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ON CONVERGENCE OF ORTHONORMAL EXPANSIONS FOR
EXPONENTIAL WEIGHTS*

H. P. MASHELE!
Dedicated to Ed Saff on the occasion of his 60th birthday
Abstract. Let I = (—d, d) be a real interval, finite or infinite, and let W : I — (0, 00). Assume that W2
is a weight, so that we may define orthonormal polynomials corresponding to W2. For f : I — R, let sy, [f]
denote the mth partial sum of the orthonormal expansion of f with respect to these polynomials. We show that if
"W € Loo (I) N Ly (I), then [|(sm [f] = F) Wl ;) — 0asm — oo. The class of weights considered
includes even exponential weights.
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1. Introduction and Results. Let I = (—d, d) be a real interval, finite or infinite. Let
W : I — (0, 00) be such that all the power moments

/I |z|" W2 (z) de, n >0,
are finite. Then we may define orthonormal polynomials
n (W2,2) = 2™ + -+ -, Yn > 0,
n > 0, satisfying for every m, n,
/Ipm (W2, 2) pp, (W2,2) W? (2) dz = Smn.

For f : I — R such that f (z) 2/W?2 (z) € Ly (I), j > 0, we may form the formal orthonor-
mal expansion

oo
f~Y bpj,
7=0
where
(11) b=t ()= [ W2 iz0
I
The mth partial sum of this expansion is denoted by
m—1
sm [f] == bipj, m 2> 1.

I
©

J

Using (1.1), we obtain the integral representation
(1.2) Sm [f /f (z,t) W2 (t) dt,
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where it is known that the Christoffel-Darboux kernel K, can be expressed as

(1.3) Km (2,1) = Z_ pr () pr ()
k=0

_ Ym—1 Pm (.’L‘) DPm-1 (t) — Pm (t) Pm—1 (-'1:) )
Tm r—t

We define the dilated de la Vallée Poussin means by

2n

Y sulfl(@).

m=n-+1

(1.4) vn [f] (z) ==

S|

A result in [7] (see Theorem 9.1.1) asserts that for a class of Freud weights,
(1.5) Tim (|(f = sm D Wiy =0,

provided f is absolutely continuous and f'W € Ly (I).

In this paper, we generalise this result for a class F (02) of even exponential weights.
The definition of this class involves the notion of quasi-increasing and quasi-decreasing. We
say that f : (0,d) — R is quasi-increasing if there exists C' > 0 such that

O<z<y<d= f(z)<Cf(y).

In particular, an increasing function is quasi-increasing. Similarly, we may define the notion
of a quasi-decreasing function.

DEFINITION 1.1 (The class of weights F (C?)). Let W = e @, where Q@ : I —
[0, 0o)satisfies the following properties:
(a) @ is even and continuous, @' is continuous in I = (—d, d), and @ (0) = 0;
(b) Q" exists in I\ {0} and @” > 0in I\ {0};

(©)
Jim Q (t) = oo;
(d) The function
_tQ'(¢)

is quasi-increasing in (0, d), and for some A > 1,
T#)>A>1, t € I\ {0};
(e) There exists C; > 0 such that

Q"(2) _ Q' (2
@ = QW

Then we write W € F (CQ). If there exists a compact subinterval J of I and C» > 0 such
that

z € I\ {0}.

Q" ()
Q@) =

z € I\J,
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then we write W € F (C?+).
Examples of this weight include the following:
Freud Weights. Assume that )’ > 0 in (0, co) and that for some Cy,Cs > 1,

Ci1 <T(t) <y, t € (0,00).
Then W is a Freud weight. For example, if @ > 1, and
W (z) = W () = exp (— [z]%),

then T (t) = « for all ¢.
Erdos Weights. Here I = (—o0,00) and T (t) — oo ast — o0o. The archetypal
example is

(1.6) W (z) = exp (expy, (0) — expy, (|2|%))
where a > 1,k > 1, and

expy, = exp (exp (---exp () ---))

