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We provide a number of new construction techniques for cubi-
cal complexes and cubical polytopes, and thus for cubifications
(hexahedral mesh generation). As an application we obtain an
instance of a cubical 4-polytope that has a nonorientable dual
manifold (a Klein bottle). This confirms an existence conjecture
of Hetyei (1995).

More systematically, we prove that every normal crossing
codimension one immersion of a compact 2-manifold into R

3

is PL-equivalent to a dual manifold immersion of a cubical 4-
polytope. As an instance we obtain a cubical 4-polytope with a
cubification of Boy’s surface as a dual manifold immersion, and
with an odd number of facets. Our explicit example has 17,718
vertices and 16,533 facets. Thus we get a parity-changing op-
eration for three-dimensional cubical complexes (hex meshes);
this solves problems of Eppstein, Thurston, and others.

1. INTRODUCTION

A d-polytope is cubical if all its proper faces are com-
binatorial cubes, that is, if each k-face of the polytope,
k ∈ {0, . . . , d − 1} is combinatorially equivalent to the
k-dimensional standard cube.

It has been observed by Stanley, MacPherson, and
others (see [Babson and Chan 00, Jockusch 93]) that ev-
ery cubical d-polytope P determines a PL immersion of
an abstract cubical (d − 2)-manifold into the polytope
boundary ∂P ∼= Sd−1. The immersed manifold is ori-
entable if and only if the 2-skeleton of the cubical d-
polytope (d ≥ 3) is “edge-orientable” in the sense of Het-
yei, who conjectured that there are cubical 4-polytopes
that are not edge-orientable [Hetyei 95, Conjecture 2].

In the more general setting of cubical PL (d − 1)-
spheres, Babson and Chan [Babson and Chan 00] have
observed that every type of normal crossing PL immer-
sion of a (d − 2)-manifold into a (d − 1)-sphere appears
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among the dual manifolds of some cubical PL (d − 1)-
sphere.

No similarly general result is available for cubical poly-
topes. The reason for this may be traced/blamed to a
lack of flexible construction techniques for cubical poly-
topes, and more generally, for cubical complexes (such
as the “hexahedral meshes” that are of great interest in
CAD and in numerical analysis).

In this paper, we develop a number of new and im-
proved construction techniques for cubical polytopes. We
try to demonstrate that it always pays off to carry along
convex lifting functions of high symmetry. The most
complicated and subtle element of our constructions is
the “generalized regular Hexhoop” of Section 6.4, which
yields a cubification of a d-polytope with a hyperplane
of symmetry, where a (suitable) lifting function may be
specified on the boundary. Our work is extended by the
first author in [Schwartz 03], where additional construc-
tion techniques for cubifications (i.e., cubical subdivisions
of d-polytopes with prescribed boundary subdivisions)
are discussed.

Using the constructions developed here, we achieve the
following constructions and results:

• a rather simple construction yields a cubical 4-
polytope (with 72 vertices and 62 facets) for which
the immersed dual 2-manifold is not orientable: one
of its components is a Klein bottle. Apparently this
is the first example of a cubical polytope with a
nonorientable dual manifold. Its existence confirms
a conjecture of Hetyei (Section 5).

• more generally, all PL-types of normal crossing im-
mersions of 2-manifolds appear as dual manifolds in
the boundary complexes of cubical 4-polytopes (Sec-
tion 7). In the case of nonorientable 2-manifolds of
odd genus, this yields cubical 4-polytopes with an
odd number of facets. From this, we also obtain a
complete characterization of the lattice of f -vectors
of cubical 4-polytopes (Section 9).

• in particular, we construct an explicit example with
17, 718 vertices and 16, 533 facets of a cubical 4-
polytope which has a cubification of Boy’s surface
(projective plane with exactly one triple point) as a
dual manifold immersion (Section 8).

• via Schlegel diagrams, this implies that every 3-
cube has a cubical subdivision into an even num-
ber of cubes that does not subdivide the boundary
complex. Thus for every cubification of a three-
dimensional domain there is also a cubification of the

opposite parity (Section 10). This answers questions
by Bern, Eppstein, Erickson, and Thurston [Bern et
al. 02, Eppstein 99, Thurston 93].

Electronic geometry models of the instances con-
structed in Sections 5 and 8 are available at the
second author’s home page, http://www.math.tu-
berlin.de/˜schwartz/c4p/.

2. BASICS

For the following we assume that the readers are fa-
miliar with the basic combinatorics and geometry of
convex polytopes. In particular, we will be dealing
with cubical polytopes (see [Grünbaum 03, Section 4.6]),
polytopal (e.g., cubical) complexes, regular subdivisions
(see [Ziegler 98, Section 5.1]), and Schlegel diagrams
[Grünbaum 03, Section 3.3], [Ziegler 98, Section 5.2]. For
cell complexes, barycentric subdivision and related no-
tions we refer to [Munkres 84]. Suitable references for
the basic concepts about PL manifolds, embeddings, and
(normal crossing) immersions include [Hudson 69] and
[Rourke and Sanderson 82].

2.1 Almost Cubical Polytopes

All proper faces of a cubical d-polytope have to be com-
binatorial cubes. We define an almost cubical d-polytope
as a pair (P, F ), where F is a specified facet of P such
that all facets of P other than F are required to be com-
binatorial cubes. Thus, F need not be a cube, but it will
be cubical.

By C(P ) we denote the polytopal complex given by
a polytope P and all its faces. By C(∂P ) we denote
the boundary complex of P , consisting of all proper faces
of P . If P is a cubical polytope, then C(∂P ) is a cu-
bical complex. If (P, F ) is almost cubical, then the
Schlegel complex C(∂P )\{F} is a cubical complex that
is combinatorially isomorphic to the Schlegel diagram
Schlegel(P, F ) of P based on F .

2.2 Cubifications

A cubification of a cubical PL (d − 1)-sphere Sd−1 is a
cubical d-ball Bd with boundary Sd−1. A double count-
ing argument shows that every cubical (d − 1)-sphere
that admits a cubification has an even number of facets.
Whether this condition is sufficient is a challenging open
problem, even for d = 3 (compare [Bern et al. 02, Epp-
stein 99]).
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(a) C (b) C and D(C) (c) D(C)

FIGURE 1. The derivative complex of a cubical 2-complex C.

2.3 Dual Manifolds

For every cubical (pure) d-dimensional complex C, d > 1,
the derivative complex is an abstract cubical (d − 1)-
dimensional cell complex D(C) whose vertices may be
identified with the edge midpoints of C, while the facets
“separate the opposite facets of a facet of C,” that is,
they correspond to pairs (F, [e]), where F is a facet of C
and [e] denotes a “parallel class” of edges of F . This is a
cell complex with f1(C) vertices and dfd(C) cubical facets
of dimension d − 1, d of them for each facet of C. Hence
the derivative complex D(C) is pure (d− 1)-dimensional.
See Babson and Chan [Babson and Chan 00, Section 4].

In the case of cubical PL manifolds, such as spheres
(for instance, boundary complexes of cubical polytopes),
or cubical PL balls, the derivative complex is a (not nec-
essarily connected) manifold, and we call each connected
component of the derivative complex D(P ) of a cubical
complex C a dual manifold of C. If the cubical com-
plex C is a sphere, then the dual manifolds of C are
manifolds without boundary. If C is a ball, then some
(possibly all) dual manifolds have nonempty boundary
components, namely the dual manifolds of ∂C.

The derivative complex, and thus each dual mani-
fold, comes with a canonical immersion into the bound-
ary of P . More precisely, the barycentric subdivision
sd (D(P )) of D(P ) has a simplicial map to the barycen-
tric subdivision of the boundary complex ∂P , which is
a codimension one normal crossing immersion into the
simplicial sphere sd (C(∂P )). (Normal crossing means
that each multiple-intersection point is of degree k ≤ d

and there is a neighborhood of each multiple-intersection
point that is PL isomorphic to (a neighborhood of) a
point which is contained in k pairwise perpendicular hy-
perplanes.)

Restricted to a dual manifold, this immersion may be
an embedding or not.

FIGURE 2. The cubical octahedron O8 (the only combi-
natorial type of a cubical 3-polytope with eight facets),
and its single immersed dual manifold.

In the case of cubical 3-polytopes, the derivative com-
plex may consist of one or many 1-spheres. For example,
for the 3-cube it consists of three 1-spheres, while for
the “cubical octahedron” O8 displayed in Figure 2 the
dual manifold is a single immersed S1 (with eight double
points).

In the case of 4-polytopes, the dual manifolds are
surfaces (compact 2-manifolds without boundary). As
an example, we display here a Schlegel diagram of a
“neighborly cubical” 4-polytope (that is, of a 4-polytope
whose 1-skeleton (graph) is equivalent to that of a higher-
dimensional cube), with f -vector (32, 80, 96, 48).

According to Joswig and Ziegler [Joswig and Ziegler
00] this may be constructed as

C5
4 := conv((Q × 2Q) ∪ (2Q × Q)),

where Q = [−1,+1]2. Here the dual manifolds
are four embedded cubical 2-spheres S2 with f -vector
(16, 28, 14)—of two different combinatorial types—and
one embedded torus T with f -vector (16, 32, 16).
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FIGURE 3. A Schlegel diagram of the “neighborly cu-
bical” 4-polytope C5

4 with the graph of the 5-cube, and
its dual torus. All other dual manifolds are embedded
2-spheres.

2.4 Orientability

Let P be a cubical d-polytope (d ≥ 3). The immersed
dual manifolds in its boundary cross the edges of the
polytope transversally.

Thus we find that orientability of the dual manifolds
is equivalent to the possibility of giving consistent edge
orientations to the edges of P , that is, in each 2-face of P

opposite edges should get parallel (rather than antipar-
allel) orientations; compare Hetyei [Hetyei 95]. Figure 4
shows such an edge orientation for a cubical 3-polytope
(whose derivative complex consists of three circles, so it
has eight consistent edge orientations in total).

