These pages are not updated anymore. They reflect the state of . For the current production of this journal, please refer to http://www.math.psu.edu/era/.
Comments on article:
Walter D. Neumann; Jun Yang; Invariants from triangulations of hyperbolic 3-manifolds ERA Amer. Math. Soc. 01 (1995), pp. 72-79.
$$[x]-[y]+[\frac yx]-[\frac{1-y^{-1}}{1-x^{-1}}]+[\frac{1-y}{1-x}]=0$$and should read
$$[x]-[y]+[\frac yx]-[\frac{1-x^{-1}}{1-y^{-1}}]+[\frac{1-x}{1-y}]=0$$(A similar misprint occurs in the same equation in reference [15]).
[15] W. D. Neumann, J. Yang: {\it Rationality problems for $K$-theory and Chern-Simons invariants of hyperbolic 3-manifolds}, Enseignement Math\-\'em\-at\-ique {\bf 41} 1995), 281--296 [16] W. D. Neumann, J. Yang: {\it Bloch invariants of hyperbolic 3-manifolds}, preprint available at http://neumann.maths.mu.oz.au/preprints.htmlAdded February 16, 2001
[8] A.B. Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives. J. Amer. Math. Soc. 12 (1999), no. 2, 569--618. [16] W. D. Neumann and J. Yang, Bloch invariants of hyperbolic 3-manifolds, Duke Math. J. 98 (1999), 29--59.