
Electronic Transactions on Numerical Analysis.
Volume 23, pp. 158-179, 2006.
Copyright  2006, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRIC
INDEFINITE SYSTEMS

�
OLAF SCHENK

�
AND KLAUS GÄRTNER

�
Abstract. This paper discusses new pivoting factorization methods for solving sparse symmetric indefinite sys-

tems. As opposed to many existing pivoting methods, our Supernode–Bunch–Kaufman (SBK) pivoting method dy-
namically selects ����� and ���	� pivots and may be supplemented by pivot perturbation techniques. We demonstrate
the effectiveness and the numerical accuracy of this algorithm and also show that a high performance implementa-
tion is feasible. We will also show that symmetric maximum-weighted matching strategies add an additional level
of reliability to SBK. These techniques can be seen as a complement to the alternative idea of using more complete
pivoting techniques during the numerical factorization. Numerical experiments validate these conclusions.

Key words. direct solver, pivoting, sparse matrices, graph algorithms, symmetric indefinite matrix, interior
point optimization

AMS subject classifications. 65F05, 65F50, 05C85

1. Introduction. We consider the direct solution of symmetric indefinite linear system
���
��
, with

(1.1)

�
���������������� �"!#�"$&%('*)+�,$� �,$�������.-

where
!

is a diagonal matrix with /,01/ and 23042 pivot blocks,
�

is a sparse lower triangu-
lar matrix, and

'
is a symmetric indefinite diagonal matrix that reflects small half-machine

precision perturbations, which might be necessary to tackle the problem of tiny pivots.
� �

is
a reordering that is based on a symmetric weighted matching 5 of the matrix

, and tries to

move the largest off-diagonal elements directly alongside the diagonal in order to form good
initial /601/ or 27082 diagonal block pivots.

� �������
is a fill reducing reordering which honors

the structure of
� �

.
We will present three new variations of a direct factorization scheme to tackle the is-

sue of indefiniteness in sparse symmetric linear systems. These methods restrict the pivoting
search, to stay as long as possible within predefined data structures for efficient Level-3 BLAS
factorization and parallelization. On the other hand, the imposed pivoting restrictions can be
reduced in several steps by taking the matching permutation

�9�
into account. The first al-

gorithm uses Supernode–Bunch–Kaufman (SBK) pivoting and dynamically selects /�04/ and2:0,2 pivots. It is supplemented by pivot perturbation techniques. It uses no more storage than
a sparse Cholesky factorization of a positive definite matrix with the same sparsity structure
due to restricting the pivoting to interchanges within the diagonal block associated to a single
supernode. The coefficient matrix is perturbed whenever numerically acceptable /30;/ and240<2 pivots cannot be found within the diagonal block. One or two steps of iterative re-
finement may be required to correct the effect of the perturbations. We will demonstrate that
this restricting notion of pivoting with iterative refinement is effective for highly indefinite
symmetric systems. Furthermore the accuracy of this method is for a large set of matrices
from different applications areas as accurate as a direct factorization method that uses com-
plete sparse pivoting techniques. In addition, we will discuss two preprocessing algorithms to
identify large entries in the coefficient matrix

that, if permuted close to the diagonal, permit=

Received August 27, 2004. Accepted for publication July 20, 2006. Recommended by J. Gilbert.�
Department of Computer Science, University Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland

(olaf.schenk@unibas.ch).�
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin, Germany

(gaertner@wias-berlin.de).

158

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 159

the factorization process to identify more acceptable pivots and proceed with fewer pivot per-
turbations. The methods are based on maximum weighted matchings and improve the quality
of the factor in a complementary way to the alternative idea of using more complete pivoting
techniques.

Sparse symmetric indefinite linear systems arise in numerous areas, e.g. incompressible
flow problems, augmented systems due to linear and nonlinear optimization, electromagnetic
scattering, and eigenvalue problems. Here, the saddle point problems are often especially
hard to solve [16]. In general, some kind of pivoting techniques must be applied to solve
these systems accurately and the challenge is to achieve both numerical stability and sparsity
of the factors.

1.1. Previous Work. Extensive investigation on pivoting techniques for symmetric in-
definite direct solvers have been done by numerous researchers. There are three well known
algorithms for solving dense symmetric indefinite linear systems: the Bunch-Kaufman al-
gorithm [6], the Bunch-Parlett algorithm [7], and Aasen’s method [1]. Furthermore, the
Duff-Reid algorithm [15] based on threshold pivoting techniques is an efficient method that
is frequently used for sparse symmetric indefinite systems. The primary advantage of this
threshold method is that it allows to bound the element growth, although this may generate
a higher fill-in during the elimination process. The most recent algorithmic paper on pivot
search and pivot-admissibility is [3] and the authors proposed a bounded Bunch-Kaufman
pivot selection for bounding the numerical values of the factor. In this paper, we will use
an alternative pivoting strategy for sparse symmetric indefinite systems. Instead of using the
Duff-Reid algorithm, we propose to restrict the pivoting to interchanges within the dense di-
agonal block corresponding to a single supernode. This allows us to use one of the three
dense pivoting techniques. Our pivoting technique always applies the dense Bunch–Kaufman
pivoting selection since it is also part of LAPACK. However, from the matching point of view,
a restricted version of the Bunch-Parlett algorithm might be an interesting candidate for fu-
ture research. For further details on symmetric pivoting techniques, stability, and accuracy
issues see [10, 22].

In [24] the pivoting approach of SUPERLU is described for the factorization of sparse
nonsymmetric systems. This method needs an additional preprocessing step based on weighted
matchings [12, 25] which reduces the need for partial pivoting thereby, speeding up the solu-
tion process. More recently, in [13, 26] scalings and ordering strategies based on symmetric
weighted matchings have been investigated and improvements are reported for symmetric
indefinite systems.

1.2. Contributions of the paper. We conduct an extensive study on the use of Super-
node–Bunch–Kaufman pivoting using />04/ and 2,0?2 pivots within static data structures and
supplemented by perturbation techniques for the factorization of sparse symmetric indefinite
systems. To the best of our knowledge, this pivoting techniques was not used until now.
Because of its pivoting restriction, we consider two strategies based on maximum weighted
matchings for the computation of a permutation that identifies large entries in the coefficient
matrix. These are placed close to the diagonal and permit the factorization to choose more
acceptable pivots. The use of weighted matchings in combination with our pivoting method
is new — other techniques in combination with other pivoting methods have recently been
proposed in [11] and explored in [13, 14, 26].

While we do not claim that this approach to factor symmetric indefinite systems will
always work, we do hope that the results in this paper will contribute to further acceleration
for direct solvers for sparse indefinite systems. We also hope that the combination of our
pivoting methods and symmetric weighted matchings will find widespread use in the area
of hard to solve symmetric indefinite linear systems. The implementation of the method

ETNA
Kent State University
etna@mcs.kent.edu

160 O. SCHENK AND K. GÄRTNER

�
 �"!@

PSfrag replacements

ACB
FIG. 2.1. Illustration of a supernodal decomposition of the factor for a symmetric indefinite matrix D .The

triangles indicate fill due to external updates.

is reliable and performs well. On a 2.4 GHz Intel 32-bit processor, it factors an indefinite
symmetric Karush-Kuhn-Tucker (KKT) optimization example with about 2 million rows and
columns in less than one minute, producing a factor with about /FE G?01/IH�J nonzeros.

However, for all methods based on a pivoting restriction and symmetric matching tech-
niques, it seems unlikely to prove backward stability without additional assumptions. This is
clearly a disadvantage of the approach, but this may be overcome at least for special applica-
tion classes in the future.

The paper is organized as follows. Section 2 provides some background on symmetric
indefinite factorizations and presents our formulation of the factorization using /�0*/ and 2"0K2
pivots. We follow this with a discussion of additional preprocessing methods to improve the
numerical accuracy based on symmetric weighted matchings in Sections 3 and 4. Section 5
presents our numerical results for sparse matrices from a wide range of applications. Finally,
Section 6 presents our conclusions.