FIGURE 4. Edge orientation of (the Schlegel diagram
of) a cubical 3-polytope. The edges marked on the right
must be oriented consistently.

One can attempt to obtain such edge orientations by
moving from edge to edge across 2-faces. The obstruc-
tion to this arises if, on a path moving from edge to edge
across quadrilateral 2-faces, we return to an already vis-
ited edge, with reversed orientation, that is, if we close
a cubical Möbius strip with parallel inner edges, as dis-
played in the figure. (Such an immersion is not necessar-
ily embedded, that is, some faces may be used twice for
the Möbius strip.)

Proposition 2.1. For every cubical d-polytope (d ≥ 3), the
following are equivalent:

• all dual manifolds of P are orientable.

−> −>

−>−>

−>

−>v1 v2 v�−1 v� w0

w0 w1 w2 w�−1 w� =

=

v0

v0

FIGURE 5. A cubical Möbius strip with parallel inner
edges.

• the 2-skeleton of P has a consistent edge orientation.

• the 2-skeleton of P contains no immersion of a cu-
bical Möbius strip with parallel inner edges.

2.5 From PL Immersions to Cubical PL Spheres

The emphasis in this paper is on cubical convex d-
polytopes. In the more general setting of cubical PL
(d − 1)-spheres, one has more flexible tools available. In
this setting, Babson and Chan [Babson and Chan 00]
proved that “all PL codimension 1 normal crossing im-
mersions appear.” The following sketch is meant to ex-
plain the Babson-Chan theorem geometrically (it is pre-
sented in a combinatorial framework and terminology
in [Babson and Chan 00]), and to briefly indicate which
parts of their construction are available in the polytope
world.

Construction 1. Babson-Chan [Babson and Chan 00].

Input: A simplicial normal crossing PL immer-
sion j : Md−2 → Sd−1 of a simplicial PL
manifold Md−2 of dimension d− 2 into a
simplicial PL (d − 1)-sphere.

Output: A cubical PL (d − 1)-sphere with a dual
manifold immersion PL-equivalent to j.

1. Perform a barycentric subdivision on Md−2

and Sd−1.
(Here each i-simplex is replaced by (i+1)! new
i-simplices, which is an even number for i > 0.
This step is done only to ensure parity condi-
tions on the f -vector, especially that the num-
ber of facets of the final cubical sphere is con-
gruent to the Euler characteristic of Md−2.
Barycentric subdivisions are easily performed
in the polytopal category as well; see Ewald
and Shephard [Ewald and Shephard 74].)
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FIGURE 6. Step 1. Performing a barycentric subdivision.
(We illustrate the impact of the construction on a 2-ball,
which might be part of a 2-sphere. The immersion which
is shown in bold has a single double-intersection point.)

FIGURE 7. Step 2. Performing a cubical barycentric
subdivision.

2. Perform a “cubical barycentric subdivision”
on Md−2 and Sd−1.
(This is the standard tool for passage from
a simplicial complex to a PL-homeomorphic
cubical complex; here every i-simplex is sub-
divided into i+1 different i-cubes. Such cuba-
tions can be performed in the polytopal cate-
gory according to Shephard [Shephard 66]: if
the starting triangulation of Sd−1 was poly-
topal, the resulting cubation will be polytopal
as well.)

3. “Thicken” the cubical (d−1)-sphere along the
immersed (d − 2)-manifold, to obtain the cu-
bical (d − 1)-sphere BC(Sd−1, j(Md−2)).
(In this step, every (d−1−i)-cube in the i-fold
multiple point locus results in a new (d − 1)-
cube. The original immersed manifold, in its
cubified subdivided version, now appears as a
dual manifold in the newly resulting (d − 1)-
cubes. This last step is the one that seems
hard to perform for polytopes in any nontriv-
ial instance.)

FIGURE 8. The outcome of the Babson-Chan construc-
tion: a cubical sphere with a dual manifold immersion
that is PL-equivalent to the input immersion j.

3. LIFTING POLYTOPAL SUBDIVISIONS

3.1 Regular Balls

In the following, the primary object we deal with is a
regular ball : a regular polytopal subdivision B of a convex
polytope Q = |B|.

Definition 3.1. (Regular subdivision, lifting function.) A
polytopal subdivision B is regular (also known as coher-
ent or projective) if it admits a lifting function, that is, a
concave function f : |B| → R whose domains of linearity
are the facets of the subdivision. (A function g : D → R

is concave if for all x,y ∈ D and 0 < λ < 1 we have
g(λx + (1 − λ)y) ≥ λg(x) + (1 − λ)g(y).)

In this definition, subdivisions of the boundary are
allowed, that is, we do not necessarily require that the
faces of |B| are themselves faces in B.

In the sequel we focus on regular cubical balls. Only
in some cases do we consider regular noncubical balls.

Example 3.2. If (P, F ) is an almost cubical polytope,
then the Schlegel diagram based on F , which we denote
by Schlegel(P, F ), is a regular cubical ball (without
subdivision of the boundary of F = |Schlegel(P, F )|).

Lemma 3.3. If B is a regular cubical d-ball, then there is
a regular cubical ball B′ without subdivision of the bound-
ary, combinatorially isomorphic to B.

Proof: Using a concave lifting function f : |B| → R, the
d-ball B may be lifted to B̃ in R

d+1, by mapping each
x ∈ |B| to (x, f(x)) ∈ R

d+1. Viewed from p := λed+1,
for sufficiently large λ, all facets of B̃ are seen “from
above,” and the ball appears to be strictly convex, where
the pieces of subdivided facets of B break into distinct,
nonsubdivided facets in the shadow boundary of B̃.
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FIGURE 9. Illustration of the “convexification” of a regular ball (Lemma 3.3).

B′ = lift(B, h)

B B

Q

FIGURE 10. A lifted cubical ball (B, h) and its lifted copy lift(B, h). The figure on the right shows the convex hull Q =
conv(lift(B, h)).

Now consider the polyhedral complex C̃ given by the
cones with apex p over the faces of B̃. This polyhedral
complex is regular, with a lifting function that takes value
1 at the apex p and value 0 on all faces of B̃. This lifting
function restricts to a lifting function for the restriction
of C̃ to the hyperplane given by xd+1 = λ−1, which may
be taken to be B′. (See Figure 9.)

3.2 Lifted Balls

When constructing cubical complexes we often deal with
regular cubical balls which are equipped with a lifting
function. A lifted d-ball is a pair (B, h) consisting of a
regular d-ball B and a lifting function h of B. The lifted
boundary of a lifted ball (B, h) is the pair (∂B, h|∂B).

If (B, h) is a lifted d-ball in R
d′

, then lift(B, h) denotes
the copy of B in R

d′+1 with vertices (v, h(v)) ∈ R
d′+1,

v ∈ vert(B). (In the sequel we sometimes do not distin-
guish between these two interpretations of a lifted ball.)
See Figure 10 for the illustration of this correspondence.

Notation. 3.4. We identify R
d with R

d × {0} ⊂ R
d+1,

and decompose a point x ∈ R
d+1 as x = (π(x), γ(x)),

where γ(x) is the last coordinate of x and π : R
d+1 → R

d

is the projection that eliminates the last coordinate.

Often a lifted ball (B, ψ) is constructed as follows: let
P be a d-polytope (in R

d) and Q ⊂ R
d+1 a (d + 1)-

polytope such that π(Q) = P . Then the complex B′

given as the set of upper faces of Q determines a
lifted polytopal subdivision (B, ψ) of P (where B := π(B′)
and ψ is determined by the vertex heights γ(v), v ∈
vert(B′)). Hence lift(B, ψ) equals B′. Compare again
Figure 10.

A lifted boundary subdivision of a d-polytope P is a
pair (Sd−1, ψ) consisting of a polytopal subdivision Sd−1

of the boundary of P and a piecewise linear function ψ :
|∂P | → R such that for each facet F of P the restriction
of ψ to F is a lifting function of the induced subdivision
Sd−1 ∩ F of F .
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3.3 The Patching Lemma

There are several useful constructions that produce new
regular cubical balls from given ones. The following
“patching lemma,” which appears frequently in the con-
struction of regular subdivisions (see [Kempf et al. 73,
Corollary 1.12] or [Bruns et al. 97, Lemma 3.2.2]) is a
basic tool of this sort.

Notation. 3.5. For a d-polytope P ⊂ R
d′

, a polytopal
subdivision T of P , and a hyperplane H in R

d′
, we denote

by T ∩ H the restriction of T to H, which is given by

T ∩ H := {F ∩ H : F ∈ T } .

For two d-polytopes P,Q with Q ⊂ P and a polytopal
subdivision T of P we denote by T ∩Q the restriction of
T to Q, which is given by

T ∩ Q := {F ∩ Q : F ∈ T } .

By fac(S) we denote the set of facets of a complex S.

Lemma 3.6. ("Patching Lemma.") Let Q be a d-polytope.
Assume we are given the following data:

• a regular polytopal subdivision S of Q (the “raw sub-
division”).

• for each facet F of S, a regular polytopal subdivision
TF of F , such that TF ∩ F ′ = TF ′ ∩ F for all facets
F, F ′ of S.

• for each facet F of S, a concave lifting function hF

of TF , such that hF (x) = hF ′(x) for all x ∈ F ∩F ′,
where F, F ′ are facets of S.

Then this uniquely determines a regular polytopal subdi-
vision U =

⋃
F TF of Q (the “fine subdivision”). Fur-

thermore, for every lifting function g of S there exists a
small ε0 > 0 such that for all ε in the range ε0 > ε > 0
the function g + εh is a lifting function of U , where h is
the piece-wise linear function h : |Q| → R which on each
F ∈ S is given by hF .