/

~
k times

denotes the kth iterated exponential. We also set exp (z) = .
Exponential Weights on (—1,1). Here I = (—=1,1) and T'(t) - oo ast — 1—. The
archetypal examples are

W (z) = exp (1 -(1- m2)_a)
and
(1.7) W (z) = Wh* (z) = exp (expk (1) —expy, (1 — x2)_a) , z € (-1,1)
where k > 1, a > 0.
In analysis of exponential weights, the Mhaskar-Rakhmanov-Saff number a,,, plays a

crucial role. It is the positive root of the equation

2 L antQ' (ant)

1.8 n = ————"dt.
(1.8) =) T
One of its properties is the Mhaskar-Saff identity
||PW||LM(1) = ||PW||Lw(7an,an);

valid for all polynomials P of degree < n. We shall need a number of auxiliary quantities.
We set

(1.9) = (0T (an)) ">, n>1,

and define the functions

£
an|1— Ao

T Tl <an
(1.10) On () = ¢ ny/|1= 2|+ o

¢n ((ln) I |.Z'| > Qn
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and

n 2 2/3
an an

THEOREM 1.2. Let W € f(C2). Let f : I — R be absolutely continuous, let
f'W € Ly (I) N Lo (I)and assume that for each e > 0,

(1.12) a,=0(n°) and T (a,)=0(n°)
Then
(113) Tim [W (f = s Dl r) = 0.

Note that the assumption (1.12) is satisfied by the Erdds weights in (1.6) and the ex-
ponential weights on (—1,1) in (1.7). A key ingredient of Theorem 1.2 is a Favard type
inequality. For 1 < p < oo, let

Buplfly =, 10 (= P)Wllg, -

This is the error in approximation of f by polynomials of degree < n in a weighted L, norm.
THEOREM 1.3. Let W € .7:(02) and1 < p < oo. Let f : I — R be absolutely
continuous, with f'W € L,, (I). Then

(1.14)  Eapp [flyy <IW (f = vn [fDllz,n)
1797 1-1/p

an - n
< C||f'W||L,,(I) FT (an)® % |1+ (m)

This paper is organised as follows: in Section 2, we record some of the properties of the
de la Vallée Poussin means and recall the Nikolskii-type inequality in [3]. In Section 3, we
prove Theorems 1.2 and 1.3.

We close this section with more notation. Throughout C,Cy,Cs, ... denote positive
constants independent of n, z, f and polynomials P of degree < n. The same symbol does
not necessarily denote the same constant in different occurrences. We denote the set of all
polynomials of degree < n by P,. If (¢,,) and (d,,) are sequences of real numbers, we write
cp ~ dy if there exist Cy, Cs > 0 such that

ClSCn/dnSC2, n21

Similar notation is used for functions and sequences of functions.

2. Technical Estimates. For simplicity, we assume that W € F (CQ), although the
results hold more generally. The following proposition lists some of the properties of the
linear operators vy,.

PROPOSITION 2.1. Letn > 1, 1 < p < oo and p' be determined by % + % =1
(a) For P of degree < n,

@.1) vn [P] = P.
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(b)If fW € L, (I) and gW € Ly (I), then

(2.2) / von (9] fW? = / v [f]gW>.

I I

Proof. See Proposition 3.4.1in [7, p. 71]. g

Next, we record a Nikolskii-type inequality:

LEMMA 2.2. Let 0 < q < p < oo. Then there exists C > 0 such that forn > 1 and
Pep,

Q=

o=

n/T (an)

n

(2.3) IPWll, iy <C IPWIIz,r) -

Proof. See [3, Theorem 10.3, p. 295]. 0
Next, we present an estimate for the error in weighted L; approximation by weighted
polynomials. This involves the characteristic function x of the interval (—oo, x):

Xz (t) = X(—o0,z) (t) .