2. The SBK algorithm. Virtually all modern sparse factorization codes rely heavily on
a supernodal decomposition of the factor

�
to efficiently utilize the memory hierarchies in the

hardware as shown in Figure 2.1. The filled circles correspond to elements that are nonzero
in the coefficient matrix

, non-filled circles indicate elements that are zero and explicitly

stored, the dotted circles indicate zeros in the factor that are stored in the supernode struc-
ture but not accessed during numerical factorization, and triangles represent fill elements.
The filled boxes indicate diagonal supernodes of different sizes L9M where Supernode–Bunch–
Kaufman pivoting is performed and the dotted boxes indicate the remaining part of the super-
nodes. The factor is decomposed into dense diagonal blocks of size L9M and into the corre-
sponding subdiagonal blocks such that the rows in the subdiagonals are either completely
zero or dense. There are two main approaches in building these supernodes. In the first ap-
proach, consecutive rows and columns with the identical structure in the factor

�
are treated

as one supernode. These supernodes are so crucial to high performance in sparse matrix
factorization that the criterion for the inclusion of rows and columns in the same supernode
can be relaxed [2] to increase the size of the supernodes. This is the second approach called
supernode amalgamation. In this approach, consecutive rows and columns with nearly the
same but not identical structures are included in the same supernode, and artificial nonzero
entries with a numerical value of zero are added to maintain identical row and column struc-
tures for all members of a supernode. The rationale is that the slight increase in the number of
nonzeros and floating-point operations involved in the factorization can be compensated by a
higher factorization speed. In this paper, we will always use a supernodal decomposition with
the extension that we explicitly add zeros in the upper triangular part of

�
in order to form a

rectangular supernode representation that can be factored using optimized LAPACK routines.

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 161

ALGORITHM 2.1. Supernode Bunch-Kaufman pivot selection with half-machine precision
perturbation.

1. NPOKQ
SR TVU O RF
XW?Y[ZP\^]�_a`cbcbcb ` dFe�R T�\ O R
with diagonal block of size L M

2. N UKf NPO is the magnitude of the largest
off-diagonal in the gVh row of the block

3. if
W7YiZ��.R T O.O R - N O):jlk"mnRoR
3R�R O :

4. use pivot perturbation:pT OqO
�rIsut L ��T O.O)�mak	mVR�R
vRoR O
5. use perturbed

pT O.O as a /,01/ pivot.
6. else if

R T O.O RVfxw N O Q
7. use

T OqO as a /,0y/ pivot.
8. else if

R T O.O Rzm N U f{w N _O Q
9. use

R T O.O R as a /,0y/ pivot.
10. else if

R TVU.UnRVflw N U Q
11. use

R TVU.UnR
as a /,0y/ pivot.

12. else

13. use
| T O.O TVU OTVU O TVUqU~} as a 23082 pivot

PSfrag replacements ���1
r

���� �
r

r

1

1

We will use a Level-3 BLAS left-looking factorization as described in [27, 28]. An
interchange among the rows and columns of a supernode of diagonal size L M , referred to
as Supernode–Bunch–Kaufman pivoting, has no effect on the overall fill-in and this is the
mechanism for finding a suitable pivot in our SBK method. However, there is no guarantee
that the numerical factorization algorithm would always succeed in finding a suitable pivot
within a diagonal block related to a supernode. When the algorithm reaches a point where it
cannot factor the supernode based on the previously described /�03/ and 2:0,2 pivoting, it uses
a pivot perturbation strategy similar to [24]. The magnitude of the potential pivot is tested
against a constant threshold of

k�m�R�R
vRoR O , where
k

is a half-machine precision perturbation.
Therefore, any tiny pivots encountered during elimination are set to �.�o�F� ��T ���)�mik�mPR�R
vRoR O —
this trades off some numerical stability for the ability to keep pivots from getting too small.
The result of this pivoting approach is that the factorization is, in general, not accurate and
iterative refinement will be needed.

Algorithm 2.1 describes the usual /�0x/ and 280�2 Bunch-Kaufman pivoting strategy
within the diagonal block corresponding to a supernode of size L9� . The pivoting strategy
is supplemented with half-machine precision perturbation techniques. The Bunch–Kaufman
pivoting method computes two scalars N O and N U . The scalar N O is the largest off-diagonal
element, e.g.

R T U O R , in the first column of the diagonal block corresponding to the supernode
of size LCM . N U is the largest off-diagonal element in the corresponding row g . The scalarw{
���� /z� % /).�i� is chosen to minimize the element growth. With this choice, the element
growth in the diagonal block after � steps is bounded by the factor

� 2�Ec�n�) \�� O . The algorithm
than selects either /�0x/ and 240;2 pivots for the factorization. If both

R T OqO R and
R NPO R are

too small, e.g. smaller than
k�m�RoR
3R�R O , we apply the pivot perturbation technique as described

above.

3. Symmetric reorderings to improve the results of pivoting on restricted subsets.
In this section we will discuss weighted graph matchings as an additional preprocessing step.
Weighted matchings � have been introduced by Olschowka and Neumaier [25] to obtain

ETNA
Kent State University
etna@mcs.kent.edu

162 O. SCHENK AND K. GÄRTNER

�
 � $�
 ���������� / ������������ / ���������� / �/ ������������ / �������������� /
�a ¡ � �
�

FIG. 3.1. Illustration of the row permutation. A small numerical value is indicated by a ¢ -symbol and
a large numerical value by an £ -symbol. The matched entries ¤ are marked with squares and ¥�¦ §¨o©qª�«�©a¬­«u©­®¯«�©q°a«�©q±�«�©q²^³

.

a permutation that moves the large elements to the diagonal of a dense matrix to reduce
the effort for pivoting. Duff and Koster [12] extended the approach to nonsymmetric sparse
matrices to ensure a zero-free diagonal or to maximize the product of the absolute values
of the diagonal entries. It is now an often used technique for solving nonsymmetric linear
systems [5, 24, 27, 29].

3.1. Matching Algorithms. Let

´
@�µT���¶z)K·y¸ d�¹ d

be a general matrix. The nonzero
elements of

define a graph with edges º
S»V�¼s -u½) Q T���¶4¾
 H�¿ of ordered pairs of row and

column indices. A subset � À´º is called a matching or a transversal, if every row indexs
and every column index

½
appears at most once in � . A matching � is called perfect

if its cardinality is L . For a nonsingular matrix at least one perfect matching exists and can
be found with well known algorithms. With a perfect matching � , it is possible to define a
permutation matrix

� �
´�ÂÁ ��¶)
with:Á ��¶
�Ã / � ½F- s+):· �H otherwise E

As a consequence, the permutation matrix
� �

has nonzero elements on its diagonal. This
method only takes the nonzero structure of the matrix into account. There are other ap-
proaches which maximize the diagonal values in some sense. One possibility is to look for a
matrix

� � , such that the product of the diagonal values of
� �

is maximal. In other words,
a permutation Ä has to be found, which maximizes:

(3.1)

dÅ��] O R T�Æ�Ç ��È¼� R E
This maximization problem is solved indirectly. It can be reformulated by defining a matrixÉ
´��Ê¯�c¶[)

with Ê¯��¶Ë
ÌÃ"ÍoÎ � T�� h ÍoÎ � R TV�c¶�R�TV�c¶7¾
 HÏ otherwise
-

where
T �
ÐW?Y[Z ¶ R T ��¶ R

, i.e. the maximum element in row
s

of matrix

. A permutation Ä ,
which minimizes Ñ d��] O Ê¯Æ�Ç �oÈ¼� also maximizes the product (3.1).

The effect of nonsymmetric row permutations using a permutation associated with a
matching � is shown in Figure 3.1. It is clearly visible that the matrix

� �

is now non-

symmetric, but has the largest nonzeros on the diagonal. For a more detailed description on
matchings algorithms for large symmetric linear systems the interested reader should consult
[18].