Proof: Let g be a lifting function of S. For a parameter
ε > 0 we define a piecewise linear function φε : |P | → R

that on x ∈ F ∈ fac(S) takes the value φε(x) = g(x) +
εhF (x). (It is well defined since the hF coincide on the
ridges of S.) The domains of linearity of φε are given by
the facets of the “fine” subdivision U . If ε tends to zero,
then φε tends to the concave function g. This implies
that there exists a small ε0 > 0 such that φε is concave
and thus a lifting function of U , for ε0 > ε > 0.

3.4 Products and Prisms

Lemma 3.7. ("Product lemma.") Let (B1, h1) be a lifted
cubical d1-ball in R

d′
1 and (B2, h2) be a lifted cubical d2-

ball in R
d′
2 . Then the product B1 × B2 of B1 and B2 is a

regular cubical (d1 + d2)-ball in R
d′
1+d′

2 .

Proof: Each cell of B1 × B2 is a product of two cubes.
Hence B1 ×B2 is a cubical complex. A lifting function h

of B1 × B2 is given by the sum of h1 and h2, that is, by
h((x,y)) := h1(x) + h2(y), for x ∈ |B1|,y ∈ |B2|.

Thus the prism prism(C) over a cubical d-ball C, given
as a product of C with an interval, is a cubical (d + 1)-
dimensional ball, which is regular if (and only if) C is
regular.

3.5 Piles of Cubes

For integers �1, . . . , �d ≥ 1, the pile of cubes Pd(�1, . . . , �d)
is the cubical d-ball formed by all unit cubes with integer
vertices in the d-polytope P := [0, �1]× . . . × [0, �d], that
is, the cubical d-ball formed by the set of all d-cubes

C(k1, . . . , kd) := [k1, k1 + 1] × · · · × [kd, kd + 1]

for integers 0 ≤ ki < �i together with their faces [Ziegler
98, Section 5.1].

The pile of cubes Pd(�1, . . . , �d) is a product of one-
dimensional subdivisions, which are regular. Hence
Lemma 3.7 implies that Pd(�1, . . . , �d) is a regular cu-
bical subdivision of the d-polytope P .

3.6 Connector Polytope

The following construction yields a “connector” polytope
that may be used to attach cubical 4-polytopes, respec-
tively, regular cubical 4-balls without the requirement
that the attaching facets are projectively equivalent.

Lemma 3.8. For any combinatorial 3-cube F there is a
combinatorial 4-cube C that has both (a projective copy
of) F and a regular 3-cube F ′ as (adjacent) facets.

Proof: After a suitable projective transformation we may
assume that F ⊂ R

3 has a unit square Q as a face. Now
the prism F × I over F has F and Q × I as adjacent
facets, where the latter is a unit cube.

4. BASIC CONSTRUCTION TECHNIQUES

4.1 Lifted Prisms

While there appears to be no simple construction that
would produce a cubical (d + 1)-polytope from a given
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LiftedPrism(B, h)

FIGURE 11. The lifted prism of a lifted cubical d-ball (B, h), displayed for d = 2. The result is a (regular) cubical
(d + 1)-ball that is combinatorially isomorphic to the prism over B.

cubical d-polytope, we do have a simple prism construc-
tion that produces regular cubical (d+1)-balls from reg-
ular cubical d-balls.

Construction 2. Lifted Prism.

Input: A lifted cubical d-ball (B, h).
Output: A lifted cubical (d + 1)-ball

LiftedPrism(B, h) which is
combinatorially isomorphic to the
prism over B.

We may assume that the convex lifting function h

defined on P := |B| is strictly positive. Then the
lifted facets of LiftedPrism(B, h) may be taken to
be the sets

F̃ := {(x, t, h(x)) : x ∈ F, −h(x) ≤ t ≤ +h(x)},
F ∈ fac(B).

If B does not subdivide the boundary of P , then
LiftedPrism(B, h) does not subdivide the bound-
ary of |LiftedPrism(B, h)|. In this case P̂ :=
|LiftedPrism(B, h)| is a cubical (d+1)-polytope whose
boundary complex is combinatorially isomorphic to the
boundary of the prism over B. The f -vector of P̂ is then
given by

fk(P̂ ) =

{
2f0(B) for k = 0,

2fk(B) + fk−1(∂B) for 0 < k ≤ d.

Figure 11 shows the lifted prism over a lifted cubical
2-ball.

Proposition 4.1. (Dual Manifolds.) Up to PL-
homeomorphism, the cubical ball LiftedPrism(B, h) has
the following dual manifolds:

• N × I for each dual manifold N of B,

• one d-ball combinatorially isomorphic to B.

4.2 Lifted Prisms over Two Balls

Another modification of this construction is to take two
different lifted cubical balls (B1, h1) and (B2, h2) with the
same lifted boundary complex (that is, ∂B1 = ∂B2 with
h1(x) = h2(x) for all x ∈ ∂B1 = ∂B2) as input. In this
case, the outcome is a cubical (d+1)-polytope which may
not even have a cubification.

Construction 3. Lifted Prism over Two Balls.

Input: Two lifted cubical d-balls (B1, h1) and
(B2, h2) with the same lifted boundary.

Output: A cubical (d + 1)-polytope
LiftedPrism((B1, h1), (B2, h2)) with
lifted copies of B1 and B2 in its boundary.

If both balls do not subdivide their boundaries, we
set B′

k := Bk and h′
k := hk for k ∈ {1, 2}. Oth-

erwise we apply the construction of the proof of
Lemma 3.3 simultaneously to both lifted cubical
balls (B1, h1) and (B2, h2) to obtain two lifted cubi-
cal d-balls (B′

1, h
′
1) and (B′

2, h
′
2) with the same sup-

port Q = |B1| = |B2| which do not subdivide the
boundary of Q.

We can assume that h′
1, h

′
2 are strictly positive.

Then Q̂ := LiftedPrism((B1, h1), (B2, h2)) is de-
fined as the convex hull of the points in

{(x,+h′
1(x)) : x ∈ |B′

1|} ∪ {(x,−h′
2(x)) : x ∈ |B′

2|}.
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B1

lift(B1, h1)

+

B2

lift(B1, h2)

LiftedPrism((B1, h1), (B2, h2))

FIGURE 12. The lifted prism over two lifted cubical d-balls (B1, h1) and (B2, h2), displayed for d = 2. The outcome is a
cubical (d + 1)-polytope.

Since B′
1 and B′

2 both do not subdivide their bound-
aries, each of their proper faces yields a face of Q̂.
Furthermore, Q̂ is a cubical (d + 1)-polytope whose
f -vector is given by

fk(Q̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f0(B1) + f0(B2)

for k = 0,

fk(B1) + fk(B2) + fk−1(∂B1)
for 0 < k ≤ d.

See Figure 12.

4.3 Schlegel Caps

The following is a projective variant of the prism con-
struction, applied to a d-polytope P .

Construction 4. Schlegel Cap.

Input: An almost cubical d-polytope (P, F0)

Output: A regular cubical d-ball
SchlegelCap(P, F0), with P ⊂
|SchlegelCap(P, F0)| which is combi-
natorially isomorphic to the prism over
Schlegel(P, F0).

The construction of the Schlegel cap depends on
two further pieces of input data, namely on a point
x0 ∈ R

d beyond F0 (and beneath all other facets

of P ; see [Grünbaum 03, Section 5.2]) and on a hy-
perplane H that separates x0 from P . In terms of
projective transformations it is obtained as follows:

1. apply a projective transformation that moves
x0 to infinity while fixing H pointwise. This
transformation moves the Schlegel complex
C(∂P )\{F0} to a new cubical complex E .

2. reflect the image E of the Schlegel complex in
H, and call its reflected copy E ′.

3. build the polytope bounded by E and E ′.

4. reverse the projective transformation of (1).

An alternative description, avoiding projective
transformations, is as follows:

1. for each point x in the Schlegel complex
C(∂P )\{F0}, let x̄ be the intersection point
of H and the segment [x0,x], and let x′

be the point on the segment [x0,x] such
that [x0, x̄;x′,x] form a harmonic quadru-
ple (cross ratio −1). That is, if 	v is a di-
rection vector such that x = x0 + t	v for some
t > 1, while x̄ = x0 + 	v lies on H, then
x′ = x0 + t

2t−1
	v.

2. for each face G of the Schlegel complex, G′ :=
{x′ : x ∈ G} is the “projectively reflected”
copy of G on the other side of H.
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x0
F0

P
H

x0

H

FIGURE 13. Construction steps of the Schlegel cap over an almost cubical polytope.

3. the Schlegel cap SchlegelCap(P, F0) is the
regular polytopal ball with faces G, G′ and
conv(G∪G′) for faces G in the Schlegel com-
plex.

4

5

0 1

2

3

x′

x0

x̄

x

P

H

FIGURE 14. Constructing the Schlegel cap via cross ratios.

5. A SMALL CUBICAL 4-POLYTOPE
WITH A DUAL KLEIN BOTTLE

In this section we present the first instance of a cubical 4-
polytope with a nonorientable dual manifold. By Propo-
sition 2.1 this polytope is not edge-orientable. Hence, its
existence also confirms the conjecture of Hetyei [Hetyei
95, Conjecture 2, page 325]. Apparently this is the first
example of a cubical polytope with a nonorientable dual
manifold.

Theorem 5.1. There is a cubical 4-polytope P72 with f-
vector

f(P72) = (72, 196, 186, 62),

one of whose dual manifolds is an immersed Klein bottle
of f-vector (80, 160, 80).

Step 1. We start with a cubical octahedron O8, the
smallest cubical 3-polytope that is not a cube, with f -
vector

f(O8) = (10, 16, 8).

FIGURE 15. The cubical octahedron O8 positioned in R
3

with a regular square base facet Q and acute dihedral
angles at this square base. A part of the dual manifold
is highlighted.

We may assume that O8 is already positioned in R
3 with

a regular square base facet Q and acute dihedral angles
at this square base; compare Figure 15. The f -vector of
any Schlegel diagram of O8 is

f(Schlegel(O8, Q)) = (10, 16, 7).

