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Abstract

In this paper, the Hyers-Ulam-Rassias stability of additive type

functional equation

f(rx + sy) =
r + s

2
f(x + y) +

r − s

2
f(x− y)

r, s ∈ R and r 6= ±s over a unital C∗−algebra will be investigate.
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1 Introduction and preliminaries

One of the interesting questions in the theory of functional equations con-

cerning the problem of the stability of functional equations is as follows:
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when is it true that a mapping satisfying a functional equation approxi-

mately must be close to an exact solution of the given functional equation?

The first stability problem was raised by Ulam during his talk at the

University of Wisconsin in 1940 [11].

Given a group G1, a metric group (G2, d), and a positive number ε,

does there exist a δ > 0 such that if a mapping f : G1 → G2 satisfies

the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a

homomorphism T : G1 → G2 such that d(f(x), T (x)) < ε for all x, y ∈ G1?

Ulam’s problem was partially solved by Hyers in 1941 in the context of

Banach spaces with ε = δ as shown below [3].

Theorem 1.1 (D. H. Hyers (1941)). Let E1 be a normed vector space, E2

a Banach space and suppose that the mapping f : E1 → E2 satisfies the

inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x in E1 where ε > 0 is a constant. Then the limit

g(x) = lim
n

2−nf(2nx)

exists for each x ∈ E1 and g is the unique additive mapping satisfying

‖f(x)− g(x)‖ ≤ ε

for all x ∈ E1. Also, if for each x the function t → f(tx) from R to E2 is

continuous for each fixed x, then g is linear. If f is continuous at a single

point of E1, then g is continuous in E1.



Hyers-Ulam-Rassias Stability of additive type ... 47

Aoki [1] and Th.M. Rassias [10] provided a generalization of the Hy-

ers theorem for additive and linear mappings, respectively, by allowing the

Cauchy difference to be unbounded.

Theorem 1.2 (Th.M. Rassias). Let f : E → E0 be a mapping from a

normed vector space E into a Banach space E0 subject to the inequality

(1.1) ‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then

the limit

L(x) = limn→∞
f(2nx)

2n

exists for all x ∈ E and L : E → E0 is the unique additive mapping which

satisfies

(1.2) ‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2)

for x 6= 0. Also, if for each x ∈ E the mapping t → f(tx) is continuous in

t ∈ R, then L is linear.

The above inequality has provided a lot of influence in the development of

what is now known as a generalized Hyers-Ulam-Rassias stability of func-

tional equations. P. Gavruta [2] provided a further generalization of the

Th.M. Rassias theorem. During the last three decades a number of papers

and research monographs have been published on various generalizations

and applications of the generalized Hyers-Ulam-Rassias stability to a num-

ber of functional equations and mappings (see [6, 7, 8, 10]). We also refer

the readers to the books [11, 5].
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Th. M. Rassias (1990) during the 27’th International Symposium on

Functional Equations asked the question whether such a theorem can also

be proved for p ≥ 1. Z. Gajda (1991) gave an affirmative solution to this

question for p > 1. It is shown that there is no analogue of Rassias result

for p = 1, [5].

In this paper, we introduce the following additive functional equation

(1.3) f(rx + sy) =
r + s

2
f(x + y) +

r − s

2
f(x− y)

r, s ∈ R and r 6= s, We investigate the Hyers-Ulam-Rassias stability of

the functional equation (1.3) in Banach modules over a unital C∗-algebra.

These results are applied to investigate homomorphisms between unital C∗-

algebras.

2 Hyers-Ulam-Rassias stability of the func-

tional equation (1.3) in Banach modules

over a C∗-algebra

Throughout this section, assume that A is a unital C∗-algebra with norm

|.|, unit 1. Also we assume that X and Y are (unit linked) normed left A-

module and Banach left A-module with norms ‖.‖X and ‖.‖Y , respectively.

Let U(A) be the set of unitary elements in A and let r, s ∈ R and r 6= s.