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 163

3.2. Symmetric /*0</ and 2#0~2 block weighted matchings. In the case of symmet-
ric indefinite matrices, we are interested in symmetrically permuting

�,
K� $
. The problem

is that zero or small diagonal elements of

remain on the diagonal by using a symmetric
permutation

�,
�� $
. Alternatively, instead of permuting a large1 off-diagonal element

T ��¶
nonsymmetrically to the diagonal, one can try to devise a permutation

� �
such that

� �
�� $�
permutes this element close to the diagonal. As a result, if we form the corresponding 2?082
block to Ò�Ó^Ô�Ô9Ó¯Ô�ÕÓ Ô�Õ Ó Õ¼ÕVÖ , we expect the off-diagonal entry

T ��¶
to be large and thus the 270~2 block

would form a suitable 230×2 pivot for the Supernode–Bunch–Kaufman factorization. An ob-
servation on how to build

� �
from the information given by a weighted matching � was pre-

sented by Duff and Gilbert [11]. They noticed that the cycle structure of the permutation
� �

associated with the nonsymmetric matching � can be exploited to derive such a permutation�C�
. For example, the permutation

� � from Figure 3.1 can be written in cycle representation
as

��ØÙ
Ì�µÚ O[Û Úz_ Û ÚIÜ�)¯�µÚzÝ Û ÚzÞI)a�µÚzßI) . This is shown in the upper graphics in Figure 3.2. The left
graphic displays the cycles

� /à2~G) , �µá �) and
��ân)

. If we modify the original permutation� �
ã�µÚ�Ü Û Ú OzÛ Ú�Þ Û Úz_ Û Ú�Ý Û ÚzßI) into this cycle permutation
��Ø<
ã��Ú OzÛ Úz_ Û Ú�Ü�)a�µÚzÝ Û Ú�Þ�)¯��Ú�ß�) and

permute

symmetrically with
� Ø
�� $Ø , it can be observed that the largest elements are per-

muted to diagonal blocks. These diagonal blocks are shown by filled boxes in the upper right
matrix. Unfortunately, a long cycle would result into a large diagonal block and the fill-in of
the factor for

� Ø
K� $Ø may be prohibitively large. Therefore, long cycles corresponding to��ä
must be broken down into disjoint 260à2 and /K0×/ cycles. These smaller cycles are used

to define a symmetric permutation
� �
å�µÊ O - EIEaE - Ê¯æç) , where è is the total number of 23082

and /ç0y/ cycles.
The rule for choosing the 2,0à2 and /�0×/ cycles from

� Ø
to build

� �
is straightforward.

One has to distinguish between cycles of even and odd length. It is always possible to break
down even cycles into cycles of length two. For each even cycle, there are two possibilities
to break it down. We use a structural metric as described in [13] to decide which one to take.
The same metric is also used for cycles of odd length, but the situation is slightly different.
Cycles of length 2Fé % / can be broken down into é cycles of length two and one cycle of length
one. There are 2ié % / different possibilities to do this. The resulting 2ç0�2 blocks will contain
the matched elements of � . However, there is no guarantee that the remaining diagonal
element corresponding to the cycle of length one will be nonzero. Our implementation will
randomly select one element as a /?0l/ cycle from an odd cycle of length 2Fé % / . If this
diagonal element

T �o�
is still zero during the numerical factorization, it will be perturbed using

the strategies described in Section 2.
A selection of

� �
from a weighted matching

� � is illustrated in Figure 3.2. The permu-
tation associated with the weighted matching, which is sorted according to the cycles, consists
of

� Ø
S�µÚ O Û Ú _ Û Ú Ü)¯�µÚ Ý Û Ú Þ)a�µÚ ß) . We now split the full cycle of odd length three into two cy-
cles

� /)a� 2iG) — resulting in
���×
å�µÚ O)a�µÚz_ Û Ú�ÜI)¯��Ú�Ý Û ÚzÞ�)¯�µÚzß�) . If

���
is symmetrically applied to
�êë����
�� $� , we see that the large elements from the nonsymmetric weighted matching �

will be permuted close to the diagonal and these elements will have more chances to form
good initial /,01/ and 23082 pivots for the subsequent SBK factorization.

Good fill-in reducing orderings
�����Â�Â�

are equally important for symmetric indefinite sys-
tems. The following section introduces two strategies to combine these reorderings with the
symmetric graph matching permutation

� �
. This will provide good initial pivots for the SBK

factorization as well as a good fill-in reduction permutation.

4. Combination of orderings
� �������

for fill reduction with orderings
� �

based on
weighted matchings. In order to construct the factorization efficiently, care has to be taken

1Large in the sense of the weighted matching ¤ .

ETNA
Kent State University
etna@mcs.kent.edu

164 O. SCHENK AND K. GÄRTNER

:

� Ø
�� $Ø = ì9ìì9ìì9ìí9íí9íí9í

:
� �
�� $�

=

FIG. 3.2. Illustration of a cycle permutation with ¥Pîï§ ¨ð© ¬ «u© ° «�© ª ³�¨o© ± «�© ® ³�¨ð© ² ³
and ¥Vñò§¨o© ¬ ³�¨ð© ° «u© ª ³ó¨o© ± «�© ® ³ó¨o© ² ³

. The symmetric matching ¥�ñ has two additional elements (indicated by dashed boxes),
while one element of the original matching fell out (dotted box). The two 2-cycles are permuted into �"�Ë� diagonal
blocks to serve as initial �:�ç� pivots.

that not too much fill-in is introduced during the elimination process. We now examine two
algorithms for the combination of a permutation

�9�
based on weighted matchings to improve

the numerical quality of the coefficient matrix

with a fill-in reordering
� �C�Â���

based on a
nested dissection from METIS [23]. The first method based on compressed subgraphs has
also been used by Duff and Pralet in [13] in order to find good scalings and orderings for
symmetric indefinite systems for multifrontal direct solvers.

4.1. Pivoting Variant 1: Fill-in reduction
� �C�Â���

based on compressed subgraphs.
In order to combine the permutation

� �
with a fill-in reducing permutation, we compress

the graph of the reordered system
� �
�� $� and apply the fill-in reducing reordering to the

compressed graph. In the compression step, the union of the structure of the two rows and
columns corresponding to a 2ô0*2 diagonal block is built, and used as the structure of a single,
compressed row and column representing the original ones.

If õ,ö
´��÷ Û '*) is the undirected graph of

and a cycle consists of two vertices
�ur -ùø)�·÷

, then graph compression will be done on the /�0x/ and 240�2 cycles, which have been
found using a weighted matching � on the graph. The vertices

��r -ùø)
are replaced with

a single supervertex u

ú»[r -ùø ¿ ·´÷üû

in the compressed graph õ û4
ý�u÷�û - 'Kûq)
. An edgeÚ[û�
´��r -ùø)�·4'�û

between two supervertices s

þ»[r O - r _ ¿ ·8÷�û

and t

&» ø O -.ø _ ¿ ·×÷�û

exists if
at least one of the following edges exit in

' Q ��r O -.ø O) - ��r O -ùø _) - �ur _ -ùø O) or
�ur _ -.ø _)

. The fill-
in reducing ordering is found by applying METIS on the compressed graph õ û,
ÿ��÷�û - 'Kûq)

.
Expansion of that permutation to the original numbering yields

��� �Â���
. Hence all 23082 cycles

that correspond to a suitable 2~0l2 pivot block are reordered consecutively in the factor.
During the expansion of the compressed graph in each 2x2 block the larger diagonal entry
can be ordered first.

This strategy will be denoted as a SBK-COMP-1 factorization approach in the numerical
experiments. However, due to a different row structure below a 2*042 pivot block, there is no
guarantee that this factorization approach will always use the preselected 23042 blocks.

4.2. Pivoting Variant 2: Use All Preselected 2�0~2 Pivots. The /*0�/ and 2�0~2 piv-
oting search of the SBK method is applied within the block diagonal of a supernode. In the
extreme case, the supernode exists of only one column and the SBK pivoting can degenerate
to diagonal pivoting. Therefore any permutation that symmetrically permutes large-off diag-

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 165

(a) Matrix � (b) Factor � with six supernodes

(c) Zero elements in � to
increase supernode size

(d) Factor � with five
supernodes

FIG. 4.1. (a) and (b) Matrix and factor of supernodal Bunch-Kaufman pivoting with supernodes���	��

������
�������
�����������
�������
��������
��
��
. (b) and (c) Matrix and factor of preselected

��� �
pivots with additional zero

elements and supernodes
���	�!�
��
�������
�����������

������
�����������
��

.

onal entries close to the diagonal or that identifies suitable "$#%" pivots prior to the numerical
factorization would further improve the accuracy. In order to enforce the use of these prese-
lected pivot blocks during the &�'(&*) factorization, we merge the "%#+" column structure in& in such a way that these initial ",#-" pivot structure is maintained in the factor & .

This is illustrated in Figure 4.1. In the pivoting variant 1 we will restrict the pivoting
search within diagonal-blocks of the supernodes as shown in Figure 4.1 (a) and (b). In the
pivoting variant 2 we will identify ".#(" and enforce the use of these preselected pivot blocks
by adding additional zero elements to the structure of / . As a result, the size of the supernode
increases, e.g. we will merge column/row 1 and 2 into one supernodes of size 2, in which a",#0" Bunch-Kaufman pivoting is performed instead of two 1$#21 diagonal pivot elements.

5. Numerical Experiments. We now present the results of the numerical experiments
that demonstrate the robustness and the effectiveness of our pivoting approach.

