consider the
isomorphism problem for groups in the restricted envi-
ronment of these families of parafree groups.

There has been some success distinguishing some of
these parafree groups theoretically. Fine, Rosenberger,
and Stille [Fine et al. 97] were able to solve the iso-
morphism problem for the family of parafree groups in-
troduced by Baumslag [Baumslag 69] 〈a, b, t | a−1 =
[bi, a][bj , t]〉 in the case when j = 1 by taking advantage
of the fact that these groups can be regarded as HNN
extensions with a single stable letter and a finitely gen-
erated base group. By using a version of Nielsen theory
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for HNN extensions, they were able to show that in these
groups Gi,1 � G1,1 for all i > 1 and if i, k are primes
then Gi,1

∼= Gk,1 if and only if i = k. However, in the
general case where neither i nor j is one, these groups do
not decompose in the same way and their approach no
longer works.

Theoretical efforts to distinguish these groups have
been unsuccessful, so we turn to computational ef-
forts. One computational approach to distinguish gen-
eral finitely presented groups, used effectively by Holt
and Rees [Holt and Rees 92] in testisom, is the method
of enumerating homomorphisms to fixed finite groups. If
two groups are isomorphic, they have the same number
of homomorphisms to a fixed finite group. If they have
a different number of homomorphisms, the groups must
be distinct. Note that such enumeration strategies can
only show that groups are distinct; in many cases involv-
ing parafree groups, the number of homomorphisms to
a target group may be the same as the number of ho-
momorphisms from the corresponding free group which
they so closely resemble, as described in [Baumslag and
Cleary 05].

Lewis and Liriano [Lewis and Liriano 94] distinguished
a number of parafree groups in the class Gi,j pre-
sented above. They enumerated homomorphisms be-
tween Gi,j and the finite groups SL(2, Z/4) of order 48
and SL(2, Z/5) of order 120 for some combinations of i

and j both less than 7 and were able to distinguish 10
different isomorphism classes of groups among those. We
count epimorphisms onto a selection of simple groups and
study a wider collection of parafree examples and succeed
in distinguishing all of the ones that we consider.

The net result of these computations is the following
theorem:

Theorem 2.1. The 254 distinct parafree groups in the
three families Gi,j, Hi,j, and Ki,j with 1 ≤ i, j ≤ 10 are
distinguished from each other by counting epimorphisms
onto small simple groups.

This suggests that all of the distinct groups in the
families Gi,j , Hi,j , and Ki,j might be distinguished by
counting the number of epimorphisms onto finite sim-
ple groups. Even in the case where the target groups,
the finite simple groups, are of small order, such counts
lie outside the scope of any computational approach for
general families of groups. It may well be that all of the
groups discussed here, or indeed that all finitely gener-
ated parafree groups, are hyperbolic. In this case the
work of Sela [Sela 95] applies; that is to say there would

be an algorithm which determines whether or not any
pair of the groups above are isomorphic. However the
mere existence of such an algorithm still leaves unresolved
the question as to which of them are isomorphic. So new
tools need to be developed in order to solve this problem.

2.3 Finite Factor Groups and Equations in Free Groups

Now suppose that G is a finitely generated group and T is
a finite group. The object of this subsection is to record
some simple observations about: the set of epimorphisms
of the group G onto T ; the finite factor groups of G;
and equations in free and relatively free groups. We will
concentrate here on equations in free groups.

We start by showing that the number of epimorphisms
of a group G onto a finite group T is completely deter-
mined by the set of normal subgroups of finite index in G.

Proposition 2.2. Let Epi(G,T ) denote the set of epimor-
phisms from a group G onto a group T . Suppose that G

and H are finitely generated groups and that T is a finite
group. If G and H have the same set of finite images,
then

|Epi(G,T )| = |Epi(H,T )|.

Proof: Let V be the variety generated by T . By a theorem
of B. H. Neumann [Neumann 37] the finitely generated
groups in V are finite. Now every epimorphism, from G

onto T , factors through the finite group G/V (G), where
V (G) is the verbal subgroup of G defined by the variety
V. It follows that the number of epimorphisms from G

onto T is the number of epimorphisms from G/V (G) onto
T . Similarly the number of epimorphisms from H onto
T is the number of epimorphisms from H/V (H) onto T .
But G/V (G) ∼= H/V (H), which implies that the number
of epimorphisms of G onto T is equal to the number of
epimorphisms of H onto T , as required.