For a given mapping f : X → Y, u ∈ U(A) and a given µ ∈ C, we define

Duf , Dµf : X2 → Y by

Duf(x, y) := f(rux + suy)− r + s

2
uf(x + y)− r − s

2
uf(x− y),
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Dµf(x, y) := f(rµx + sµy)− r + s

2
µf(x + y)− r − s

2
µf(x− y)

for all x, y ∈ X. An additive mapping f : X → Y is called A-linear if

f(ax) = af(x) for all x ∈ X and all a ∈ A.

Proposition 1 [9] Let L : X → Y be a mapping with L(0) = 0 such that

DuL(x, y) = 0 ∀x, y ∈ X, ∀u ∈ U(A).

Then L is A-linear.

Corollary 1 Let L : X → Y be a mapping with L(0) = 0 such that

D1L(x, y) = 0 for all x, y ∈ X. Then L is additive.

Corollary 2 A mapping L : X → Y with L(0) = 0 satisfies DµL(x, y) = 0

for all x, y ∈ X and all µ ∈ T := {µ ∈ C : |µ| = 1} , if and only if L is

C-linear.

Now, we investigate the Hyers-Ulam-Rassias stability of the functional equa-

tion (1.3) in Banach modules.

We recall that throughout this paper r, s ∈ R with r + s, r − s 6= 0.

Theorem 2.1 Let f : X → Y be a mapping satisfying f(0) = 0 for which

there exists a function ϕ : X2 → [0,∞) such that

(2.1) lim
k→∞

1

2k
ϕ(2kx, 2ky) = 0,

(2.2)

ϕ̃(x) :=
∞∑

k=0

1

2k

{
ϕ
( 2k+1rx

r2 − s2
,
−2k+1sx

r2 − s2

)

+ ϕ
( 2kx

r + s
,

2kx

r + s

)
+ ϕ

( 2kx

r − s
,
−2kx

r − s

)}
< ∞,
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(2.3) ‖D1f(x, y)‖Y ≤ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y

such that

(2.4) ‖f(x)− L(x)‖Y ≤ 1

2
ϕ̃(x)

for all x ∈ X.

Proof. It follows from (2.3)that
∥∥∥D1f(x, y)−D1f

(x + y

2
,
x + y

2

)−D1f
(x− y

2
,
y − x

2

)∥∥∥
Y

≤ ϕ(x, y) + ϕ
(x + y

2
,
x + y

2

)
+ ϕ

(x− y

2
,
y − x

2

)

for all x, y ∈ X. Therefore

(2.5)

∥∥∥f(rx + sy)− f
(r + s

2
(x + y)

)− f
(r − s

2
(x− y)

)∥∥∥
Y

≤ ϕ(x, y) + ϕ
(x + y

2
,
x + y

2

)
+ ϕ

(x− y

2
,
y − x

2

)

for all x, y ∈ X. Replacing x by 1
r+s

x + 1
r−s

y and y by 1
r+s

x− 1
r−s

y in (2.5),

we get

(2.6)
‖f(x + y)− f(x)− f(y)‖Y ≤ ϕ

( x

r + s
+

y

r − s
,

x

r + s
− y

r − s

)

+ ϕ
( x

r + s
,

x

r + s

)
+ ϕ

( y

r − s
,
−y

r − s

)

for all x, y ∈ X. Letting y = x in (2.6), we get

(2.7)
‖f(2x)− 2f(x)‖Y ≤ ϕ

( 2rx

r2 − s2
,
−2sx

r2 − s2

)

+ ϕ
( x

r + s
,

x

r + s

)
+ ϕ

( x

r − s
,
−x

r − s

)

for all x ∈ X. For convenience, set

ψ(x) := ϕ
( 2rx

r2 − s2
,
−2sx

r2 − s2

)
+ ϕ

( x

r + s
,

x

r + s

)
+ ϕ

( x

r − s
,
−x

r − s

)
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for all x ∈ X. It follows from (2.2) that

(2.8)

∞∑

k=0

1

2k
ψ(2kx) = ϕ̃(x) < ∞

for all x ∈ X. Replacing x by 2kx in (2.7) and dividing both sides of (2.7)

by 2k+1, we get

∥∥∥ 1

2k+1
f(2k+1x)− 1

2k
f(2kx)