5.1. Sparse Symmetric Indefinite Matrices. The test problems used here are either of
augmented symmetric indefinite type/43 5 /$6�68779) :<;
or of general symmetric indefinite type. The matrices / 6�6 and 7 in the augmented system/ are large and sparse, and no assumption is made for the upper left block /=6�6 . Most of
the test problems are taken from extensive surveys [16, 17] of direct solvers for 61 indefinite

ETNA
Kent State University
etna@mcs.kent.edu

166 O. SCHENK AND K. GÄRTNER

TABLE 5.1
General symmetric indefinite test matrices. > denotes the total number of unknowns, and >?>A@ the nonzeros in

the matrix.

no. matrix n nnz Application
1 bcsstk35 30,237 740,200 Stiffness matrix — automobile seat
2 bcsstk37 25,503 5,832,490 Stiffness matrix — rack ball
3 bcsstk39 46,772 1,068,033 Stiffness shuttle rocket booster
4 bmw3 2 227,362 5,757,996 Linear static analysis — car body
5 copter2 55,476 407,714 Helicopter rotor blade
6 crystk02 13,965 491,274 Stiffness matrix, crystal free vibration
7 crystk03 24,696 887,937 Stiffness matrix, crystal free vibration
8 dawson5 51,537 531,157 Aeroplane actuator system
9 DIXMAANL 60,000 179,999 Dixon-Maany optimization example
10 HELM2D03 392,257 1,567,096 Helmholtz problem
11 HELM3D01 32,226 230,335 Helmholtz problem
12 LINVERSE 11,999 53,988 Matrix inverse approximation
13 NCVXBQP1 50,000 199,984 Nonconvex QP Hessian
14 qa8fk 66,127 863,353 FE matrix from 3D acoustics
15 SPMSRTLS 29,995 129,971 Sparse matrix square root
16 vibrobox 12,328 177,578 Vibroacoustic problem

systems2. This set is rather challenging and several of the matrices could not be solved by
some of the sparse direct solvers under the constraints imposed in the reports [16, 17]. The
matrices comprise a variety of application areas and Table 5.1 and 5.2 give a rough clas-
sification of the matrices including the number of unknowns, the number of zero diagonal
elements, the total number of nonzeros in the matrix, and the application area. In addition to
these matrices, Table 5.2 also shows two augmented symmetric indefinite matrices lnt09
and mass06 from [21] and two large augmented sparse indefinite systems cont5 2 and
cont5 3 from the interior point optimization package IPOPT [31]. The matrices have been
especially included in order to demonstrate the robustness benefit due to symmetric weighted
matchings as an additional preprocessing strategy for symmetric indefinite sparse factoriza-
tion methods. Furthermore, the matrices AUG2D, AUG2DC, AUG3D, DTOC, and K1 SAN are
structurally singular matrices. This is recognized by the matching algorithms, too, because
a perfect matching is supposed to exist in the algorithms described. In order to deal with
these systems, the matching was extend in such a way that the resulting matching describes a
complete maximal matching.

5.2. Test Environment and Codes. All numerical tests were run on a double processor
Pentium III 1.3 GHz system with 2 GB of memory, but only one processor was used for the
testing. The system runs a recent Linux distribution. In order to provide realistic measure-
ments, the timings were determined using the gettimeofday standard C library function,
which provides a high accuracy wall clock time. To compensate for the variations, we provide
the best result out of three runs for each measurement.

All algorithms were implemented in Fortran 77 and C and were integrated into the PAR-
DISO 3.1 solver package3, a suite of publicly available parallel sparse linear solvers. The

2The matrices can be downloaded at ftp://ftp.numerical.rl.ac.uk/pub/matrices/symmetric
and from the University of Florida Sparse Matrix Collection [8].

3http://www.computational.unibas.ch/cs/scicomp/software/pardiso

ftp://ftp.numerical.rl.ac.uk/pub/matrices/symmetric
http://www.computational.unibas.ch/cs/scicomp/software/pardiso

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 167

code was compiled by g77 and gcc with the -O3 optimization option and linked with the
Automatically Tuned Linear Algebra Software ATLAS library4 for the basic linear algebra
subprograms optimized for Intel architectures. The weighted matching code MPS, which is
part of the PARDISO package, was provided by S. Röllin from ETH Zurich, and it is based
on [18]. In general, the performance and the results of the MPS code are comparable to the
MC64 code from the HSL library [19].

In all numerical experiments in Section 5.5, we choose a random right hand side B . In
Section 5.6 we used the original right-hand side that was generated by the interior point
optimization package. For all our tests, scaling was found to make an insignificant difference
and hence we do not report on the effects on scalings here.

We used two steps of iterative refinement in cases where perturbations have been per-
formed during the numerical factorization and a factorization is considered to be successful
if the backward error C � h
K� CED8F kK� C
 C�DGC � CED % C � C�D)
is smaller than

k:
 /IH ��Ü . This corresponds to the same accuracy as used by Gould and Scott
in [17]. In addition to [17], we also consider a factorization as not successful, if the back-
ward error significantly grows during one iterative refinement process. It should already be
mentioned that the backward error for our methods is for almost all highly indefinite matrices
significantly smaller than

k:
 /�H � O Ü and almost on the order of the machine precision.

5.3. Performance Profiles. In order to evaluate the quality of the different pivoting
methods for symmetric indefinite linear systems we used performance profiles as a tool for
benchmarking and for comparing the algorithms. Theses profiles were firstly proposed in
[9] for benchmarking optimization software and recently used in [16, 17] to evaluate various
sparse direct linear solvers.

The profiles are generated by running the set of pivoting methods H on the set of sparse
matrices Ä and recording information of interest, e.g. time for numerical factorization, mem-
ory consumption, and backward error accuracy. Let us assume that a pivoting method è · H
reports a result

ø æ M f H for the sparse indefinite matrix
r#· Ä and that a smaller result

ø æ M
indicates a better solution strategy. We can further define

pø M
´W �o� » ø æ M - è · Hx¿ , which
represents the best result for a given sparse matrix è . Then for

w f H and each è · H andr,· Ä we define � � ø æ M - pø M - w�)�
JI / if
ø æ M j{w pø MH otherwise E

The performance profile
Áüæ*��w�)

of the pivoting method è is then defined byÁ�æ3�µw9)"
 Ñ M�K Æ � � ø æ M - pø M - w9)R Ä R
Thus, in these profiles, the values of

Áüæv��w�)
indicate the fraction of all examples, which can

be solved within
w

times. The best strategy, e.g.
Á æ3� /) , gives the fraction of which the

pivoting method è is the most effective method and Í � WML?N D indicates the fraction for which
the algorithm succeeded.

4https://sourceforge.net/projects/math-atlas

https://sourceforge.net/projects/math-atlas

ETNA
Kent State University
etna@mcs.kent.edu

168 O. SCHENK AND K. GÄRTNER

TABLE 5.2
Augmented symmetric indefinite test matrices. > denotes the total number of unknowns, O the number of zero

diagonals, and >?>A@ the nonzeros in the matrix.

no. matrix n m nn, Application
1 A0NSDSIL 80,016 35,008 200,021 Linear Complementarity
2 A2NNSNSL 80,016 35,008 196,115 Linear Complementarity
3 A5ESINDL 60,008 25,004 145,004 Linear Complementarity
4 AUG2D 29,008 29,008 38,416 2D PDE Expanded system
5 AUG2DC 30,200 30,200 40,000 2D PDE Expanded system
6 AUG3D 24,300 24,300 34,992 3D PDE Expanded system
7 AUG3DCQP 35,543 8,000 77,829 3D PDE Expanded system
8 BLOCKQP1 60,012 20,001 340,022 QP with block structure
9 BLOWEYA 30,004 20,003 90,006 Cahn-Hilliard problem
10 BOYD1 93,279 18 652,246 KKT — convex QP
11 BOYD2 466,316 186,531 890,093 KKT — convex QP
12 BRAINPC2 27,607 13,800 96,601 Biological model
13 BRATU3D 27,792 24,334 88,627 3D Bratu problem
14 CONT-201 80,595 40,198 239,596 KKT — convex QP
15 CONT-300 180,895 90,298 562,496 KKT — convex QP
16 DARCY003 389,874 155,746 116,768 Darys’s KKT
17 DTOC 24,993 24,993 34,986 Discrete-time control
18 D PRETOK 182,730 53,570 885,416 Mine model
19 K1 SAN 67,759 20,805 303,364 Mine model
20 mario001 38,434 15,304 114,643 Stokes equation
21 mario002 389,874 155,746 1’167,685 Stokes equation
22 NCVXQP1 12,111 5,000 40,537 KKT — nonconvex QP
23 NCVXQP3 75,000 25,000 324,982 KKT — nonconvex QP
24 NCVXQP5 62,500 12,500 237,483 KKT — nonconvex QP
25 NCVXQP7 87,500 37,500 312,481 KKT — nonconvex QP
26 NCVXQP9 16,554 7,500 31,547 KKT — nonconvex QP
27 olesnik0 88,263 27,233 402,623 Mine model
28 SIT100 10,262 3,120 34,094 Mine model
29 stokes128 49,666 16,384 295,938 Stokes equation
30 stokes64 12,546 4,096 74,242 Stokes equation
31 stokes64s 12,546 4,096 74,242 Stokes equation
32 tuma1 22,967 9,607 66,592 Mine model
33 tuma2 12,992 5,477 37,458 Mine model
34 turan M 189,924 56,110 912,345 Model of uraniummine
35 lnt09 17,990 14,483 49,401 optimal control matrix
36 mass06 33,794 512 145,253 mass matrix
37 cont5 2 2,012,000 1,004,000 6,020,000 interior point optimization
38 cont5 3 2,012,000 1,004,000 6,020,000 interior point optimization

