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ON INTEGRAL BERNSTEIN OPERATORS IN SOME
CLASSES OF MEASURABLE BIVARIATE FUNCTIONS

ROMAN TABERSKI

ABSTRACT. The two main theorems are cencerned with the approx-
imation of (complex-valued) functions on the real plane by sums of
Bernstein pseudoentire functions. They are formulated and proved
in Section 4, after prior determination of the suitable integral oper-
ators. Analogous results for pseudopolynomial approximations were
obtained by Brudnyi, Gonska, and Jetter ([2],[3]).

1. Preliminaries. Let Lj,.(R) [resp. ACi.(R)] be the set of all uni-
variate (complex-valued) functions Lebesgue-integrable (absolutely contin-
uous) on every compact subinterval of R := (—oco,00). Denote by LY (R?),
1 < p < oo, the set of all measurable bivariate (complex-valued) functions
Lebesgue-integrable with pth power (essentially bounded when p = c0) on
every finite two-dimensional integral lying on the plane R?> = R x R; write
Lioc(R?) instead of L}, (R?). Denote by C(R) [resp. C(R?)] the set of all
(complex-valued) functions continuous on R [R?].

Given any bivariate (complex-valued) function f = f(-,-) measurable on
R2, the quantity

Pduy vl/p ; ~
||f|p::{(ffm'f<“»v>ldd) f1<p<o, "

€88 Sup(u,v)eR2 |f(u,v)| lfp =00

is finite or infinite. In the case ||f]|, < oo the function f is said to be of
class LP = LP(R?); in symbols, f(-,-) € LP. The notations f(-,-) € L} (R?),
g(+,v) € Lioc(R), etc. have a similar meaning.

Let f = f(-,-) be a (complex-valued) function defined on R? and let
k,l € Ng = {0,1,2,...}. Determine the partial differences of f at a point
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(z,y) € R?, i.e.,
k
1Ak L _1\k—n k T
Mftea) = 3 (M>f( A,
k
YA f(a,y) == (D) (i) flzy+vn),
v=0

with the real increments A, n. Introduce also the mixed difference Al;ln =

FAL (AT f (2, y)).
It is easy to see that

sty =3 S (MY (s iy o)

pn=0r=0 #
In particular, Ai”%f(x,y) = f(z,y) and
Al f(@y) = f@+ Ny +m) = f@+X\y) = f@,y+n) + f(z,1).

Further, A}\; (Alf\lnf(m, y)) = A];,J;l’lﬂf(x, Y).
The first (weak) derivative of f at (x,y) is given by

.1
fU @) = lim 5 AN ()

whenever the right-hand side exists. The (weak) derivatives of f of higher
orders are defined successively:

FD(@,y) = (9N Y (@,y) for j=2.3,....
Moreover, by convention, f(©) (z,y) = f(x,y) and
am s o"
w(* (Jc,y)) for m,n € Np.

(m,n) -
[z, y) = g

Considering any (complex-valued) function f measurable on R?, one can
define its mixed LP-modulus of smoothness:

w1 (01,025 f)p == sup{||A];’7i7f||p 0<A<6,0<n< 52}.

This quantity, with fixed p > 1 and k,l € Ny, may be finite or infinite for
positive numbers 1, d2. If there exist three non-negative numbers M, o, 3

such that wy(81,02; f), < M6y for all 6,8, € (0,1], we say that f

belongs to the Holder class H;k,;)p More generally, if

(k1) _ 1 kL
=sup{————||A 0< A, n <1} < o0, 2
||f||¢,qp,p {80()‘)’(/}(77) || )\777f||p n } ( )
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where ,1 mean positive non-decreasing functions on (0,1] and (1) =
(1) = 1, the function f is said to be of class H&;j?p. In the case @(d) = 6%,

P(8) = 6 for 6 € (0,1], the left-hand side of identity (2) will be denoted by
171655

Denote by E, [resp. E, .| the set of all univariate (bivariate) entire
functions of exponential type of order o [(o,7)] at most. Clearly, if F(-,-) €
E, (0,7 > 0), then F(-,v) € E, and F(u,-) € E. for all u,v € R. More-
over, F(-,-) € C(R?). In the case where ®(-,v) € E, (resp. ¥(u,-) € E,)
for almost every v € R [u € R], ®(2,-) € Lioe(R) [¥(-,2) € Lipe(R?)] for
every complex number z, and ®(-,-) € Lio.(R?) [¥(-,) € Lioe(R?)], we call
® [¥] a pseudoentire function of class W} [W2].