LEMMA 2.3. There exist Cy > 0 and 0 < Cy < 1 such that forn > 1, and x € 1,

(2.4) Eni [Xalyy < og%"w (z).

Proof. This follows using classical results on Markov-Stieltjes inequalities. Let x €
(Xk+1,n> Tkn], Where 21, and xy, are successive zeros of the nth orthonormal polyno-
mial p,, (z) for the weight W. By Corollary 1.2.6 in [7, p. 17], there exist, for the given z,
polynomials R and P of degree < 2n such that

R<x,<Pinl

and

/[P — RIW < Apgi,n + Akyns
I

where A, is the Christoffel number corresponding to 2y, or equivalently, if A, (W, x)
denotes the nth Christoffel function for W

)\k,n = )\n (W7 mkn) -

Using the bounds for Christoffel functions in [3, Corollary 1.14, p. 20], and using (12.20) in
[3, p. 329], we deduce that

et 1 W (@hg1,n) + AW (Thn) < Copp ()

provided z € [—azp, as,]. (Here one also uses the relationship between Mhaskar-Rakhmanov-
Saff numbers for W and W2.) Now if in addition |z| < a, /2, then uniformly in z,n, k,

w (mkn) ~W ($k+1,n) -
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Indeed, for some £ between gy, Tg+1,n. at least if 0 ¢ [Xx41,n) Tn),

|Q (mkn) - Q (xk-i-l,n)l = |QI (E)' (xkn - xk—i—l,n)

< 0% 1! (o)1~ Pl <
n an
see [3, (3.41), p. 77] and [3, (1.110), p. 23]. We deduce that
EoniXalyw < Con ()W (x), 2| < apya.
But for this range of z,
o @)~ 1= <o,

o)

Eani [Xely < c‘;—"w @), |z <anp
Then

Eup Dl SCTW (@), Jo] < ana

For z > a,, /4, we use the estimate

d
En,l[Xw]w§/|Xw_1|W:/ w
1 T

1t W)
s Q’(w)/m Ve =)

as @' is increasing. The case 2 < —ay/4 is similar. Finally, from the convexity of @, for
|1L'| 2 Cln/4,

Q" (2) > Q" (an/a)
and by (3.40) in [3, p. 77],and as C; < 1,

n n
Q' (an/4)|~a—vT(an)ZCa—- 0
LEMMA 2.4. Let Wh € Ly (I) and
d
2.5) K (h,t) = W2 (¢) / W2 (u)h(u)du, tel.
t

Lethl,lSpgooand%—kz%:l.
(a) Let Wh € Ly, (I) and

(2.6) /WZh =0.
I
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Then for some C' independent of h,
(2.7 IWK" (W)l ) < CIWhIL gy -
(b) Moreover, if g is absolutely continuous, and g'W € Ly, (I), then
(2.8) /ghW2 = /g’K (h, ) W?2.
(¢) IfWh € Lo, (I), n > lis an integer, and
(2.9) /W2hP =0, PeP,,
then with Cy as in the previous lemma,

Gn
(2.10) WK (h, )l < C? IWhlr,_r -

Proof. This is very similar to that in [7, Lemma 4.1.4, p. 84 ff.].
(a) This is actually proved in a more general setting in [2, Lemma 2.2].
(b) This follows by an integration by parts.
(c) Now if P is a polynomial of degree < n,

d
W2 (1) K (h,1)] = /t W2 (2) h (z) do

= /t W2 (z) h (z) dz
—d

- / Xt (@) W2 (2) h () de

= |[ (@) = P @)W (@) (@) da

IA

WAl [ 1 )~ P @)W (2) d
As P is any such polynomial, we obtain
W2 (t) K (h,t)] < Whll,_ 1y En el -
Now apply the previous lemma, giving
W2 (8) K (h,t)] < WAl _ 1 CW (2) %" 0

LEMMA 2.5. For 1 < p < oo, there exists C independent of n and f such that

1—

@.11) on[fIWE, 7

< chwwnP
I)