5.4. Factorization Pivoting Algorithms. Apart from the supernode Bunch and Kauf-
man approach, we provide comparisons with several other symmetric factorization pivoting
methods as well as with symmetric matchings as an additional preprocessing method. In par-
ticular, we will consider the following options:

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 169

CHOLESKY METIS ordering and
�"� $

factorization for symmetric
positive definite systems. The diagonal elements of all
test matrices are changed in such a way that the resulting
symmetric system is positive definite.

SBK METIS ordering and
�"!�� $

factorization with
Supernode–Bunch–Kaufman pivoting using /?0x/ and2�0�2 pivots combined with a pivoting perturbation,
if the actual absolute pivot is less than

kçm�RoR
3R�R O withk:
 /IH � J .
SBK-COMP-1 METIS orderings based on compressed subgraphs that

are obtained by a symmetric matching.
��!�� $

factor-
ization with Supernode–Bunch–Kaufman pivoting us-
ing /"0?/ and 2>0*2 pivots combined with a pivoting per-
turbation, if the actual absolute pivot is less than

knmuRoR
vRoR O
with

k�
 /�H � J .
SBK-COMP-2 as SBK-COMP-1, but with preselected enlarged super-

nodes to respect the 2x2 pivot blocks

As already mentioned, we always used multilevel nested dissection5[23] to symmetri-
cally reorder the rows and columns of all matrices prior to factoring them. This is either
performed on the original adjacency graph for the methods CHOLESKY and SBK or on the
compressed /à0X/ and 2~0{2 subgraph for the method SBK-COMP-1 and SBK-COMP-2.
We have also included the CHOLESKY factorization in the numerical experiments in order
to show the performance of the indefinite symmetric factorization methods in relation to the
CHOLESKY factorization. In this case we change the diagonal elements of the original matrix

such that the new system
p

has the same sparsity structure as

, but is now symmetric pos-
itive definite. This allows us to use the Cholesky method and we report on timing results for a
Level-3 BLAS Cholesky factorization method. This Cholesky performance profile represents
in most of the cases an upper bound and it is useful to assess the quality of the algorithms for
indefinite systems.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n

of
 p

ro
bl

em
s

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: AFS.CPU − 16 general indefinite symmetric problems

CHOLESKY

SBK (0 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n

of
 p

ro
bl

em
s

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: AFS.CPU − 38 augmented indefinite symmetric problems

CHOLESKY

SBK (3 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

FIG. 5.1. Performance profile CPU time for the complete solution (analysis, factor, solve) for both sets of
symmetric indefinite matrices.

5We used the METIS Version 4.0.1 Interface METIS NodeND with default option for the general indefinite
systems and the option array P �!Q�RSQù�!Qu�SQ�TSQù�!Qu�!T!TSQù�
U for augmented indefinite systems.

ETNA
Kent State University
etna@mcs.kent.edu

170 O. SCHENK AND K. GÄRTNER

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n

of
 p

ro
bl

em
s

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: Analysis.CPU − 16 general indefinite symmetric problems

CHOLESKY

SBK (0 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n

of
 p

ro
bl

em
s

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: Analysis.CPU − 38 augmented indefinite symmetric problems

CHOLESKY

SBK (3 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

FIG. 5.2. Performance profile CPU time for the analysis for both sets of symmetric indefinite matrices.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n

of
 p

ro
bl

em
s

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: Factor.CPU − 16 general indefinite symmetric problems

CHOLESKY

SBK (0 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n

of
 p

ro
bl

em
s

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: Factor.CPU − 38 augmented indefinite symmetric problems

CHOLESKY

SBK (3 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

FIG. 5.3. Performance profile CPU time for the numerical factorization for both sets of symmetric indefinite
matrices.

5.5. Numerical results for augmented and general symmetric indefinite systems.
We present in Figure 5.1 the performance profiles of the CPU time for the complete solution
process including analysis, factorization, forward/backward solution (abbreviated by ’solve’)
and potentially two steps of iterative refinement in the presence of pivot perturbations. In
Figure 5.1 and all other Figures 5.2 to 5.4 the left graphic always shows the performance
profiles for the general indefinite systems whereas the right graphic shows profile information
for the augmented symmetric indefinite systems.

It is immediately apparent that augmented symmetric indefinite systems are much harder
to solve than general indefinite systems. This has also been observed in [16, 17]. However,
it is clearly visible that the overall reliability of the methods SBK, SBK-COMP-1, and SBK-
COMP-2 is generally high and the absolute CPU time is on the same order of magnitude
as that of the CHOLESKY method. This is already a good indication of the robustness and
performance of these approaches. The results also show that weighted graph matchings have a
strong influence on the overall performance of the augmented symmetric indefinite systems,
where the method without symmetric matchings SBK is superior if it works to the SBK-
COMP-1and SBK-COMP-2 strategies. For the general indefinite systems there is only a minor
difference due to the reason that, for almost all systems, the permutation produced by the
symmetric matchings is identical or very close to the identity. A close examination of the

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 171

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n

of
 p

ro
bl

em
s

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: Nonzeros in L − 16 general indefinite symmetric problems

CHOLESKY

SBK (0 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n

of
 p

ro
bl

em
s

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: Nonzeros in L − 38 augmented indefinite symmetric problems

CHOLESKY

SBK (3 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

FIG. 5.4. Performance profile for the numbers of nonzeros in the factor V for both sets of symmetric indefinite
matrices.

2 4 6 8 10 12 14 16

10−4

10−3

10−2

10−1

100

Matrices

Lo
g

S
ca

le
 o

f (
N

o.
 o

f P
iv

ot
s

/ N
o.

 o
f U

nk
no

w
ns

)

Perturbed Pivots − 16 general indefinite symmetric problems

SBK (0 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

5 10 15 20 25 30 35

10−4

10−3

10−2

10−1

100

Matrices

Lo
g

S
ca

le
 o

f (
N

o.
 o

f P
iv

ot
s

/ N
o.

 o
f U

nk
no

w
ns

)
Perturbed Pivots − 38 augmented indefinite symmetric problems

SBK (3 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

FIG. 5.5. Percentage of perturbed pivots for both sets of symmetric indefinite matrices.

separate analysis, factorization, and forward/backward solution (abbreviated by ’solve’) time
will reveal this in Figures 5.2 to 5.8.

Figure 5.2 compares the profiles for the analysis. The analysis time for the methods
CHOLESKYand SBK are very similar. Matching algorithms are not applied, hence these meth-
ods have the fastest analysis time for both sets of indefinite systems. The graph-weighted
matching methods SBK-COMP-1and SBK-COMP-2 produced a nontrivial permutation for
six general indefinite matrices copter2, dawson5, DIXMAANL, LINVERSE, NCVXBQP1,
SPMSRTLS and for all augmented symmetric indefinite systems.

In Figures 5.3 and 5.4 we compare the factorization time and numbers of nonzeros in the
factors for all methods. Firstly, it can be noticed that the SBK factorization method is faster
than CHOLESKY for the augmented symmetric indefinite linear systems. The reason is that
we use slightly different LAPACK factorization routines6. Secondly, when applying symmet-
ric matchings to the augmented indefinite systems, the factorization using SBK-COMP-1 is
in general about a factor of two slower due to the fact that the resulting factors require more
nonzeros compared to SBK.