Let O′
8 be a congruent copy of O8, obtained by reflection

of O8 in its square base followed by a 90◦ rotation around
the axis orthogonal to the base; compare Figure 16. This
results in a regular 3-ball with cubical 2-skeleton. Its
f -vector is

f(B2) = (16, 28, 15, 2).

The special feature of this complex is that it contains a
cubical Möbius strip with parallel inner edges of length 9
in its 2-skeleton, as is illustrated in the figure.

F

FIGURE 16. The outcome of Step 1 of the construction:
the 2-cubical convex 3-ball B2 which contains a Möbius
strip with parallel inner edges in the 2-skeleton.
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Step 2. Now we perform a Schlegel cap construction on
O8, based on the (unique) facet F of O8 that is not con-
tained in the Möbius strip mentioned above, and that is
not adjacent to the square gluing facet Q. This Schlegel
cap has the f -vector

f(S7) = (20, 42, 30, 7),

while its boundary has the f -vector

f(∂S7) = (20, 36, 18).

Step 3. The same Schlegel cap operation may be per-
formed on the second copy O′

8. Joining the two copies
of the Schlegel cap results in a regular cubical 3-ball B14

with f -vector

f(B14) = (36, 80, 59, 14)

whose boundary has the f -vector

f(∂B14) = (36, 68, 34).

The ball B14 again contains the cubical Möbius strip with
parallel inner edges of length 9 as an embedded subcom-
plex in its 2-skeleton. Compare Figure 17.

FIGURE 17. The outcome of Step 2 of the construction:
the cubical convex 3-ball B14 which contains a Möbius
strip with parallel inner edges in the 2-skeleton.

Step 4. Now we build the prism over this regular cubical
ball, resulting in a regular cubical 4-ball B with f -vector

f(B) = (72, 196, 198, 87, 14)

and whose support is a cubical 4-polytope P72 := |B| with
two copies of the cubical Möbius strip in its 2-skeleton.
Its f -vector is

f(P72) = (72, 196, 186, 62).

A further (computer-supported) analysis of the dual
manifolds shows that there are six dual manifolds in to-
tal: one Klein bottle of f -vector (80, 160, 80), and five
2-spheres (four with f -vector (20, 36, 18), one with f -
vector (36, 68, 34)). All the spheres are embedded, while
the Klein bottle is immersed with five double-intersection
curves (embedded 1-spheres), but with no triple points.

�

6. CONSTRUCTING CUBIFICATIONS

A lot of construction techniques for cubifications (see Sec-
tion 2.2) are available in the CW category. In particular,
every cubical CW (d−1)-sphere Sd−1 with an even num-
ber of facets admits a CW cubification, that is, a cubical
CW d-ball with boundary Sd−1, according to [Thurston
93], [Mitchell 96], and [Eppstein 99].

6.1 The Hexhoop Template

Yamakawa and Shimada [Yamakawa and Shimada 01]
have introduced an interesting polytopal construction in
dimension 3 called the Hexhoop template; see Figure 18.

Their construction takes as input a 3-polytope P that
is affinely isomorphic to a regular 3-cube, a hyperplane
H, and a cubical subdivision S of the boundary complex
of P such that S is symmetric with respect to H and H

intersects no facet of S in its relative interior. For such
a cubical PL 2-sphere S the Hexhoop template produces
a cubification. A two-dimensional version is shown in
Figure 19.

6.2 The Generalized Regular Hexhoop—Overview

In the following we present a generalized regular Hexhoop
construction. It is a generalization of the Hexhoop tem-
plate in several directions: our approach admits arbitrary
geometries, works in any dimension, and yields regular
cubifications with “prescribed heights on the boundary”
(with a symmetry requirement and with the requirement
that the intersection of the symmetry hyperplane and
the boundary subdivision is a subcomplex of the bound-
ary subdivision). Figure 20 displays a two-dimensional
cubification (of a boundary subdivision S of a 2-polytope
such that S is symmetric with respect to a hyperplane
H) obtained by our construction.

Not only do we get a cubification, but we may also
derive a symmetric lifting function for the cubification
that may be quite arbitrarily prescribed on the bound-
ary. The input of our construction is a lifted cubical
boundary subdivision (Sd−1, ψ) of a d-polytope P , such
that both P and (Sd−1, ψ) are symmetric with respect
to a hyperplane H.

Our approach goes roughly as follows:

1. we first produce a symmetric tent over the given
lifted boundary subdivision (S, ψ) of the input d-
polytope P . Such a tent is the convex hull of all
“lifted vertices” (v, ψ(v)) ∈ R

d+1, v ∈ vert(S),
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H

S

H

B

FIGURE 18. The Hexhoop template of Yamakawa and Shimada [Yamakawa and Shimada 01].

H S H B

FIGURE 19. A two-dimensional version of the Hexhoop template.

H

S

FIGURE 20. A cubification of a boundary subdivision of a pentagon, produced by our generalized regular Hexhoop
construction.

P

S

H

lift(S, ψ)

FIGURE 21. An input for the generalized regular Hexhoop construction.
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H

T

pL
pR

FIGURE 22. A symmetric tent over the lifted boundary subdivision (S, ψ) of the input d-polytope P .

H

H ′

H + Red+1

pL
pR

FIGURE 23. Sketch of the generalized regular Hexhoop construction.

and of two apex points pL,pR; see Figure 22 and
Section 6.3.

2. truncate T by a hyperplane H ′ parallel to aff(P ) =
R

d ⊂ R
d×{0} that separates the lifted points from

the apex points, and remove the upper part. The
resulting polytope has Q := T ∩ H ′ as its “top
facet.”

3. add the polytope R := cone(pL, Q)∩cone(pR, Q)∩
H ′

+, where H ′
+ is the halfspace with boundary H ′

that contains pL and pR. Compare Figure 23.

4. the upper boundary complex of the resulting poly-
tope is the desired lifted cubical subdivision; its
projection to R

d yields a regular cubification of P .

The figures in this section illustrate the generalized
regular Hexhoop construction for the two-dimensional in-
put polytope of Figure 21; the generalized Hexhoop con-
struction for d = 2 yields two-dimensional complexes in
R

3. The extension to higher dimensions is immediate,
and the case d = 3 is crucial for us (see Section 7). It
is, however, also harder to visualize: a three-dimensional
generalized regular Hexhoop cubification is shown in Fig-
ure 29.
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6.3 Symmetric Tent over a Lifted Boundary Subdivision

Let P be a d-polytope that is symmetric with respect
to a hyperplane H in R

d. Choose a positive halfspace
H+ with respect to H. Let (S, ψ) be a lifted boundary
subdivision of P such that S ∩ H is a subcomplex of S.
Define H̃ := H+Red+1, which is a symmetry hyperplane
for P ⊂ R

d+1. The positive halfspace of H̃ ⊂ R
d+1 will

be denoted by H̃+.
The symmetric tent over (S, ψ) is the lifted polytopal

subdivision (T , φ) of P given by the upper faces of the
polytope

T := conv(P ∪ {pL,pR})

if pL,pR ∈ R
d+1 are two apex points in R

d+1 that are
symmetric with respect to the hyperplane H̃, and the
upper facets of T are

• pyramids with apex point pL over facets F of
lift(S, ψ) such that π(F ) ⊂ H+,

• pyramids with apex point pR over facets F of
lift(S, ψ) such that π(F ) ⊂ H−, and

• 2-fold pyramids with apex points pL,pR over ridges
R of lift(S, ψ) with π(R) ⊂ H.

(This requires that pL 	∈ aff(P ) and π(pL) ∈
relint(P ∩ H+).)

Lemma 6.1. Assume we are given the following input.

P a convex d-polytope in R
d,

(S, ψ) a lifted boundary subdivision of P ,

H a hyperplane in R
d such that

• P and (S, ψ) are both symmetric
with respect to H, and

• S ∩ H is a subcomplex of S, and

qL, qR two points in P ⊂ R
d such that

• qL ∈ relint(P ∩ H+), and
• qL, qR are symmetric with respect

to H̃.

Then for every sufficiently large height h > 0 the
(d+1)-polytope T := conv{lift(S, ψ),pL,pR} with pL :=
(qL, h) ∈ H̃+ and pR := (qR, h) /∈ H̃+ is a symmetric
tent over (S, ψ).

This can be shown, for instance, by using the Patching
Lemma (Lemma 3.6).

6.4 The Generalized Regular Hexhoop in Detail

In this section we specify our generalization of the Hex-
hoop template and prove the following existence state-
ment for cubifications.

Theorem 6.2. Assume we are given the following input.

P a convex d-polytope in R
d,

(Sd−1, ψ) a lifted cubical boundary subdivision of P ,
and

H a hyperplane in R
d such that

• P and (Sd−1, ψ) are symmetric with
respect to H, and

• Sd−1 ∩ H is a subcomplex of Sd−1.

Then there is a lifted cubification (Bd, φ) of (Sd−1, ψ).

The proof relies on the following construction.

Construction 5. Generalized Regular Hexhoop.

Input:

P a convex d-polytope P in R
d.

(Sd−1, ψ) a lifted cubical boundary subdi-
vision of P .

H a hyperplane in R
d such that

• P and (Sd−1, ψ) are sym-
metric with respect to H,
and

• Sd−1 ∩ H is a subcomplex
of Sd−1.

Output:

(Bd, φ) a symmetric lifted cubification of
(Sd−1, ψ) given by a cubical d-
ball C′ in R

d+1.

1. Choose a positive halfspace H+ with respect
to H, and a point qL ∈ relint(P∩H+). Define
qR := qM

L , where the upper index M denotes
the mirrored copy with respect to H̃ = H +
Red+1.
By Lemma 6.1 there is a height h > 0 such
that

T := conv{lift(Sd−1, ψ),pL,pR}

with pL := (qL, h) and pR := (qR, h) forms a
symmetric tent over (Sd−1, ψ).