The aim of this paper is to present the Jackson type theorems, in LP-
norms (1) and seminorms (2), for some (complex-valued) functions defined
and measurable on R?. We begin with auxiliary results about the mixed dif-
ferences and Bernstein’s singular integrals used in our approximation prob-
lems.

2. Estimates for the mixed differences and moduli of smooth-
ness. Consider a (complex-valued) function f = f(-,-) defined and mea-
surable on the plane R2. Denote by k, [ two non-negative integers. Take an
arbitrary p satisfying the condition: 1 < p < co.

Proposition 1. If \\n € R andn € N ={1,2,3,...}, then

k1l k,l
1AL o < m*nl | AYS Fllp- (3)

mA,nn

Proof. Given arbitrary z,y € R, let g(z,y) := 2Afmf(x,y).
By identity (5) of [5], p.116,

n—1 n—1
gl y) =Y - Y PALf(ey+ v+ -+ vin)

v1=0 ;=0

and
m—1 m—1
"AL (T, y) = Z Z AR gz 4+ + - 4 e\, ).
pn1=0 =0
Hence
m—1 m—1 n—1
k.l
1Am)\,n7]f(x’y): Z Z
p1=0 pr=01v1=0
n—1
Z A’;’,lnf(x—i—ul)\-k...+/,Lk)\7y+ym+...+ym).
v;=0

Applying Minkowski’s inequality, we get at once estimate (3). [J
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From (3) it follows that
wi 1 (M1, nd2; f)p < mFn'wy (81,605 f)p (myn € N) (4)
for all non-negative numbers 61, d2, whence , in case a,b > 0
wii(adr, b3 flp < (la] + V(B + 1)'wra (61, 03 - (5)

Clearly, the estimates (3)-(5) are useful only with the finite right-hand
sides.

Proposition 2. Let f have the partial derivatives
f(O,n) (’U,, ')7 cety f(mil’n) (’U,, ) € LlOC(R) (m’ ne N)

for every u € R, and let f(™=1") (- v) € ACio.(R) for almost every v € R.
Further, given any ¢ > 0, suppose the existence of positive number M. such
that ess SUp_ <, <. | ™) (u,v)| < M, for almost every v € [—c,c|. Then,
in the case k > m and \,n € R,
k.l k—m,i— ,
1AY Fllp < A ™ AR F )|

)

=

(6)

Proof. By our assumption, the (Lebesgue) integrals

" no
// FO (u,w + ty + - 4 t)dty - - - dt, = Fj(u, w)
0 0

(j=0,1,...,m)

exist for all u,w € R if j < m and for almost every u and every w € R if
Jj=m.
Given u,w € R, one has

1 h
‘E/ FOm (44 s,w 4ty + -+ tn)ds| < M,
0

uniformly in h € [—1,1]

(h # 0) for almost every point (t1,---,t,) of the n-dimensional interval
[—[7], |n|]™ whenever ¢ > max(|u| + 1, |w| + n|n|). Moreover,

1

lim = (m,n) e =

hli%h/o f (u+s,w+t+---+t,)ds
= ) (g w4t + -+ ty,)

for almost every u. Hence

li L
m —
h—0 h

n n
:/ / f(m’")(u,w—l—tl—|—---—|—tn)dt1---dtn,
0 0

{Fon1 (w4 hyw) — Fpy 1 (u,w) } =
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ie., FT(:;Ol)(u,w) = F,(u,w) forae. u € R and every w € R, by the
Lebesgue dominated convergence theorem.
Next, when m > 2, (u,w) € R? and 0 < |h| < 1,