Now we turn our attention to the numbers of perturbed pivots during factorization. Figure

6DSYTRF has been used for symmetric indefinite matrices and DGETRF for symmetric positive definite.

ETNA
Kent State University
etna@mcs.kent.edu

172 O. SCHENK AND K. GÄRTNER

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n

of
 p

ro
bl

em
s

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: Solve.CPU − 16 general indefinite symmetric problems

CHOLESKY

SBK (0 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n

of
 p

ro
bl

em
s

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: Solve.CPU − 38 augmented indefinite symmetric problems

CHOLESKY

SBK (3 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

FIG. 5.6. Performance profile CPU time for the solve including iterative refinement for both sets of symmetric
indefinite matrices.

2 4 6 8 10 12 14 16
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Matrix Number

Lo
g

ba
ck

w
ar

d
er

ro
r

Backward error for 16 general indefinite symmetric problems

SBK (0 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

5 10 15 20 25 30 35
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Matrix Number

Lo
g

ba
ck

w
ar

d
er

ro
r

Backward error for 38 augmented indefinite symmetric problems

SBK (3 failed)

SBK−COMP−1 (0 failed)

SBK−COMP−2 (0 failed)

FIG. 5.7. Size of the backward error for both sets of symmetric indefinite matrices.

5.5 demonstrates that only three of the sixteen general indefinite systems are affected by pivot
perturbation. This is different for the augmented indefinite systems, where for many systems
pivot perturbations occur during factorization. The Figure 5.5 shows the percentage of per-
turbed pivots and it can be seen that the additional preprocessing can reduce the occurrence
of pivot perturbation by several orders of magnitude due to the effective initial construction
of W XYW and Z[X\Z cycles during the analysis. This increases the factorization time by about
a factor of two, but it also adds reliability that might be needed in various applications.

We now evaluate the solution time for all methods in Figure 5.6. As already mentioned in
Section 5.2, we perform two steps of an iterative refinement method if any pivot perturbation
has been encountered during factorization for the methods SBK, SBK-COMP-1, and SBK-
COMP-2. It is clear that the solve step is affected by this strategy and the figures demonstrate
that the influence is higher for the augmented linear systems.

Figure 5.7 and Figure 5.8 show the accuracy for all factorization pivoting methods and
all general and augmented indefinite systems. Figure 5.7 compares the backward error]�^E_a`bac ^�dJe=]�^ b ^�df^ c ^�dhgi^�_j^�dlk�k . A backward error larger than W�monjp indicates a failure of
the method. It can be seen that the backward error is for most of the general indefinite systems
of order W�mqnsrut . For the augmented indefinite systems the SBK-COMP-1 and SBK-COMP-2
methods also often produce backward error close to machine precision. The SBK backward

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 173

10−12 10−10 10−8 10−6 10−4 10−2

10−12

10−10

10−8

10−6

10−4

10−2

No iterative refinement − 16 general indefinite problems

Error from MA57 solver

E
rr

or
 fr

om
 S

B
K

 a
nd

 S
B

K
−C

O
M

P
−1

 p
iv

ot
in

g

PARDISO SBK
PARDISO SBK−COMP−1

10−10 10−5 100 105 1010

10−10

10−5

100

105

1010

No iterative refinement − augmented indefinite problems

Error from MA57 solver

E
rr

or
 fr

om
 S

B
K

 a
nd

 S
B

K
−C

O
M

P
−1

 p
iv

ot
in

g

PARDISO SBK
PARDISO SBK−COMP−1

FIG. 5.8. Comparison of relative error without iterative refinement with SBK-COMP-1, SBK and MA57 for
both sets of symmetric indefinite matrices.

10−12 10−10 10−8 10−6 10−4 10−2

10−12

10−10

10−8

10−6

10−4

10−2

One step of iterative refinement − 16 general indefinite problems

Error from MA57 solver

E
rr

or
 fr

om
 S

B
K

 a
nd

 S
B

K
−C

O
M

P
−1

 p
iv

ot
in

g

PARDISO SBK
PARDISO SBK−COMP−1

10−10 10−5 100 105 1010

10−10

10−5

100

105

1010

One step of iterative refinement − augmented indefinite problems

Error from MA57 solver

E
rr

or
 fr

om
 S

B
K

 a
nd

 S
B

K
−C

O
M

P
−1

 p
iv

ot
in

g

PARDISO SBK
PARDISO SBK−COMP−1

FIG. 5.9. Comparison of relative error with one step of iterative refinement with SBK-COMP-1, SBK and
MA57 for both sets of symmetric indefinite matrices.

10−12 10−10 10−8 10−6 10−4 10−2

10−12

10−10

10−8

10−6

10−4

10−2

Two steps of iterative refinement − 16 general indefinite problems

Error from MA57 solver

E
rr

or
 fr

om
 S

B
K

 a
nd

 S
B

K
−C

O
M

P
−1

 p
iv

ot
in

g

PARDISO SBK
PARDISO SBK−COMP−1

10−10 10−5 100 105 1010

10−10

10−5

100

105

1010

Two steps of iterative refinement − augmented indefinite problems

Error from MA57 solver

E
rr

or
 fr

om
 S

B
K

 a
nd

 S
B

K
−C

O
M

P
−1

 p
iv

ot
in

g

PARDISO SBK
PARDISO SBK−COMP−1

FIG. 5.10. Comparison of relative error with two steps of iterative refinement with SBK-COMP-1, SBK and
MA57 for both sets of symmetric indefinite matrices.

ETNA
Kent State University
etna@mcs.kent.edu

174 O. SCHENK AND K. GÄRTNER

errors are a bit larger and for four systems, the backward errors are on the order of /�H � Ouv .
Figure 5.8 assesses the accuracy of the SBK and SBK-COMP-1 methods for all sparse

symmetric indefinite matrices that are not structural singular. The Figure plots the error

C!w hx CED
from both methods versus the relative error from a pivoting method that uses threshold

Duff–Reid pivoting for the complete matrix. In particular we selected MA57 from [19] as
a direct solver for the

w
-axis in the Figure. A dot on the diagonal means that the two errors

were the same, a dot above means that MA57 is more accurate, and a dot below the diagonal
means that the SBK and SBK-COMP-1 methods are more accurate. As already mentioned,
most of the augmented systems are much harder to solve than the general indefinite systems
but it can be concluded from these figures that the error of MA57 and the SBK-COMP-1
method in PARDISO are of the same order. The error of SBK can be higher for hard to solve
problems, but the general conclusion is that even in the presence of small pivots, the iterative
refinement can effectively recover the loss of accuracy during factorization.

5.6. Numerical results for interior point optimization matrices. In Tables 5.3 and
5.5 and Figure 5.11 we report the performance of PARDISO using the SBK method for inte-
rior point optimization matrices from IPOPT [31]. The whole set consists of 57 matrices of
increasing size. It can be found at [4] and we selected a representative subset of 16 matrices.
The core step of the IPOPT optimization algorithm is a damped Newton iteration, where in
each step a linear system of the form
�
 |zy %|{ %h}E~�� �� $ h }Iû�� }
is solved. In our examples, the upper left block

 OqO
 y %�{<%�}�~��
is a diagonal matrix,�

is of full rank, and the scalar
} û

is set to /�H � J . y and
{

are related to the Hessian of the
Lagrangian function,

�
denotes the Jacobian of the constraints and the scalar

} ~
is modified

in such a way that the inertia of the system is exactly
� L - è - H) . Here L is the dimension

of the matrix

 OqO and è denotes the rank of

�
. A detailed description of the interior point

optimization method is given in [31]. The default solver in IPOPT is the MA27 from [20], but
we refer to the newest version of MA57 7

`
8.

Table 5.3 shows the name of the IPOPT matrices, and the numbers of positive and neg-
ative eigenvalues. It can be seen that all the matrices are very indefinite and in general hard
to solve. The table also shows the time in seconds for the analysis, factorization, and for-
ward/backward solution (abbreviated by ’solve’). It can be seen that for larger examples the
factorization speedup of PARDISO using SBK method compared to MA57 is on the order of
2, whereas solve and analysis time are similar due to the fact that both solvers use METIS in
the reordering and no pivot perturbation occurred for these matrices. As a result, both PAR-
DISO and MA57 performed only one forward and backward solve. It is also visible that the
SBK-COMP-1 is the slowest method but it can have an accuracy advantage over SBK which
we will discuss later.