Schwartz and Ziegler: Construction Techniques for Cubical Complexes, Odd Cubical 4-Polytopes, and Prescribed Dual Manifolds 399

2. Choose a hyperplane H ′ parallel to aff(P ) ⊂
R

d that separates {pL,pR} and lift(Sd−1, ψ).
Let H ′

+ be the halfspace with respect to H ′

that contains pL and pR.

H

H ′

pL
pR

FIGURE 24. Step 2. The hyperplane H ′ separates
{pL, pR} from lift(Sd−1, ψ).

3. Define the “lower half” of the tent T as

T− := T ∩ H ′
−,

whose “top facet” is the convex d-polytope
Q := T ∩ H ′.

H ′

T−

Q

FIGURE 25. Step 3. The “lower half” T− of T .

4. Define the two d-polytopes

QL := conv {v ∈ vert(Q) : v ∈ H+},
QR := conv {v ∈ vert(Q) : v ∈ H−}.

Let FL := H ′ ∩ conv(pL, P ∩ H), the unique
facet of QL that is not a facet of Q.

H ′

T−

QL QRFL

FIGURE 26. Step 4. Define QL and QR.

5. Construct the polytope

R := cone(pL, Q) ∩ cone(pR, Q) ∩ H ′
+.

H

0
1

pL pR

H ′

H̃ = H + Red+1

R

FIGURE 27. Step 5. The polytope R := cone(pL, Q) ∩
cone(pR, Q) ∩ H ′

+.

The complex C′ in question is given by the upper
facets of the (d + 1)-polytope

U := T− ∪ R.

Lemma 6.3. (Combinatorial structure of Q.)
The vertex set of Q consists of

• the points conv(pL,v) ∩ H ′ for vertices v ∈
vert(lift(S, ψ)) such that π(v) ⊂ H+, and

• the points conv(pR,v) ∩ H ′ for vertices v ∈
vert(lift(S, ψ)) such that π(v) ⊂ H−.

The facets of Q are
(a) the combinatorial cubes conv(pL, F ) ∩ H ′ for facets

F of lift(S, ψ) such that F ⊂ H̃+,
(b) the combinatorial cubes conv(pR, F )∩H ′ for facets

F of lift(S, ψ) such that F ⊂ H̃−,
(c) the combinatorial cubes conv(pL,pR, F ) ∩ H ′ for

(d − 2)-faces F of lift(S, ψ) with F ⊂ H̃.

Proof: By the definition of a symmetric tent, upper facets
of the symmetric tent T are
• the pyramids with apex point pL over facets F of

lift(S, ψ) such that F ⊂ H̃+,
• the pyramids with apex point pR over facets F of

lift(S, ψ) such that F ⊂ H̃−, and
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• the 2-fold pyramids with apex points pL,pR over
ridges R of lift(S, ψ) with R ⊂ H̃.

Since Q is the intersection of T with H, the polytope Q

has the vertices and facets listed above. It remains to
show that the facets of type (c) are combinatorial cubes.
Let F be a (d − 2)-face of lift(S, ψ) such that F ⊂ H̃.
Every point on the facet lies in the convex hull of F with
a unique point on the segment [pL,pR]. Thus the facet
is combinatorially isomorphic to a prism over F .

Let a d-dimensional half-cube be the product of a com-
binatorial (d − 2)-cube and a triangle. A combinatorial
half-cube is a polytope combinatorially isomorphic to a
half-cube.

Lemma 6.4. (Combinatorial structure of T−.)
The vertices of T− are the vertices of lift(S, ψ) and the
vertices of Q. Furthermore, the upper facets of T− are
(a) the combinatorial cubes cone(pL, F )∩H ′

−∩(Rd×R+)
for facets F of Q such that F ⊂ H̃+,

(b) the combinatorial cubes cone(pR, F ) ∩ H ′
− ∩ (Rd ×

R+) for facets F of Q such that F ⊂ H̃−,
(c) the combinatorial half-cubes cone(pL, F ) ∩

cone(pR, F ) ∩ H ′
− for facets R of Q that in-

tersect H̃, and
(d) Q.

The facet-defining hyperplanes of the upper facets of T−
are
(a) aff(pL, F ) for facets F of Q such that F ⊂ H̃+,
(b) aff(pR, F ) for facets F of Q such that F ⊂ H̃−,
(c) aff(pL,pR, F ) for facets F of Q that intersect H̃,

and
(d) aff(Q).

Proof: Since T− is the intersection of T with H ′
−, the

upper facets of T− are given by Q plus the intersections
of the upper facets of T with H ′

−, and the vertices of T−
are the vertices of T and the vertices of Q.

Lemma 6.5. (Combinatorial structure of R.)
The set of vertices of R consists of the vertices of Q and
all points in V ′′ := vert(R) \ vert(Q). Furthermore, the
set of (all) facets of R consists of
(a) the combinatorial cubes conv(pR, F )∩ H̃+ for facets

F of Q such that F ⊂ H̃+,
(b) the combinatorial cubes conv(pL, F )∩ H̃+ for facets

F of Q such that F ⊂ H̃−,
(c) the combinatorial half-cubes conv(pR, F ) ∩

conv(pL, F ) for facets F of Q that intersect
H̃, and

(d) Q.

The set of facet-defining hyperplanes of the facets of R

consists of
(a) aff(pR, F ) for facets F of Q such that F ⊂ H̃+,
(b) aff(pL, F ) for facets F of Q such that F ⊂ H̃−,
(c) aff(pL,pR, F ) for facets F of Q such that F inter-

sects H̃, and
(d) aff(Q).

Proof of Theorem 6.2: We show that the complex C′ given
by the upper facets of the polytope U of Construction 5
determines a lifted cubification (Bd, φ) of (Sd−1, ψ).

First observe that no vertex of T− is beyond a facet of
R, and no vertex of R is beyond a facet of T−. Hence the
boundary of U = conv(T− ∪ R) is the union of the two
boundaries of the two polytopes, excluding the relative
interior of Q.

Define the vertex sets V := vert(lift(St, ψ)), V ′ :=
vert(Q), and V ′′ := vert(R) \ V ′. Then

• each vertex of V is beneath each facet of R that is
of type (a) or (b), and

• each vertex of V ′′ is beneath each facet of T− that
is of type (a) or (b).

Hence these four types of facets are facets of U that are
combinatorial cubes, and the set of vertices of U is given
by the union of V, V ′ and V ′′. It remains to show that
each hyperplane aff(pL,pR, F ), where F is a facet of Q

that intersects H̃, is the affine hull of a cubical facet
of U . To see this, observe that there are two facets F+,
F− of R, T−, respectively, that are both contained in the
affine hull of F . These two facets F+, F− are both half-
cubes that intersect in a common (d − 1)-cube, namely
F . Furthermore, all vertices of F+ and of F− that are
not contained in aff(F ) are contained in H̃. Hence the
union of F+ and F− is a combinatorial cube.

Thus every upper facet of U is a combinatorial cube.
Furthermore, π(R) = π(Q) and π(T−) = |P |, so the
upper facets of U determine a lifted cubical subdivision
of (Sd−1, ψ).

Proposition 6.6. (Dual manifolds.) Up to PL-
homeomorphism, the generalized regular Hexhoop cubi-
fication Bd of Sd−1 has the following dual manifolds:

• N × I for each dual manifold N (with or without
boundary) of SL = Sd−1 ∩ H̃+,

• two (d − 1)-spheres “around” QL and QR, respec-
tively.

Proof: The “main part” of the complex Bd is combina-
torially equivalent to a prism of height 4 over S, whose
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(a) Dual product manifolds N × I (b) Dual spheres

FIGURE 28. The dual manifolds of a two-dimensional generalized regular Hexhoop.

H

N

Bd

N ′

FIGURE 29. A three-dimensional cubification produced by the generalized regular Hexhoop construction. For every
embedded dual circle N which intersects H+ \H and H− \H, there is an embedded dual 2-ball N ′ with boundary N in
the cubification. (This is a cubification for the case “single5” introduced in Section 7.)

dual manifolds are of the form N × I, as well as four
(d − 1)-balls. This prism is then modified by gluing a
full torus (product of the (d − 2)-sphere Sd−1 ∩ H with
a square I2) into its “waist.” This addition of the full
torus to the prism of height 4 extends the dual manifolds
N × I without changing the PL-homeomorphism type,
while closing the four (d − 1)-balls into two intersecting,
embedded spheres.

We refer to Figure 28 (case d = 2) and Figure 29
(d = 3) for geometric intuition.

7. CUBICAL 4-POLYTOPES WITH PRESCRIBED DUAL
MANIFOLD IMMERSIONS

Now we use our arsenal of cubical construction techniques
for the construction of cubifications with prescribed dual
2-manifold immersions, and thus approach our main the-
orem.

For this we ask for our input to be given by normal
crossing PL-immersions whose local geometric structure
is rather special: We assume that Md−1 is a (d − 1)-
dimensional cubical PL-manifold, and j : Md−1 � R

d is
a grid immersion, a cubical normal crossing codimension
one immersion into R

d equipped with the standard unit
cube structure.
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FIGURE 30. Illustration of the proof of Proposition 7.1.

7.1 From PL Immersions to Grid Immersions

In view of triangulation and approximation methods
available in PL and differential topology, the above as-
sumptions are not so restrictive. (See, however, Dolbilin
et al. [Dolbilin et al. 95] for extra problems and obstruc-
tions that may arise without the PL assumption, and if
we do not admit subdivisions, even for high codimension
embeddings/immersions.)

Proposition 7.1. Every locally flat normal crossing im-
mersion of a compact (d − 1)-manifold into R

d is PL-
equivalent to a grid immersion of a cubification of the
manifold into the standard cube subdivision of R

d.

Proof: We may replace any PL-immersion of Md−1 by a
simplicial immersion into a suitable triangulation of R

d.
The vertices of j(Md−1) may be perturbed into general
position.

Now we overlay the polyhedron j(Md−1) with a cube
structure of R

d of edge length ε for suitably small ε > 0,
such that the vertices of j(Md−1) are contained in the
interiors of distinct d-cubes.