∥∥∥
Y
≤ 1

2k+1
ψ(2kx)

for all x ∈ X and all k ∈ N. Therefore we have

(2.9)

∥∥∥ 1

2k+1
f(2k+1x)− 1

2m
f(2mx)

∥∥∥
Y
≤

k∑

l=m

∥∥∥ 1

2l+1
f(2l+1x)− 1

2l
f(2lx)

∥∥∥
Y

≤ 1

2

k∑

l=m

1

2l
ψ(2lx)

for all x ∈ X and all integers k ≥ m ≥ 0. It follows from (2.8) and (2.9)

that the sequence {f(2kx)
2k } is a Cauchy sequence in Y for all x ∈ X, and

thus converges by the completeness of Y. So we can define the mapping

L : X → Y by

L(x) = lim
k→∞

f(2kx)

2k

for all x ∈ X. Letting m = 0 in (2.9) and taking the limit as k → ∞ in

(2.9), we obtain the desired inequality (2.4). It follows from the definition

of L, (2.1) and (2.3) that

‖D1L(x, y)‖Y = lim
k→∞

1

2k
‖D1f(2kx, 2ky)‖Y

≤ lim
k→∞

1

2k
ϕ(2kx, 2ky) = 0
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for all x, y ∈ X. Therefore the mapping L : X → Y satisfies the equation

(1.3) and L(0) = 0. Hence by Proposition 1, L is a additive mapping.

To prove the uniqueness of L, let L′ : X → Y be another additive

mapping satisfying (2.4). Therefore it follows from (2.4) and (2.8) that

‖L(x)− L′(x)‖Y = lim
k→∞

1

2k

∥∥f(2kx)− L′(2kx)
∥∥

Y

≤ 1

2
lim
k→∞

1

2k

∞∑

l=0

1

2l
ψ(2l+kx)

=
1

2
lim
k→∞

∞∑

l=k

1

2l
ψ(2lx) = 0

for all x ∈ X. So L(x) = L′(x) for all x ∈ X. It completes the proof.

Theorem 2.2 Let f : X → Y be a mapping satisfying f(0) = 0 for which

there exists a function ϕ : X2 → [0, 1) satisfying (2.1), (2.2) and

‖Duf(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ X and all u ∈ U(A). Then there exists a unique A-linear

mapping L : X → Y satisfying (2.4) for all x ∈ X.

Proof. The proof follows by letting u = 1 in (2.1) and using Proposition 1.

Corollary 3 Let δ, ε, p and q be non-negative real numbers such that 0 <

p, q < 1. Assume that a mapping f : X → Y with f(0) = 0 satisfies the

inequality

‖D1f(x, y)‖Y ≤ δ + ε(‖x‖p
X + ‖y‖q

X)

(‖Duf(x, y)‖Y ≤ δ + ε(‖x‖p
X + ‖y‖q

X))
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for all x, y ∈ X (and all u ∈ U(A)). Then there exists a unique additive

(A-linear) mapping L : X → Y such that

‖f(x)− L(x)‖Y

≤ 3δ +
2|r|p + |r + s|p + |r − s|p

(2− 2p)|r2 − s2|p ε‖x‖p
X +

2|s|q + |r + s|q + |r − s|q
(2− 2q)|r2 − s2|q ε‖x‖q

X

for all x ∈ X.

Proof. Define ϕ(x, y) := δ + ε(‖x‖p
X + ‖y‖q

X), and apply Theorem 2.1

(Theorem 2.2).

Corollary 4 Let δ, ε, p and q be non-negative real numbers such that λ :=

p + q 6= 1 and |r| 6= |r|λ. Assume that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖D1f(x, y)‖Y ε‖x‖p
X‖y‖q

X

(‖Duf(x, y)‖Y ≤ ε‖x‖p
X + ‖y‖q

X)

for all x, y ∈ X (and all u ∈ U(A)). Then f is additive (A-linear).
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