The other observation is contained in the next propo-
sition, the proof of which is obvious.

Proposition 2.3. Let H be a group given by the finite
presentation

H = 〈a1, . . . , am | r1(a1, . . . , am) = 1, . . . ,

rn(a1, . . . , am) = 1〉.
Suppose that d = m − n > 1 and that the equations

ri(x1, . . . , xm) = 1, (i = 1, . . . , n) (2–1)

hold in a free group F . Furthermore, suppose that there
exists a (d − 1)-generator group which is not a quotient
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of H. Then the subgroup of F generated by the solutions
in F of the system of equations given by (2–1) has rank
at most d − 2.

In order to make use of Proposition 2.3, we need to find
examples of finite groups which are not homomorphic
images of given finitely presented groups. Even if we have
unlimited computational resources, such an approach is
not always feasible. Here we proceed theoretically, giving
an example of a finite p-group which is not a quotient
of the group H = 〈a, b, c | apbpcp〉. So it follows from
Proposition 2.3 that if a, b, and c are elements of a free
group and if apbpcp = 1, then the subgroup generated
by a, b, and c is abelian. This was proved for p = 2
in [Lyndon 59]; see also [Baumslag 60] and [Lyndon and
Schützenberger 62].

We remark that the existence of nontrivial solutions of
equations in nonabelian free groups plays a part in work
on the Tarski problem; see, for example, [Sela 01, Sela
03] and [Kharlampovich and Myasnikov 98].

Proposition 2.4. Let p be any given prime. Then there
exists a two-generator, finite p-group G which is not a
quotient of H = 〈a, b, c | apbpcp〉.

We need the following lemma, which is implicit in
[Baumslag 68a].

Lemma 2.5. Let S = A � B be the wreath product of two
groups, A = 〈x | xp = 1〉 and B = 〈y | yp = 1〉, with
order the prime p. If z is any element in the derived
group of S, then zxiyj has order p2, provided only that
0 < i, j < p.

Proof: Notice that S can be presented in the form

S = 〈x, y | xp = yp = 1, [xym

, xyn

] = 1

where 0 ≤ m,n < p〉.

It follows that if S′ denotes the derived group of S, then
S/S′ is the direct product of two groups of order p gen-
erated by xS′ and yS′. Notice also that if r and s are
any integers not divisible by p, then the mapping which
sends x to xr and y to ys can be extended to an auto-
morphism of S. It follows that we can assume without
loss of generality that i = 1 = j.

Now let xk = ykxy−k for k = 0, . . . , p− 1. Then every
element in S can be expressed in the form

xi0
0 . . . x

ip−1
p−1 y� where 0 ≤ ij ≤ p − 1.

Observe that modulo S′, the elements xi all coincide.
Hence z ∈ S′ if and only if it has the form

z = xi0
0 . . . x

ip−1
p−1

where
i0 + i1 + . . . + ip−1 ≡ 0 mod p.

This implies that

zzy . . . zyp−1
= 1.

Consequently

(zxy)p = zzy · · · zyp−1
xxy · · ·xyp−1

yp

= x0x1 · · ·xp−1 	= 1.

So zxy has order p2 as claimed.

Proof of Proposition 2.4: We adopt the notation of
Lemma 2.5 throughout. Observe that S satisfies the
metabelian law (i.e., all commutators commute), the law
that the pth-power of all commutators is equal to 1, the
law xp2

= 1, and the law that S is nilpotent with class p.
Let G be the relatively free group of rank 2 in the variety
generated by S. It follows that G is metabelian and that
G is of exponent p2. Since S is a quotient of G it fol-
lows that G contains elements of order p2. Consequently
G/G′ is a direct product of two cyclic groups of order p2.