Table 5.4 shows the speedup of PARDISO using SBK on a SGI Altix 3700/BX2 with 8
Intel Itanium2 processors with 1.6 GHz and we report on the factorization speedup for the
larger IPOPT matrices.

Table 5.5 shows the numbers of nonzeros in the factors and the total memory requirement
for both methods. The total memory requirement consists of the amount used for the factors

7We used MA57 Version 3.0.0 (March 2005). The options for MA57 for these interior point matrices have been
recommended by Iain Duff, who is the author of MA57.

8Detailed comparisons of sparse direct linear solver for symmetric indefinite systems can be found in [16, 17].

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 175

TABLE 5.3
Comparison of two sparse direct linear solvers PARDISO using SBK and MA57 using default options for a

subset of the IPOPT interior point optimization matrices. The table shows time in seconds for analysis, factorization
and one forward/backward substitution (abbreviated by ’solve’). >o� and >o� show the number of positive and
negative eigenvalues. We also show the factorization time in brackets using PARDISO with SBK-COMP-1. All tests
were run on a Pentium III 1.3 GHz.

Matrix PARDISO MA57
name L�� L � anal. factor solve anal. factor solve
c-20 1’621 1’300 0.06 0.01/(0.01) .002 0.01 0.02 .001
c-22 2’130 1’662 0.09 0.02/(0.03) .003 0.01 0.03 .002
c-27 2’621 1’942 0.09 0.02/(0.02) .002 0.01 0.02 .002
c-30 2’823 2’498 0.10 0.01/(0.02) .004 0.02 0.05 .003
c-33 3’526 2’791 0.10 0.02/(0.03) .006 0.03 0.05 .004
c-40 5’477 4’464 0.14 0.02/(0.03) .006 0.02 0.07 .005
c-42 5’930 4’541 0.27 0.02/(0.08) .012 0.04 0.11 .009
c-55 19’121 13’659 1.57 6.54/(18.1) 0.11 1.88 14.4 0.11
c-58 22’461 15’134 1.80 5.99/(15.4) 0.10 2.10 11.2 0.09
c-62 25’158 16’573 2.11 16.2/(43.1) 0.20 2.72 37.7 0.20
c-68 36’546 28’264 2.70 14.7/(50.7) 0.21 4.07 57.3 0.18
c-70 39’302 29’622 3.27 4.90/(16.1) 0.14 3.62 13.8 0.13
c-71 44’814 31’824 4.03 47.6/(164.) 0.41 5.04 110. 0.40
c-72 47’950 36’114 3.60 2.96/(10.2) 0.15 4.14 7.75 0.13
c-73 86’417 83’005 5.52 1.14/(3.41) 0.18 4.06 3.16 0.11
c-big 201’877 143’364 19.9 243./(615.) 1.34 18.14 487. 1.22

TABLE 5.4
Time in seconds for the numerical factorization with PARDISO using SBK for 1, 4, and 8 Intel Itanium2 pro-

cessors with 1.6 GHz.

Matrix PARDISO-SBK
name 1 proc. 4 procs. 8 procs.
c-68 2.48 0.70 0.38
c-70 1.16 0.50 0.32
c-71 7.98 4.01 0.99
c-72 0.80 0.45 0.36
c-73 0.47 0.25 0.61
c-big 33.9 8.48 4.40

and for additional data structures that the solver consumes during the complete solution pro-
cess.

Finally, the relative error

C!w h x C D of both PARDISO methods versus MA57 is demon-
strated in Figure 5.11. As in Figure 5.8, a dot on the diagonal means that the two errors were
the same, a dot above means that MA57 is more accurate, and a dot below the diagonal means
that the SBK and SBK-COMP-1 methods are more accurate. The relative error for all meth-
ods is shown without iterative refinement, and additionally with one and two steps of iterative
refinements for all direct solvers. We do not list the backward error here since we noticed
that both solvers always produced errors close to machine precision. It is clearly visible that
for all IPOPT matrices the SBK-COMP-1 method produced similar errors as MA57 even in
the case where no iterative refinement is performed. The relative error without iterative re-

ETNA
Kent State University
etna@mcs.kent.edu

176 O. SCHENK AND K. GÄRTNER

TABLE 5.5
Comparison of the direct linear solver PARDISO using SBK and SBK-COMP-1 with MA57 using default

options for a subset of the IPOPT interior optimization matrices. The table shows the numbers of nonzero in the
factor V and the total memory requirement in MByte.

Matrix SBK SBK-COMP-1 MA57
name nnz in

�
memory nnz in

�
memory nnz in

�
memory

c-20 31’236 1 39’082 1 40’121 1
c-22 43’044 1 61’080 2 56’214 1
c-27 40’615 1 52’159 2 53’032 1
c-30 43’717 2 46’798 2 69’237 2
c-33 60’958 2 80’801 2 93’151 2
c-40 68’215 4 81’550 4 123’154 4
c-42 125’161 5 147’490 5 213’369 4
c-55 3’567’897 36 5’925’470 58 3’842’167 48
c-58 2’799’201 32 4’537’988 49 3’043’645 49
c-62 6’760’217 64 10’506’202 104 7’378’230 88
c-68 5’584’384 57 10’636’496 104 5’986’413 79
c-70 3’302’552 42 6’011’189 65 4’107’653 65
c-71 13’768’053 126 22’163’118 211 13’967’446 178
c-72 2’977’867 45 4’928’324 50 3’479’461 50
c-73 1’513’369 68 1’867’347 74 2’239’597 69
c-big 39’032’735 365 63’858’706 593 39’893’061 548

finement of the SBK method is higher in comparison to SBK-COMP-1, but after one step of
iterative refinement all methods produced similar errors.

The computation of the inertia is a very important feature in the context of interior point
optimization and it has been demonstrated in [30] that the method is very effective for large-
scale nonlinear programming problems arising e.g. in optimal control of PDEs.

Finally, we evaluate the runtime of each step of the SBK-COMP-1 in Figure 5.12 for all
symmetric indefinite systems (general, augmented, IPOPT). Figure 5.12 shows the fraction
of runtime for the computation of the symmetric matching, the reordering and the solution
including iterative refinement with respect to the time for the numerical factorization. For
large enough examples, the

�"!�� $
factorization dominates all other steps. The computation

of the matching is for all matrices smaller than the reordering time except for the matrix
BOYD2 from the test set in Table 5.2. We noticed that our matching code MPS required a
disproportionate amount of time for matrix BOYD2, which seems to be due to a large number
of dense rows in this matrix.

6. Conclusions. This paper demonstrates the effectiveness of new pivoting methods for
sparse symmetric indefinite systems. As opposed to many existing pivoting methods, SBK
uses dynamically />0Ù/ and 2Ë0�2 pivoting within a diagonal block associated to a supernode.
The coefficient matrix is perturbed whenever numerically acceptable pivots can not be found
within the diagonal block and only one or two passes of iterative refinement may be required
to correct the effect of the perturbations required. We demonstrated the effectiveness and the
numerical accuracy of the algorithm and also showed that a high performance implementation
is feasible for this algorithm.

In addition, we discussed two algorithms to identify large entries in the coefficient matrix

that, if permuted close to the diagonal, permit the factorization process to identify more

acceptable pivots and proceed with fewer pivot perturbations. The methods are based on

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 177

10−12 10−10 10−8 10−6 10−4 10−2

10−12

10−10

10−8

10−6

10−4

10−2

No iterative refinement − symmetric indefinite IPOPT problems

Error from MA57 solver

E
rr

or
 fr

om
 S

B
K

 a
nd

 S
B

K
−C

O
M

P
−1

 p
iv

ot
in

g
PARDISO SBK
PARDISO SBK−COMP−1

10−12 10−10 10−8 10−6 10−4 10−2

10−12

10−10

10−8

10−6

10−4

10−2

One step of iterative refinement − symmetric indefinite IPOPT problems

Error from MA57 solver

E
rr

or
 fr

om
 S

B
K

 a
nd

 S
B

K
−C

O
M

P
−1

 p
iv

ot
in

g

PARDISO SBK
PARDISO SBK−COMP−1

10−12 10−10 10−8 10−6 10−4 10−2

10−12

10−10

10−8

10−6

10−4

10−2

Two steps of iterative refinement − symmetric indefinite IPOPT problems

Error from MA57 solver

E
rr

or
 fr

om
 S

B
K

 a
nd

 S
B

K
−C

O
M

P
−1

 p
iv

ot
in

g

PARDISO SBK
PARDISO SBK−COMP−1

FIG. 5.11. Comparison of relative error with SBK-COMP-1, SBK and MA57 for general symmetric indefinite
IPOPT matrices without iterative refinement (left), one step iterative refinement (right), two steps iterative refinement
(middle).

maximum weighted matchings and improve the quality of the factor in a complementary way
to the alternative idea of using more complete pivoting techniques during the factorization.
The numerical experiments show that the additional effort of symmetric weighted matchings
for producing good initial � ��� and �[�+� pivots during the analysis is not always required.
However, these two methods add an additional level of reliability without severely decreasing
the performance of the solver. For a large number of real-world examples, SBK-COMP-1 and
SBK-COMP-2 reorderings are capable of providing a feasible pivoting order for the factor-
ization, while the cost of this preprocessing step is often negligible. However, the memory
requirements and the factorization times increase and MA57 looks like the more efficient
approach in these circumstances. Further existing possibilities to merge matching and fill-
in reduction information should be studied in the future to reduce the overhead introduced.
The matching information drastically decreases the number of perturbations, hence other cor-
rection techniques, e.g. Sherman-Morrison-Woodbury, may now be applied efficiently and
without harming the parallelization capacity.