n n.1
:/ / {E/ f(m_l’”)(u—l—s,w-l-tl+~-‘+tn)d8}dt1"'dtn,
0 0 0

1
’Ef(mfl,n)(u+5’w+tl+—|—tn)d8’ =
1 S
s s
0
=1 (g w + +...+tn)}d$‘ <

1
< ‘E\f(m’")(u-l-z,w-l-h +--~—|—tn)|dz‘ +

T (w0 by A )

and

1 [h
lim = (m—1,n) —
hlg%)h/o f (u+ s,w+1ty 4+ +ty)ds

— f(mflxn) (u,w +t 4+ tn)

for almost all (t1,...,t,) € [—Inl,In]]*.  Therefore, as previously,
Fy(nl’_OQ)(u,w) = F_1(u,w) for all (u,w) € R? Analogously, when m > 3,
anl’_og(u,w) = Fy_o(u,w) for all (u,w) € R?, etc. Consequently, if m >
1, Fémfl’o)(u,w) = F,,_1(u,w) for all (u,w) € R?, and Fo(m’o)(u,w) =
F,,(u,w) for a.e. u € R and every w € R

Further, in the case —¢ < a < b < cand |w|+ n|y| < ¢,

|F1(b,w) = Fr_1(a,w)| =

B O Y T P
0 0 a

< M.(b—a)lnl".

Hence F,—1(-,w) € AC)oc(R) for every w € R.
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By identity (4) of [5], p.116,
AT f(,y) = TAY AL f(2,)) = AL Fo(z,y) =
:/0 /0 Fém’o)(x+81+~~~+sm,y)d81~'~dsm =

A A
:/ / Fm(l'+51+"'+Sm,y)d81"'d8m
0 0

for arbitrary z,y, A\,n € R. Thus

AKf’n”f@,y)/oA.../OA{/O"...

n
. / f(m’") (x+s1++Sm,y+t1+-- -+tn)dt1...dtn}dsl...dsm.
0

Observing that
AR (sy) = AT (AR () =
LU e
X P (@4 8y 4o+ Sy + H +~~+tn)dt1~~dtn}d51~~~dsm
and applying the generalized Minkowski’s inequality, we obtain (6). O
Estimate (6) immediately implies
W1 (81,025 fp < 6785 Wk 1 (01, 825 fU™ ™), for 61,8 >0. (7)

Proposition 3. Let (fo, f1,...,fp) be a system of (complex-valued) func-
tions of two real variables, such that f, € Li,c(R?) (p € N) and, for

j=1,...,p,
fo—i(@,y) = foj(2,0) + fr—5(0,4) — f,—;(0,0) +

T Yy
[ ]ty duds itz 2o
0 0

fo—j(2,0), fo—;(0,y) are defined for all real x,y and, when j < p, f,—;(-,0),
fo—j(0,-) € Lioe(R). Suppose that the integer k is greater than or equal to
p. Then, for all \,n € R

IAX Follp < [XalPIAYZ 7 fllp- (8)
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Proof. Given arbitrary z,y, A\,n € R, we have

11 z+y y+n
Ay foxy / / 1(s,t)dsdt =

/ / Ji(x + s1,y +t1) dsydty,

A22foxy / / A (x+s1,y+t1)dsidty =

A n
:/ / / / folx + 514+ 82,9+t +t2)d82dt2}dsldt1, ete.
0 Jo o Jo

Therefore

Ak kfo(fl? y) = Akip’kip(ﬁp’pfo(xay)) =

L e

Xfolx +s14+-+spy+ti+-- p)dslmdspdtlmdtp
This immediately implies estimate (8). [
From (8) it follows that
Wk (01,025 f0)p < (0102) wi—p k—p(61, 023 fr)p 9)
for all non-negative numbers 4§y, ds.
3. Basic properties of the Bernstein singular integrals. Consider

the entire functions g,, G, of exponential type of positive order o, with
positive integer parameters r, k given by

9o(2) i= G sin %:) ;o Gok(Q) = i(—l)“;(Dga(i)

Write

o [ ) [ ()

Suppose that f = f(-,-) is a (complex-valued) function defined and mea-
surable on R2?, such that

|f (u,v)]|
I(f) —//R2 T 02 1+v2T)dUdU<OO' (10)
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Take arbitrary 7 > 0, I € N and complex numbers z; = x1 + Y1, 20 =
o +1y2 (Tm, Ym € R). Introduce the singular integrals

Torlf] (21, 22) =(r0r) " / [ H0:0)Go i1 = 0)Griea = ) dude, (11)
T 0) =gt /R f,0)Gor( —w)du (e R), (1)

Plflw ) =70 [ f@o)Grta-o)dv we k), (13)
R

which are due to S.Bernstein ([1], pp.421-432).