Then working by induction on the skeleton, within
each face of the cube structure, the restriction
of j(Md−1) to a k-face—which by local flatness consists
of one or several (k−1)-cells that intersect transversally—
is replaced by a standard cubical lattice version that is
supposed to run through the interior of the respective
cell, staying distance ε′ away from the boundary of the
cell; here we take different values for ε′ in the situation
where the immersion is not embedded at the vertex in
question, that is, comes from several disjoint neighbor-
hoods in Md−1.

The resulting modified immersion into R
d will be cel-

lular with respect to a standard cube subdivision of edge
length 1

N ε for a suitable large N . Figure 30 illustrates
this for d = 2.

7.2 Vertex Stars of Grid Immersions of Surfaces

From now on, we restrict our attention to the case of
d = 3, that is, 2-manifolds and 4-polytopes. There are
nine types of vertex stars of grid immersions of surfaces,
namely the five vertex stars of a regular vertex shown
in Figure 31 (compare Goodman-Strauss and Sullivan
[Goodman-Strauss and Sullivan 03] and Yusin [Yusin 82,
Section 3]), plus two vertex stars with double intersection
and the vertex star of a triple intersection point:

double8a double8b triple12

For the constructions below we will require that the
grid immersion j : M2 � R

3 that we start out with
is locally symmetric, that is, that at each vertex w of
j(M2) there is a plane H through w such that for each
vertex v with j(v) = w the image of the vertex star of
v is symmetric with respect to H. Thus we require that
H is a symmetry plane separately for each of the (up to
three) local sheets that intersect at w. Such a plane H is
necessarily of the form xi = k, xi+xj = k, or xi−xj = k.
In the first case we say H is a coordinate hyperplane, and
in other cases it is diagonal.

Proposition 7.2. Any grid immersion of a compact cubical
2-manifold into R

3 is equivalent to a locally symmetric
immersion of the same type.
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single3 single4a single4b single5 single6a single6b

FIGURE 31. Five vertex stars of a regular vertex.

single6b

FIGURE 32. Local modification used to “repair” the case “single6b.”

Proof: All the vertex stars displayed above satisfy the lo-
cal symmetry condition, with a single exception, namely
the star “single6b” of a regular vertex with six adjacent
quadrangles. As indicated in Figure 32, a local modifi-
cation of the surface solves the problem (with a suitable
refinement of the standard cube subdivision).

7.3 Main Theorem (2-Manifolds into Cubical

4-Polytopes)

Theorem 7.3. Let j : M � �
3 be a locally flat nor-

mal crossing immersion of a compact 2-manifold (with-
out boundary) M into R

3.
Then there is a cubical 4-polytope P with a dual man-

ifold M′ and associated immersion y : M′ � |∂P | such
that the following conditions are satisfied:

(i) M′ is a cubical subdivision of M, and the immer-
sions j (interpreted as a map to R

3 ∪ {∞} ∼= S3)
and y are PL-equivalent.

(ii) the number of facets of P is congruent modulo 2 to
the number t(j) of triple points of the immersion j.

(iii) if the given surface M is nonorientable and of odd
genus (that is, if it has even Euler characteristic
χ = 1 − g), then the cubical 4-polytope P has an
odd number of facets.

The core of our proof is the following construction of
cubical 3-balls with a prescribed dual manifold immer-
sions.

Construction 6. Regular Cubical 3-Ball with a Pre-
scribed Dual Manifold.

Input: A two-dimensional closed (that is, com-
pact and without boundary) cubical PL-
surface M, and a locally symmetric codi-
mension one grid immersion into a three-
dimensional pile of cubes, j : M �
P3(�1, �2, �3).

Output: A regular convex 3-ball B with a dual
manifold M′ and associated immersion
y : M′ � |B| such that the following con-
ditions are satisfied:
(i) M′ is a cubical subdivision of M,

and the immersions j and y are PL-
equivalent.

(ii) the number of facets of B is congru-
ent modulo two to the number t(j) of
triple points of the immersion j.

1. Raw complex. Let A be a copy of the pile
of cubes P3(�1 + 1, �2 + 1, �3 + 1) with all
vertex coordinates shifted by − 1

2�. (Hence
xi ∈ {− 1

2 , 1
2 , 3

2 , . . . , �i + 1
2} for each vertex

x ∈ vert(A).)
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Due to the local symmetry of the immersion,
and the choice of the vertex coordinates of A,
the following holds:

• each vertex of j(M) is the barycenter of a
3-cube C of A.

• for each 3-cube C of A the restriction
(C, j(M) ∩ C) is locally symmetric.

2. Local subdivisions. We construct the lifted cu-
bical subdivision B of A by induction over the
skeleton: for k = 1, 2, 3, Bk will be a lifted cu-
bical subdivision of the k-skeleton Fk(A), with
the final result B := B3. For each k-face F ∈ A
we take for the restriction Bk ∩ F a congruent
copy from a finite list of templates.

Consider the following invariants (for k ∈
{1, 2, 3}).

(Ik1) Consistency requirement.
For every k-face Q ∈ Fk(A) and ev-
ery facet F of Q, the induced sub-
division Bk ∩ F equals Bk−1 ∩ F .

(Ik2) PL-equivalence requirement.
For every k-face Q ∈ Fk(A) and
every dual manifold N of Q (with
boundary) the cubical subdivision
Bk ∩ Q has a dual manifold that is
PL-equivalent to j(N ) ∩ Q.

(Ik3) Symmetry requirement.
Every symmetry of (Q, j(M) ∩ Q)
for a k-face Q ∈ Fk(A) that is a
symmetry of each sheet of j(M)∩Q

separately is a symmetry of (Q,Bk∩
Q).

(Ik4) Subcomplex requirement.
For every diagonal symmetry hyper-
plane HQ of a facet Q of A and ev-
ery facet F of Q the (lifted) induced
subdivision Bk∩(F ∩H) is a (lifted)
subcomplex of Bk.

These invariants are maintained while itera-
tively constructing B1 and B2. The resulting
lifted cubical subdivision B3 of A will satisfy
(I31) and (I32), but not in general the other
two conditions.

3. Subdivision of edges. Let e be an edge of A.

• If e is not intersected by the immersed
manifold, then we subdivide the edge by

an affine copy B1
e of the following lifted

subdivision U2 := (U ′
2, h) of P1(2):

0 00 01
4

• If e is intersected by the immersed man-
ifold, then we subdivide the edge by an
affine copy B1

e of the following lifted sub-
division U3 := (U ′

3, h) of P1(3):

0 01
6

1
6

Observe that (I11)–(I14) are satisfied.

4. Subdivision of 2-faces. Let Q be a quadrangle
of A, and w the unique vertex of j(M) that is
contained in Q. There are four possible types
of restrictions of the grid immersion to Q:

empty single2a single2b double

(a) In the cases “single2a” and “double” there
is a coordinate hyperplane H such that
(Q, j(M) ∩ Q) is symmetric with respect
to H, and a vertex v of M such that
j(v) = w and the image of the vertex
star is contained in H. Let F be a facet
of Q that does not intersect H. Then
B2

Q is taken to be a copy of the product
(B1 ∩ F ) × U3 (see Figure 33).

(b) If the immersion does not intersect Q, then
B2

Q is a copy of the lifted cubical 2-complex
V which arises as the cubical barycen-
tric subdivision of the stellar subdivision
of [− 1

2 , 1
2 ]2 (see Figure 34).

(c) In the case “single2b” we define B2
Q as

an affine copy of the lifted cubical 2-
complex V ′, which is given by V truncated
by four additional planes (see Figure 35).

Observe that the conditions (I21)–(I24) are
satisfied.
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FIGURE 35.

5. Subdivision of 3-cubes. Let Q be a facet
of A and w the unique vertex of j(M) that
is mapped to the barycenter of Q. Let S :=
B2 ∩Q be the induced lifted cubical boundary
subdivision of Q.

All templates for the lifted cubification B3
Q of S

arise either as a generalized regular Hexhoop,
or as a product of U3 with a lifted cubical sub-
division of a facet of Q.
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(a) For the following four types of vertex stars
we use a product with U3:

single4a double8a double8b triple12

In all these cases there is a coordinate
symmetry plane H such that H ∩ Q is
a sheet of j(M) ∩ Q. Hence all facets
of Q that intersect H are subdivided by
U3 × U3 or U3 × U2. Let F be one of the
two facets of Q that do not intersect H.
Then the product (B2 ∩F )×U3 yields the
lifted subdivision B3

Q of Q. Clearly B3
Q is

consistent with (I31) and (I32).

(b) In the remaining five cases we take a gen-
eralized regular Hexhoop with a diagonal
plane of symmetry of Q to produce B3

Q:

empty single3 single4b single5 single6a

In each of these cases, (Q,Q ∩ j(M)) has
a diagonal plane H of symmetry. This
plane intersects the relative interior of two
facets of Q. Since (I24) holds, no facet
of S = B2 ∩ Q intersects H in its rela-
tive interior. By (I23) the lifted boundary
subdivision S is symmetric with respect to
H. Hence all preconditions of the general-
ized regular Hexhoop construction are sat-
isfied. The resulting cubification B3

Q sat-
isfies (I31) and (I32).

7.4 Correctness

Proposition 7.4. Let M be a two-dimensional closed cu-
bical PL-surface, and j : M � �

3 a locally symmetric
codimension one grid immersion.

Then the cubical 3-ball B given by Construction 6 has
the following properties:

(i) B is regular, with a lifting function ψ.

(ii) there is a dual manifold M′ of B and associated im-
mersion y : M′ � |B| such that M′ is a cubical

subdivision of M, and the immersions j and y are
PL-equivalent.

(iii) the number of facets of B is congruent modulo two to
the number t(j) of triple points of the immersion j.

(iv) there is a lifted cubification C of (∂B, ψ|∂B) with an
even number of facets.