L Ly(I)

Proof. This follows directly from Theorem 1.2 in [5, p. 390]. |
We let

2.12) Ap = llmax {0, I, 190 -
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LEMMA 2.6. (a) Forn > 1 and x € 1,

1/3
(2.13) CiT (an) ™2 < aiqﬁn (z) <Cy |1+ (T “ )

(b) Forn > land x € I,

2/9
(2.14) O1T (an) ™% < 0y (2) < Co 1+< ‘ 2>
T(an)
(c)
2/9
2.15 A, < CT (a,;)? |1 n
o corafie ()

Proof. (a) For |z| < ay,

. ‘1_|z| ‘1_m+m<1_a_n)
™ (z) = azn < an an a2n
an 1 lzl ||
an| T 0n l_a + Mn
/2 | _ an C Cnl/3
S‘ _m +&S1+7:1+n‘72/3,
an Vin T (an) Vin T (a,)

by definition of 7,,. In the third last line we used the estimate [3, (3.50), p. 811,
an, 1
azn, T (an)’

For the lower bound, we see that if |z| < a,, /2, then

1-—

‘1 _ Ony2
2 b (@) > fon p ez 1
Qn " - a Gn T(a )
‘1 _ Gn/2 +17 n
n n
If ay /2 < |z| < ap, then
1 — &n

n ‘ a2n ].

—¢n (x) > ~ ’

an a T

aS’r]n << ﬁ

(b) This follows easily from (a) and the definition

1/2 2/3
an an

(¢) This follows from (b). 0
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3. Proof of the Theorems. In this section, we prove Theorem 1.3, but first we need two
lemmas. We set

(3.1 Tpp =¥, Pmax{1,¥,}.

LEMMA 3.1. Let 1 < p < oo and fW € Ly, (I). Then forn > 1,

S CEn,p [f]WI‘"’p -

32) HW (f = vn [f]) Uo7
L,(1)

Here C' is independent of n and f.
Proof. Let P* be the polynomial of degree < n of best approximation to f in the
weighted norm L, norm with weight W maxTI'y, ,,. Lemma 2.5 gives

1

HW (f = on /) W *

1—1

cJi-rer

Ly (1) Lyp(I)

t HW (P* — v ) Ts

Ly(I)

~|wi-re

1
P

Ly (1)

+ Han [P* — f] O, ¥

Lp(I)

1

<|wi-rren

Ly (1)

+CH(P*—f)W\Il;%

L,(1)
S(C+DIW(f = P) Cplly, 1y -

Our choice of P gives the result. d
LEMMA 3.2. Let n > 1. Let g be absolutely continuous and g'W € Ly (I). Then
(a)

an
(3.3) Enalglw < Cz ”.QIW”LI(I) .
(b)
an
(3.4) I (@ = v 1Dl < CllaW ) 2T (a) .

Proof. (a) If h is a function such that AW € L (I) and h satisfies the orthogonality
condition (2.9), then also (2.6) is satisfied, and

‘/ ghW?

= ‘/Ig'K(h) w?

Gnp
<gWllz, C Wl 1y -

< ||9’W||L1(1) 1K (h) W||L°°(I)
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Taking the sup over all such A gives the result.
(b) Here Lemma 3.1 and (a) give

W (g = vn 9Dz, 1) < CBnalglwr, ,

< C— 19 W, gy [max {1, 1}, -

Now apply the lower bound for ¥,, in Lemma 2.6. d
LEMMA 3.3. Let n > 1. Let g be absolutely continuous and g'W € Lo, (I).
(a) Then forn > 1,

2/9
n
(335 Bacolgly < llg'Wll,_ (I)C T (an)'/* {H (m) } :
(b)
4/9
' Qp n
(3.6 [Wg—valgDllr ) <NgWlr_(n C;T(an)z/3 ll + (m) ] :

Proof. (a) This follows that in [7, pp. 88—89]. We may assume that g (0) = 0. Let