In addition, the methods open possibilities to achieve scalability for symmetric indefinite
factorization on parallel architectures, since similar data structures and communication pat-
terns, as in the highly scalable sparse Cholesky case, can be exploited as shown in Table 5.4.
The threshold pivoting approach in MA57 clearly has a precision advantage. On the other
hand, it has been shown in [30] that iterative refinement in conjunction with SBK can often

ETNA
Kent State University
etna@mcs.kent.edu

178 O. SCHENK AND K. GÄRTNER

10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

101

102

103
CPU statistics for all symmetric indefinite systems

SBK −COMPRESS−1 Factorization Runtime in Seconds

Fr
ac

tio
n

of
 S

B
K

−C
O

M
P

R
E

S
S

−1
 F

ac
to

riz
at

io
n

R
un

tim
e

Symmetric Weighted Matching
Reordering
Solve and Iterative Refine

BOYD2

FIG. 5.12. The runtime of the SBK-COMP-1 method versus other steps (computation of the matching, reorder-
ing and solution with iterative refinement) for all symmetric indefinite systems.

recover the loss of accuracy during the factorization with iterative refinements.

Acknowledgments. The authors thank Jennifer Scott for discussions during the surveys
and providing the matrices from [17], and Andreas Wächter for the IPOPT interior point
optimization matrices. We would also like to thank Iain Duff for providing us MA57.

REFERENCES

[1] J. AASEN, On the reduction of a symmetric matrix to triagonal form, BIT, 11 (1971), pp. 233–242.
[2] C. ASHCRAFT AND R. GRIMES, The influence of relaxed supernode partitions on the multifrontal method,

ACM Trans. Math. Software, 15 (1989), pp. 291–309.
[3] C. ASHCRAFT, R. GRIMES, AND J. LEWIS, Accurate symmetric indefinite linear equation solvers, SIAM J.

Matrix Anal. Appl., 20 (1999), pp. 513–561.
[4] Basel Sparse Matrix Collection. http://computational.unibas.ch/cs/scicomp/matrices.
[5] M. BENZI, J. HAWS, AND M. TUMA, Preconditioning highly indefinite and nonsymmetric matrices, SIAM

J. Sci. Comput., 22 (2000), pp. 1333–1353.
[6] J. BUNCH AND L. KAUFMANN, Some stable methods for calculating inertia and solving symmetric linear

systems, Math. Comp., 31 (1977), pp. 162–179.
[7] J. BUNCH AND B. PARLETT, Direct methods for solving indefinite systems of linear equations, SIAM J.

Numerical Analysis, 8 (1971), pp. 639–655.
[8] T. DAVIS, University of Florida Sparse Matrix Collection, University of Florida, Gainesville.

http://www.cise.ufl.edu/davis/sparse/.
[9] E. D. DOLAN AND J. MORÉ, Benchmarking optimization software with performance profiles, Math. Pro-

gram., 91 (2002), pp. 201–213.
[10] I. DUFF, A. ERISMAN, AND J.K.REID, Direct Methods for Sparse Matrices, Oxford Science Publications,

1986.
[11] I. S. DUFF AND J. R. GILBERT, Maximum-weighted matching and block pivoting for symmetric indefinite

systems, in Abstract book of Householder Symposium XV, June 17-21 2002, pp. 73–75.
[12] I. S. DUFF AND J. KOSTER, The design and use of algorithms for permuting large entries to the diagonal of

sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901.
[13] I. S. DUFF AND S. PRALET, Strategies for scaling and pivoting for sparse symmetric indefinite problems,

SIAM J. Matrix Anal. Appl., 27 (2005), pp. 312–340.
[14] , Towards a stable static pivoting strategy for the sequential and parallel solution of sparse symmetric

indefinite systems, Technical Report RAL-TR-2005-007, Rutherford Appleton Laboratory, 2005.
[15] I. S. DUFF AND J. K. REID, A comparison of sparsity orderings for obtaining a pivotal sequence in Gaussian

elimination, J. Institute of Mathematics and its Applications, 14 (1974), pp. 281–291.
[16] N. GOULD, Y. HU, AND J. SCOTT, A numerical evaluation of sparse direct solvers for the solution of large

sparse, symmetric linear systems of equations, Tech. Report RAL-TR-2005-005, Rutherford Appleton
Laboratory, 2005.

ETNA
Kent State University
etna@mcs.kent.edu

FAST FACTORIZATION METHODS FOR SYMMETRIC INDEFINITE SYSTEMS 179

[17] N. GOULD AND J. SCOTT, A numerical evaluation of HSL packages for the direct solution of large sparse,
symmetric linear systems of equationss, ACM Trans. Math. Software, 30 (2004), pp. 300–325.

[18] A. GUPTA AND L. YING, On algorithms for finding maximum matchings in bipartite graphs, Tech. Report
RC 21576 (97320), IBM T. J. Watson Research Center, Yorktown Heights, NY, October 25, 1999.

[19] Harwell Subroutine Library, AEA Technology, Harwell, Oxfordshire, England catalogue of subroutines, 2004.
[20] Harwell Subroutine Library Archive, AEA Technology, Harwell, Oxfordshire, England catalogue of subrou-

tines, 2002.
[21] J. HAWS AND C. MEYER, Preconditioning KKT systems, Tech. Report M&CT-TECH-01-021, Mathematics

and Computing Technology, The Boeing Company, 2001.
[22] N. HIGHAM, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002.
[23] G. KARYPIS AND V. KUMAR, A fast and high quality multilevel scheme for partitioning irregular graphs,

SIAM J. Sci. Comput., 20 (1998), pp. 359–392.
[24] X. S. LI AND J. W. DEMMEL, SuperLU DIST: A scalable distributed-memory sparse direct solver for un-

symmetric linear systems, ACM Trans. Math. Software, 29 (2003), pp. 110–140.
[25] M. OLSCHOWKA AND A. NEUMAIER, A new pivoting strategy for gaussian elimination, Linear Algebra

Appl., 240 (1996), pp. 131–151.
[26] S. RÖLLIN AND O. SCHENK, Maximum-weighted matching strategies and the application to symmetric in-

definite systems, Lecture Notes in Computer Science, 3732, Springer, 2006, pp. 808–817.
[27] O. SCHENK AND K. GÄRTNER, Solving unsymmetric sparse systems of linear equations with PARDISO,

Journal of Future Generation Computer Systems, 20 (2004), pp. 475–487.
[28] O. SCHENK, K. GÄRTNER, AND W. FICHTNER, Efficient sparse LU factorization with left-right looking

strategy on shared memory multiprocessors, BIT, 40 (2000), pp. 158–176.
[29] O. SCHENK, S. RÖLLIN, AND A. GUPTA, The effects of unsymmetric matrix permutations and scalings in

semiconductor device and circuit simulation, IEEE Transactions On Computer-Aided Design Of Inte-
grated Circuits And Systems, 23 (2004), pp. 400–411.

[30] O. SCHENK, A. WÄCHTER, AND M. HAGEMANN, Matching-based preprocessing algorithms to the solution
of saddle-point problems in large-scale nonconvex interior-point optimization, Linear Algebra Issues
Arising in Interior Point Methods, special issue of Comput. Optim. Appl., in press.

[31] A. WÄCHTER AND L. T. BIEGLER, On the implementation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), pp. 25–57.