Proof: (i) Regularity. By construction, the lifting func-
tions ψF , F ∈ fac(A), satisfy the consistency precondi-
tion of the Patching Lemma (Lemma 3.6). Since every
pile of cubes is regular, the Patching Lemma implies that
B is regular, too.

(ii) PL-equivalence of manifolds is guaranteed by
Property (I32).

(iii) Parity of the number of facets. For each 3-cube
Q of A, its cubification B3

Q is either a product B2
F × U3

(where B2
F is a cubification of a facet F of Q), or the

outcome of a generalized regular Hexhoop construction.
In the latter case the number of facets of B3

Q is even.
In the first case the number of facets depends on the
number of 2-faces of B2

F . The number of quadrangles of
B2

F is odd only in the case “double,” if j(M) ∩ F has a
double intersection point. Hence, f3(B3

Q) is odd if and
only if the immersion j has a triple point in Q.

(iv) Alternative cubification. Applying Construction 6
to P3(�1, �2, �3) without an immersed manifold yields a
regular cubification C of ∂B with the same lifting function
as B on the boundary. Since the immersion ∅ � R

3 has
no triple points, the number of facets of C is even.

7.5 Proof of the Main Theorem

Proof of Theorem 7.3: Let j : M � �
3 be a locally flat

normal crossing immersion of a compact (d−1)-manifold
M into R

d. By Proposition 7.1 and Proposition 7.2 there
is a cubical subdivision M′ of M with a locally symmet-
ric, codimension one grid immersion j′ : M′ � �

3 that
is PL-equivalent to j.

Construct a convex cubical 3-ball B with prescribed
dual manifold immersion j′ as described above. By
Proposition 7.4 the ball B is regular, and by Proposi-
tion 7.4 there is a cubification C of ∂B with an even
number of facets and the same lifting function on the
boundary.

Applying Construction 3 of Section 4.2 yields a cubical
4-polytope P with

f3(P ) = f3(B) + f3(C) + f2(∂B),

whose boundary contains B and thus has a dual manifold
immersion PL-equivalent to j.
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(a) grid immersion (b)

FIGURE 36. A grid immersion of the Boy’s surface. Each double-intersection loop is of length four.

For Theorem 7.3, observe that for every cubical 3-ball
the number of facets of the boundary is even. Hence
f2(∂B) is even. Since the number of facets of C is even,
we obtain

f3(P ) ≡ f3(B) ≡ t(j) mod 2.

By a famous theorem of Banchoff [Banchoff 74] the
number of triple points of a normal crossing codimension
one immersion of a surface has the same parity as the
Euler characteristic. Hence, if M is a nonorientable sur-
face of odd genus the number of triple points of j is odd,
which implies that the cubical 4-polytope P has an odd
number of facets.

7.6 Symmetric Templates

The three-dimensional templates constructed above,
which we call the standard templates, do not satisfy the
conditions (I33) and (I34). In particular, the symme-
try requirement (I33) is violated by the templates corre-
sponding to the cases “empty,” “single3,” and “single6a,”
and it is satisfied by all others. For example, the stan-
dard template for “single5” is illustrated in Figure 29; it
satisfies (I33) since there is only one diagonal symmetry
hyperplane.

For the “empty” case an alternative template may be
obtained from the cubical barycentric subdivision. The
resulting cubification satisfies both conditions (I33) and
(I34), and furthermore, it has fewer faces—96 facets, 149
vertices—than the standard template.

For the case “single3” an alternative cubification, of
full symmetry, can be constructed from C′′ by truncating
the lifted polytope corresponding to the lifted cubical ball
C′′ by some additional hyperplanes.

For the case “single6a” we do not know how to get a
cubification of full symmetry. This is the main obstacle

for an extension of our constructions to higher dimensions
(see Section 11).

8. AN ODD CUBICAL 4-POLYTOPE
WITH A DUAL BOY’S SURFACE

Cubical 4-polytopes with odd numbers of facets exist by
Theorem 7.3. In this section we describe the construction
of a cubical 4-polytope with an odd number of facets in
more detail. The data for the corresponding model has
been submitted to the eg-models archive.

Theorem 8.1. There is a cubical 4-polytope PBoy with
f-vector

f = (17 718, 50 784, 49 599, 16 533)

that has a Boy surface as a dual manifold.

8.1 A Grid Immersion of Boy’s Surface.

The construction starts with a grid immersion (see [Pe-
tit 95]) of Boy’s surface, that is, an immersion of the
real projective plane with exactly one triple point and a
double-intersection curve immersed as a wedge of three
loops [Boy 03, Hilbert and Cohn-Vossen 52, Apéry 87].
This immersion j : M � R

3 is shown in Figure 36.
The 2-manifold M has the f -vector

f(M) = (85, 168, 84),

whereas the image of the grid immersion has the f -vector
f(j(M)) = (74, 156, 84). The vertex coordinates can
be chosen such that the image j(M) is contained in a
pile of cubes P3(4, 4, 4).
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FIGURE 37. A sketch of the cubification of the 2-skeleton of A.

FIGURE 38. The dual Boy’s surface of f -vector f = (1 998, 3 994, 1 997) of the cubical 3-ball B.

8.2 A Cubical 3-Ball with a Dual Boy’s Surface

We apply Construction 6 to the grid immersion j : M �
R

3 to obtain a cubical 3-ball with a dual Boy’s surface,
and with an odd number of facets.

Since the image j(M) is contained in a pile of cubes
P3(4, 4, 4), the raw complex A given by Construction 6 is
isomorphic to P3(5, 5, 5). Hence we have 53−74 = 51 ver-
tices of A that are not vertices of j(M). We try to give an
impression of the subdivision C2 of the 2-skeleton of A in
Figure 37. The f -vector of C2 is f = (4 662, 9 876, 5 340).

The subdivision of the boundary of A consists of 150 =
6 · 5 · 5 copies of the two-dimensional “empty pattern”
template. Hence the subdivision of the boundary of A

(given by C2 ∩ |∂A|) has the f -vector

f = (1 802, 3 600, 1 800).

The refinement B of A depends on templates that
are used for the 3-cubes. We use the “symmetric”
templates in Section 7.6. The f -vector of B is then
f = (15 915, 45 080, 43 299, 14 133). (The “standard set”
of templates yields a cubical ball with 18, 281 facets.)

Figure 38 illustrates the dual Boy’s surface of the cubi-
cal 3-ball B. It has the f -vector f = (1 998, 3 994, 1 997);
its multiple-intersection loops have length 16. The ball
B has 612 dual manifolds in total (339 of them without
boundary).
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FIGURE 39. The multiple-intersection curve of the dual
Boy’s surface (Figure 38) of the cubical 3-ball B.

8.3 A Cubical 4-Polytope with a Dual Boy’s Surface

A cubification B′ of ∂B with an even number of facets is
given by subdividing each facet of the raw ball A with a
cubification for the empty pattern. Using the symmetric
cubification for the empty pattern yields a regular cubical
3-ball B′ with 12, 000 facets. The lifted prism over B
and B′ yields a cubical 4-polytope with 27, 933 facets.

However, using first stellar subdivisions, then a
(simplicial) cone, and then cubical subdivisions on
∂P3(5, 5, 5), it is possible to produce a significantly
smaller alternative cubification B′′ of ∂B with an even
number of facets. Moreover, for this one can form the
cone based directly on the boundary complex of B and
thus “save the vertical part” of the prism. The re-
sulting cubical 4-polytope PBoy has f0 = 17 718 ver-
tices and f3 = 16 533 facets. A further analysis of
the dual manifolds of PBoy shows that there are 613
dual manifolds in total: one dual Boy’s surface of f -
vector f = (1 998, 3 994, 1 997), one immersed surface
of genus 20 (immersed with 104 triple points) with
f -vector (11 470, 23 016, 11 508), and 611 embedded 2-
spheres with various distinct f -vectors.

8.4 Verification of the Instances

All the cubical 4-polytopes described above were con-
structed and verified as electronic geometry models in
the polymake system by Gawrilow and Joswig [Gawrilow
and Joswig 03], which is designed for the construction
and analysis of convex polytopes. A number of our own
tools for handling cubical complexes are involved as well.
These cover creation, verification, and visualization of cu-
bical complexes (for d ∈ {2, 3}). The instances are avail-
able from http://www.math.tu-berlin.de/˜schwartz/c4p.

Whereas the construction of the instances involves new
tools that were writted specifically for this purpose, the
verification procedure uses only standard polymake tools.

All tools used in the verification procedure are parts of
the polymake system which have been used (and thereby
verified) by various users over the past years (using a rich
variety of classes of polytopes).

The topology of the dual manifolds of our instances
was examined using all the following tools:

• a homology calculation code base written by Heck-
enbach [Heckenbach 97].

• the topaz module of the polymake project, which
covers the construction and analysis of simplicial
complexes.

• our own tool for the calculation of the Euler charac-
teristics.

9. CONSEQUENCES

In this section we list a few immediate corollaries and
consequences of our main theorem and of the construc-
tions that lead to it. The proofs are quite immediate, so
we do not give extended explanations here, but refer to
[Schwartz 03] for details.

9.1 Lattice of f-Vectors of Vubical 4-Polytopes

Babson and Chan [Babson and Chan 00] have obtained
a characterization of the �-affine span of the f -vectors
of cubical 3-spheres: with the existence of cubical 4-
polytopes with an odd number of facets this extends to
cubical 4-polytopes.

Corollary 9.1. The �-affine span of the f-vectors
(f0, f1, f2, f3) of the cubical 4-polytopes is characterized
by

(i) integrality (fi ∈ � for all i),
(ii) the cubical Dehn-Sommerville equations f0 − f1 +

f2 − f3 = 0 and f2 = 3f3, and
(iii) the extra condition f0 ≡ 0 mod 2.