G@)= [ 1o 0 -valg) O]t
0
Choose a constant a such that

W (G = a)llL, 1) = Eop[Gly -

Then
Vo (z) :=a+ /Ow Un [g]'
satisfies
W (g -V @ =W @ | [ @=1) -] =W (G -0 @
;

Eon,oo [l < W (9= Vo)l = WG =9l )

/GhW2
I

where [|hW||, ;) = 1and J; hW? = 0, and we have used duality. Using (2.8), we continue
this as

= Eo, [G]W =

=/G’ hth()dt‘

= [ -wlg) O K (oW <t)‘

I

)

= /(9’ —vn [g]) () (K (h,t) = P () W* (1)

I
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for any polynomial P of degree < n, by orthogonality of g’ — vy, [¢] to polynomials of degree
< n. We continue this using Holder’s inequality, and by taking the inf over P, as

< ||(gl — Un [!Jl]) W‘I’n“Lw(I) Ena [K (h)]W ”\I’;lan(I)
< Bnoo [9'lwr,, .. Bna [K ()] ||‘I’;1||Lm(1)

(79 _
< Fnoe 19l C 22 I () Wl 1y ool 1957

an

< Bnoo [9'lw C—= Inooll . 1y (R P

by Lemma 3.1, Lemma 3.2(a) and (2.7). Using our estimates from Lemma 2.6 gives the
result.
(b) By Lemma 3.1,

W (g — vn [g])”Lm(I) <[W (g —vnlg]) ‘I’n”Lm(I) ”‘I’;Ll”Lm(I)
<CEn [Q]WFMO ”lI’;l”Lm(I)
< CEp oo 9]y [Imax{¥n, 1}, _ ) e, ||L°°(1) .
Using (a), (2.12), (2.15), and the fact that T (a,,) ~ T (a,,/»), we continue this as
4/9
< Cllg Wil 1) 2T (an)* T (an)*/* |1+ (%) .0

Proof of the Favard Inequality Theorem 1.3. Let us summarize what we have proven in
the lemmas above: for p = 1 and p = oo,

Qp _
IW (9 = vn gDl 1y < lg'W Il 1y €2k /284,

4/9
om =T (a)”* |1+ (ﬁ) ;

where

Bn =T (an)"”*.
We apply the Riesz-Thorin interpolation theorem [ 1, Theorem 2.2, p. 196] to the operator

¢(z) > W (¥ —vn[¥]),
where
xr
v = [ W
0
After a substitution, we obtain for all 1 < p < oo,

Eonp [flw < IIW (f = on [,
an 1
S CUf Wiy, )~ ow 78/

4/971-1/p
; Qp 2_ 1 n
<CUFWly 0y 2T (@) % |1+ A .o

n
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Proof of Theorem 1.2. Letn > 2 and m be the largest integer < n/2. Now

G W = s Dl gy < W (F = 0 DN
+ W @ (£ = 50 Doy
< W (f = om DIl

ny/T (an)

n

+ W (v 171 = 80 LD oy

by the Nikolskii inequality Lemma 2.2. Since s,, is the best polynomial approximant in the
L> norm, we see that

IW (vm [f] = 80 [FDll Loy < W = sn DIy + IV (i [F] = Dl Loy

<2{|W (om [£] = Py
1/971/2
n
].+ N I
<T(an) )

ap,=0 (%) and T (a,) =0 (n°)

Qn

[N

<N Wllpy@y —T (an)

n

By Theorem 1.3. If as we assume,

for each € > 0, then we have

W (0 [£] = 50 [fDllgyry = O (n77/74),

for each € > 0. Also Theorem 1.2 gives

4/9
|Ww—wum%msmwmmm%Tmﬁl+< ”)

-0 (n75/9+s) _
Then substituting in (3.7),

”W (f — Sn [f])”Lm(I) =0 (n_1/18+6) ,

giving the asserted result. d
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