Our objective is to prove that G is not a quotient of
H = 〈a, b, c | apbpcp〉. Suppose the contrary. Let φ be a
homomorphism of H onto G. The factor group G/Φ(G)
of G by the Frattini subgroup Φ(G) of G, viewed as a
vector space over the field of p elements, has dimension
two. Since, modulo Φ(G), the elements aφ, bφ, and cφ

span this vector space, it follows, renaming the genera-
tors if necessary, that aφΦ(G) and bφΦ(G) span G/Φ(G);
consequently a = aφ and b = bφ generate G. Hence they
freely generate G. Consequently the map which sends a

to x and b to y can be extended to a homomorphism θ

from G onto S. Let c = cφ. Since a and b generate G,

c = aibjdpe (2–2)

where 0 ≤ i, j < p, d ∈ G and e is contained in the
derived group of G. Now

apbpcp = 1.

It follows that
c−p = apbp. (2–3)

Since G/G′ is the direct product of the cyclic groups
gp(aG′) and gp(bG′) of order p2, it follows from (2–2)
and (2–3), on working modulo G′, that

ip ≡ p mod p2, jp ≡ p mod p2.
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Hence i = 1 + pi′, j = 1 + pj′ for some choice of the
integers i′ and j′. Consequently c = a bdpf , where d ∈ G

and f ∈ G′. Now S is generated by elements of order p.
So the pth power of an element of S is contained in its
derived group. It follows that

1 = (apbpcp)φθ = xpyp(xyz)p = (xyz)p (2–4)

where z ∈ S′. From Lemma 2.5, xyz has order p2 and
hence (xyz)p 	= 1, which contradicts (2–4). This contra-
diction implies that G is not a quotient of H = 〈a, b, c |
apbpcp〉, as claimed.

We have verified Proposition 2.4 for p = 2 and p = 3 by
explicit computation along the lines described in Section
3. Proposition 2.4 gives that the group

〈u, v | u4, v4, [u, v]2, [[u, v], v], [[v, u], u]〉
with order 32 is not a quotient of 〈a, b, c | a2b2c2〉 and
that the group

〈u, v | u9, v9, [u, v]3, [[[v, u], v], u], [[[v, u], v], v], [[[v, u], u], u]〉

with order 37 is not a quotient of 〈a, b, c | a3b3c3〉. In
general we have that a group with order pp(p−1)/2+4 is
not a quotient. By checking all small groups, we have
found the smallest nonquotients for p = 2 and p = 3,
which are unique up to isomorphism, as follows. The
group 〈u, v | u3, uvuv−2〉 with order 24 is not a quotient
of 〈a, b, c | a2b2c2〉. The group

〈u, v | u9, [u3, v], [u, v3], [v−1, u−1]v3[v, u−1], (u−1v−1)3(uv)3〉

with order 36 is not a quotient of 〈a, b, c | a3b3c3〉; this
smaller nonquotient is a quotient of the group provided
by Proposition 2.4.

3. EXPERIMENTAL DESIGN

We use Proposition 2.2 to distinguish the parafree groups
of Theorem 2.1. The availability of packages for compu-
tational group theory, including GAP [The GAP Group
03], Magma [Bosma et al. 97], Magnus [NY Group The-
ory Cooperative 04], and testisom [Holt and Rees 92]
makes it quite easy to experiment with groups. We use
GAP, Magma, and components of testisom to study
epimorphisms from the groups in question to various fi-
nite groups. This kind of computer approach has been
used to distinguish infinite groups by Havas and Kovács
[Havas and Kovács 84], by Holt and Rees [Holt and Rees
92], and by Lewis and Liriano [Lewis and Liriano 94]. We

choose to examine (mainly) simple groups as images and
use Atlas notation [Conway et al. 85] for names of these
groups.

We constructed tables which give epimorphism counts
mainly obtained using straightforward GAP programs.
The counts are up to automorphisms of the image group
as obtained using the GQuotients command in GAP.
(The groups Ki,1

∼= F2 and are included in the tables for
convenient reference.) Various conjectures arise readily
from observation of identical rows or columns or other
patterns in the tables.

Computations have been done for Gi,j , Hi,j , and Ki,j

for all relevant 1 ≤ i, j ≤ 10 and for epimorphisms to
L2(q) for q ∈ [5, 7, 8, 9, 11], plus a few other groups in
selected difficult cases. In view of the time taken for some
calculations, counts to some larger groups have been done
with standalone programs using testisom.