Note that this includes modular conditions such as
f2 ≡ 0 mod 3, which are not “modulo 2.” The main
result of Babson and Chan [Babson and Chan 00] says
that for cubical d-spheres and (d + 1)-polytopes, d ≥
2, “all congruence conditions are modulo 2.” However,
this refers only to the modular conditions which are not
implied by integrality and the cubical Dehn-Sommerville
equations. The first example of such a condition is, for
d = 4, the congruence (iii) due to Blind and Blind [Blind
and Blind 94].
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9.2 Cubical 4-Polytopes with Dual Manifolds of
Prescribed Genus

By our main theorem, from any embedding Mg → R
3

we obtain a cubical 4-polytope that has the orientable
connected 2-manifold Mg of genus g as an embedded dual
manifold. Indeed, this may, for example, be derived from
a grid embedding of Mg into the pile of cubes P (1, 3, 1+
2g).

However, cubical 4-polytopes with an orientable dual
manifold of prescribed genus can much more efficiently,
and with more control on the topological data, be pro-
duced by means of connected sums of copies of the
“neighborly cubical” 4-polytope C5

4 with the graph of
a 5-cube (compare Section 2.3).

Proposition 9.2. For each g > 0, there is a cubical 4-
polytope Pg with the following properties.

(i) the polytope Pg has exactly one embedded ori-
entable dual 2-manifold M of genus g with f-vector
f(M) = (12g +4, 28g +4, 14g +2). All other dual
manifolds of Pg are embedded 2-spheres.

(ii) there is a facet F of P which is not intersected by
the image of the dual manifold M, and which is
affinely regular, that is, there is an affine transfor-
mation between F and the standard cube [−1,+1]3.

(iii) f(Pg) = (24g + 8, 116g + 12, 138g + 6, 46g + 2).

Taking now the connected sum of Pg with one example
of a 4-polytope with a nonorientable dual 2-manifold, we
obtain 4-polytopes with a nonorientable dual manifold of
prescribed genus.

Corollary 9.3. For each even g > 0, there is a cubi-
cal 4-polytope that has a cubation of the nonorientable
connected 2-manifold M ′

g of genus g as a dual mani-
fold (immersed without triple points and with one double-
intersection curve).

For this, one can, for example, construct the 4-
polytope associated with the grid immersion of the Klein
bottle of f -vector f = (52, 108, 56) as depicted in Fig-
ure 40.

Smaller cubical 4-polytopes with nonorientable dual
manifolds can be produced by means of connected sums
of the cubical 4-polytope P62 of Section 5 with a dual
Klein bottle, and several copies of the neighborly cubical
4-polytope C5

4 . (Some “connector cubes” of Lemma 3.8
have to be used.) The resulting cubical 4-polytope has
rather small f -vector entries, but the set of multiple-

FIGURE 40. A grid immersion of the Klein bottle with
one double-intersection curve and without triple points.

intersection points consists of five double-intersection
curves.

Applying the same proof as above to the grid immer-
sion of Boy’s surface of the previous section yields the
following result.

Corollary 9.4. For each odd g > 0, there is a cubical
4-polytope that has a cubation of the nonorientable con-
nected 2-manifold M ′

g of genus g as a dual manifold (im-
mersed with one triple point and three double-intersection
curves of length 14).

9.3 Higher-Dimensional Cubical Polytopes with
Nonorientable Dual Manifolds

Corollary 9.5. For each d ≥ 4 there are cubical d-
polytopes with nonorientable dual manifolds.

Proof: By construction, the four-dimensional instance
P62 of Section 5 comes with a subdivision into a regu-
lar cubical 4-ball. Since one of its dual manifolds is not
orientable, its 2-skeleton is not edge-orientable, i.e., it
contains a cubical Möbius strip with parallel inner edges.
So if we now iterate the lifted prism construction of Sec-
tion 4.1, then the resulting cubical d-polytopes (d ≥ 4)
will contain the 2-skeleton of P62. By Proposition 2.1
they must also have nonorientable dual manifolds.

10. APPLICATIONS TO HEX MESHING

In the context of Computer Aided Design (CAD), the
surface of an object (for instance, a part of a car, ship,
or plane) is often modeled by a surface mesh. In order
to analyze physical and technical properties of the mesh
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(and of the object), Finite Element Methods (FEM) are
widely used.

Such a surface mesh is either a topological mesh, that
is, a two-dimensional regular CW complex, or a geometric
mesh, that is, a (pure) two-dimensional polytopal com-
plex of cells. Common cell types of a surface mesh are
triangles (2-simplices) and quadrangles. Thus a geomet-
ric quad mesh is a two-dimensional cubical complex, and
a topological quad mesh is a cubical two-dimensional reg-
ular CW complex.

In recent years there has been growing interest in
volume meshing. Tetrahedral volume meshes (simpli-
cial 3-complexes) seem to be reasonably well-understood,
whereas there are basic, interesting, and challenging open
questions both in theory and practice for hexahedral vol-
ume meshes, hex meshes for short. That is, a geometric
hex mesh is a three-dimensional cubical complex, and a
topological hex mesh is a cubical three-dimensional regu-
lar CW complex.

A challenging open question in this context is whether
each cubical quadrilateral geometric surface mesh with
an even number of quadrangles admits a geometric hex
mesh. In our terminology this problem asks whether each
cubical PL 2-sphere with an even number of facets ad-
mits a cubification. Thurston [Thurston 93] and Mitchell
[Mitchell 96] proved independently that every topological
quad mesh with an even number of quadrangles admits a
topological hex mesh. Furthermore, Eppstein showed in
[Eppstein 99] that a linear number of topological cubes
suffices, and Bern, Eppstein, and Erickson proved the ex-
istence of a (pseudo-)shellable topological hex mesh [Bern
et al. 02].

10.1 Parity Change

Another interesting question deals with the parity of the
number of facets of a mesh. For quad meshes there are
several known parity-changing operations, that is, opera-
tions that change the numbers of facets without changing
the boundary. In [Bern et al. 02], Bern, Eppstein, and
Erickson raised the following questions:

(i) are there geometric quad meshes with geometric
hex meshes of both parities?

(ii) is there a parity-changing operation for geometric
hex meshes, which would change the parity of the
number of facets of a cubical 3-ball without chang-
ing the boundary?

We obtain positive answers to these questions from the
existence of a cubical 4-polytope with an odd number of
facets.

Corollary 10.1.
(i) Every 3-cube (combinatorially equivalent to the

standard cube [0, 1]3) has a cubification with an
even number of facets. Furthermore, this cubifi-
cation is regular and even Schlegel.

(ii) Every 3-cube is a facet of a cubical 4-polytope with
an odd number of facets.

(iii) There is a parity-changing operation for geometric
hex meshes.

Proof: For (ii) let F be a combinatorial 3-cube and P

a cubical 4-polytope with an odd number of facets. By
Lemma 3.8 there is a combinatorial 4-cube C that has
both F and a projectively regular 3-cube G as facets. Let
F ′ be an arbitrary facet of P . Then there is a combinato-
rial 4-cube C ′ that has both F ′ and a projectively regular
3-cube G′ as facets. Then the connected sum of P and C

based on the facet F ′ yields a cubical 4-polytope P ′ with
an odd number of facets, and with a projectively regular
3-cube G′′ as a facet. The connected sum of P ′ and C

gluing the facets G and G′′ yields a cubical 4-polytope
with an odd number of facets, and with a projective copy
of F as a facet.

The statements (i) and (iii) follow from (ii) via
Schlegel diagrams.

10.2 Flip Graph Connectivity

In analogy to the concept of flips for simplicial (pseudo-)
manifolds one can define cubical flips for quad or hex
meshes; compare [Bern et al. 02]. In the meshing termi-
nology the flip graph is defined as follows. For any do-
main with boundary mesh, and a type of mesh to use for
that domain, define the flip graph to be a graph with (in-
finitely many) vertices corresponding to possible meshes
of the domain, and an edge connecting two vertices when-
ever the corresponding two meshes can be transformed
into each other by a single flip.

In this framework, the question concerning a parity-
changing operation can be phrased as asking for a de-
scription of the connected components of the flip graph.
As an immediate consequence of Corollary 10.1 we obtain
the following result.

Corollary 10.2. For every geometric hex mesh the cubical
flip graph has at least two connected components.

11. THE NEXT STEP

In this paper, we are primarily concerned with the re-
alization of 2-manifold immersions in terms of cubical
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4-polytopes, but the higher-dimensional cases are inter-
esting as well. For example, one would like to know
whether there are cubical 5-polytopes with an odd num-
ber of facets. (There are no such d-polytopes for d = 6,
or for 8 ≤ d ≤ 13; see [Babson and Chan 00, Section
7].) For this we have to realize a normal crossing im-
mersion of a 3-manifold into S4 by a cubical 5-polytope
with an odd number of quadruple points. Such immer-
sions exist by an abstract result of Freedman [Freedman
78, Akhmetev 96], but more concretely by John Sulli-
van’s observation (personal communication) that there
are regular sphere eversions of the 2-sphere with exactly
one quadruple point [Smale 58, Morin 78, Francis et al.
98] and from any such one obtains a normal-crossing im-
mersion S3 � S4 with a single quadruple point. (In this
context, see also the lattice 2-sphere immersed into R

4

with one double point due to Yusin [Yusin 82].)
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[Apéry 87] F. Apéry. Models of the Real Projective Plane.
Braunschweig, Germany: Vieweg, 1987.

[Babson and Chan 00] E. K. Babson and C. Chan. “Counting
Faces for Cubical Spheres Modulo Two.” Discrete Math.
212 (2000), 169–183.

[Banchoff 74] T. F. Banchoff. “Triple Points and Surgery of
Immersed Surfaces.” Proc. Amer. Math. Soc. 46 (1974),
407–413.

[Bern et al. 02] M. W. Bern, D. Eppstein, and J. G. Erickson.
“Flipping Cubical Meshes.” Engineering with Computers
18 (2002), 173–187.

[Blind and Blind 94] G. Blind and R. Blind. “Gaps in the
Numbers of Vertices of Cubical Polytopes, I.” Discrete
Comput. Geometry 11 (1994), 351–356.
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