4. COMPUTATIONAL RESULTS

In this section we describe the computational results
about Gi,j , Hi,j , and Ki,j which, inter alia, imply that
Theorem 2.1 holds. For Gi,j with 1 ≤ i, j ≤ 10 all groups
have 4 epimorphisms to L2(3) (which is consistent with
the results of Lewis and Liriano). A sample table showing
epimorphism counts is given in Table 1.

We have similar tables for Gi,j , Hi,j , and Ki,j for
all relevant 1 ≤ i, j ≤ 10 giving epimorphism counts to
L2(q) for q ∈ [5, 7, 8, 9, 11]. For brevity we omit them
here, but they are all available at [Baumslag et al. 04] and
at http://www.expmath.org/expmath/volumes/13/13.4/
BaumslagEtAl/tables.pdf.

For Hi,j with 1 ≤ i, j ≤ 10 all groups (as for Gi,j) have
4 epimorphisms to L2(3). For Ki,j with 1 ≤ i, j ≤ 10 and

Epimorphisms : Gi,j 
→ L2(5)
j

i 1 2 3 4 5 6 7 8 9 10
1 16 32 13 32 26 9 36 12 33 22
2 12 12 29 32 22 9 12 32 29 22
3 33 29 13 9 23 29 33 9 13 19
4 32 12 29 12 22 29 12 32 9 22
5 26 22 23 22 26 19 26 22 23 22
6 9 29 9 29 19 9 29 9 29 19
7 16 12 33 32 26 9 16 32 33 22
8 32 32 9 12 22 29 32 12 9 22
9 33 9 33 9 23 29 13 29 13 19

10 22 22 19 22 22 19 22 22 19 22

TABLE 1.
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Epimorphism counts to L2(q)
q = 5 q = 7 q = 8 q = 9 q = 11 Group

12 60 106 75 307 G2,7

12 60 120 92 301 G1,8

12 60 120 92 325 G4,2

12 60 120 92 325 G8,4

12 60 120 100 301 G2,1

12 60 120 100 301 H1,1

12 60 178 74 350 G4,7

12 60 192 49 319 G4,4

12 60 192 49 319 G8,8

12 68 106 75 307 G7,2

12 92 192 81 319 G2,2

TABLE 2.

gcd(i, j) = 1 most groups (as for Gi,j and Hi,j) have 4
epimorphisms to L2(3). However K2,3, K2,9, K4,3, K4,9,
K8,3, K8,9, K10,3, and K10,9 have 8, distinguishing them
from the other groups.

To study all of these parafree groups we can sort them
according to the quintuple of epimorphism counts onto
L2(5), L2(7), L2(8), L2(9), and L2(11). For example, the
part of the sorted table with 12 epimorphisms onto L2(5)
contains 11 groups and is given in Table 2.

This part of the sorted table shows that the pairs
(G4,2, G8,4), (G2,1, H1,1), and (G4,4, G8,8) are not dis-
tinguished by these epimorphism counts. However, apart
from possible isomorphisms among these pairs, these 11
groups are different from all other Gi,j , Hi,j , and Ki,j in
our range (and from F2).

Ignoring the 10 copies of F2 provided by Ki,1 there
are 253 groups. Only 20 pairs (from these 253 plus F2

itself) are not distinguished by the epimorphism counts
to L2(q) for q ∈ [5, 7, 8, 9, 11]. For each of these pairs
we list epimorphism counts onto L2(q) for q ∈ [13, 16, 17]
(see Table 3).

This list leaves us with only two pairs of groups to
distinguish: (G4,2, G8,4) and (G2,1,H1,1). For these
two pairs we list epimorphism counts onto L2(q) for
q ∈ [19, 23, 25, 27, 29, 31] (see Table 4).

Thus the pair (G4,2, G8,4) are distinguished by epimor-
phism counts onto L2(23), L2(25), and L2(31). However
the pair (G2,1,H1,1) are not distinguished by epimor-
phism counts onto L2(q) for q ≤ 31. The choice of L2(q)
as simple images was somewhat arbitrary, chosen for ease
of use.

To differentiate our final pair of groups we study epi-
morphism counts to all moderately sized simple groups.
We counted epimorphisms to each of the 43 nonabelian

Epimorphism counts to L2(q)
Groups q = 13 q = 16 q = 17

G2,4, G4,8 476, 476 736, 736 1178, 1114
G4,2, G8,4 480, 480 882, 882 1276, 1276
G4,4, G8,8 482, 482 882, 882 1309, 1053
G3,3, G9,9 548, 548 975, 975 946, 1162
G1,9, G9,1 530, 616 965, 829 1196, 1196
G3,5, G5,3 616, 478 955, 1151 1157, 1013
G3,7, G7,3 529, 551 1101, 1237 1262, 1226
G4,5, G5,4 508, 499 862, 1058 1022, 1310
G4,6, G6,4 441, 524 1047, 1047 1083, 1155
G5,9, G9,5 457, 539 1151, 1091 1176, 1312

G10,6, G6,10 448, 556 1097, 901 1109, 1253
G10,8, G8,10 469, 466 1058, 862 1182, 1046
K1,4,K1,8 459, 459 936, 936 2001, 2543
K3,4,K3,8 602, 602 1041, 1041 1889, 2463
K5,4,K5,8 561, 561 990, 990 1319, 1115
K7,4,K7,8 585, 585 936, 936 2340, 3896
K9,4,K9,8 602, 602 941, 941 2183, 3167
K2,3,K2,9 639, 639 939, 939 1720, 2155
G2,1,H1,1 522, 522 882, 882 1284, 1284
G6,5,H1,5 500, 478 1173, 765 1198, 971

TABLE 3.

Epimorphism counts to L2(q)
q G4,2 G8,4 G2,1 H1,1

19 1818 1818 1708 1708
23 3088 3064 3100 3100
25 1748 1616 1765 1765
27 1935 1935 1949 1949
29 5704 5704 5802 5802
31 7186 7314 7394 7394

TABLE 4.

simple groups with order up to 285852 (the order of
L2(83)). Epimorphism counts reveal that (G2,1, H1,1)
are distinguished by 11 of these 43 simple groups, (but
not by any L2(q) with q ≤ 83). Thus, with simple groups
listed in order of increasing size and with counts up to in-
ner automorphisms (since we used the permim command
of testisom) we have the results in Table 5.

(We note that our choice of permim for all of these
calculations was for uniformity. For A8 and A9 we can
obtain equivalent results more quickly. Thus, epimor-
phism counts onto alternating (and symmetric) groups
can in general be done much faster by using the Low
Index Subgroups algorithm.)

So, by counting epimorphisms onto small simple
groups, we deduce that Theorem 2.1 holds.
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Epimorphism counts
Image G2,1 H1,1

L3(3) 5432 5288
U3(3) 5116 5338
M11 7238 7334
A8 18032 17808

L3(4) 16812 16140
U4(2) 24996 25230
U3(4) 58524 58588
M12 90140 89948

U3(5) 125964 126192
J1 174226 174274
A9 169988 170062

TABLE 5.

No finite set of values can be used to distinguish an
infinite family of groups. There are severe limits on any
single finite group being used to distinguish one-relator
parafree groups (and likewise limits on any finite collec-
tion of finite groups). Exemplifying this, in the context
of the method for distinguishing groups used here, it is
shown in [Baumslag and Cleary 05] that if T is any given
finite group then there are infinite families of one-relator
parafree groups Γi such that the number of homomor-
phisms from Γi into T is the same as the number of ho-
momorphisms from the appropriate free group into T .

5. FURTHER QUESTIONS

We expect that the groups in these families are (essen-
tially) all distinct but we do not yet have the tools for the-
oretical or experimental proof. However we now have suc-
cessfully distinguished what might be viewed as a mean-
ingful initial collection. It seems reasonable to conjecture
that they are all distinguished by counting epimorphisms
onto simple groups.

We expect that the groups in these families are eas-
ier to distinguish than more complicated nonfree parafree
groups. For example, the groups Hi,j considered here are
all particular examples of the more general Hw, where in
Hi,j , the word w has a restricted form and lies in the first
derived group. We expect that examples in Hw where
w is more complicated or lies in the second or higher-
numbered derived group are more difficult to distinguish
from the free groups and from each other. We hope that
other computational approaches, such as the enumera-
tion of finite index subgroups or examining kernels of ho-
momorphisms, may effectively distinguish more of these
groups.
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