The double integral (11) exists in the Lebesgue sense for all complex
21, z2; the single (Lebesgue) integrals (12) and (13) exist for every complex
z1 [resp. 23] and almost every real v [resp. u]. More precise assertions will
be presented below.

Proposition 4. The relation
Jo o[ f1(21, 22) = ()((1 +22) (1 + x%r)60|y1|+‘r|yz|](f)) (14)

holds uniformly in x1,y1,x2,y2 € R; moreover, J, -[f] coincides with some
bivariate entire function.

Proof. Putting

S(erz) = [[ | Fuvigean = ulg (2 = o) dud,

we can, formally, write

z1+1 12+1
x, x1+1 m2+1

I2+1
/ / flu,v)g5(21 — u)gr (22 —v) dudv =
z1+1 Jxo
= TO(251722) + T1<251722) + To(z1,22) + - -

In view of (10), f € Ljoc)R?). Hence the term Tp(21, 22) exists because
Jo € Ey, g € E.. Furthermore,

z1+1 rz+1 o\2r T\ 2r
|To (21, 22)| < (u,v) ) e”lyll(—) emlv2ldy dv <
o 2r 2r
1

r r1+1 xro+
(ﬂ 2 eolyrl+Tlya| / ' / ’ |fu,v)] dudv -
— \4r2 o wp1 (LHu?)(1+02)

AL+ (Jo | + 1 2T}{1+ (lzo| + 1)} <

oT\ 2"
<4 2L aly1|+7]y2| 2r 2r
<4(75) e 1(£) (21| + D (fas| + 1)
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Next
o0 o0
Ty (21, 72) < / / 1 11, 0) 192 (g — )22 (2 —0) =" dudv <
r1+1Jzo+1

<€U|yl|+‘f|y2/ / |J;uv)‘ 5 dudv -
o141 Jagg1 (1 +u?7) (1 +v?7)

{1 + |$1‘ + 1 27‘}{1 + |£U2‘ + 1)2T} <
< 4T (] £ 1P (o] 4 1)

2r
|To (21, 22 |</ / flu,v)|e? Wil (2 —u)~ T(L) emlv2ldy dv <
1+l Jxo—1 2r

< 4(%) el v T(F)(|2y | + D)2 (|| + 1), ete.
Thus
S(z1,22) = O((1 + 23") (1 + a3")esIHrlvelr( 1)) (15)

uniformly in x1,y1,T2,y2 € R.
Evidently, the left-hand side of (15) can be replaced by

Sup(z1, 22) 1= //R2 f(u,v)g(,(Zl;u)gT(ZZV_U)dudv (u,v € N).

Further,

JJ,T[f](Zla ZQ

S () () s

707‘1’ 1—=1 uv

Therefore, the uniform relation (14) is established. Applying the Lebesgue
dominated convergence theorem, it can easily be proved that the function
Jo.r|f] is continuous at every point belonging to the space of pairs of com-
plex numbers.

The (Lebesgue) integrals

/_ / fuvga 1_U)gr<22y—v>dudv (u,v,n € N)

define some entire functions F}, , ,, of two complex variables 21, z1, because
they have the partial derivatives

BF;;” (#1,22) /_n _nfu vgg( 1_u)gT<22V_v)dudv

OF l,n — —
OFwwin (1 2) / fuvga(1 D) (20 du o
82’2 —nd—n 14

and
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An easy calculation shows that lim, . Fj, vn(21,22) = S),.(21,22) uni-
formly in z1, zo belonging to two arbitrary bounded sets of complex num-
bers. Hence the well-known Weierstrass theorem ensures that all S, , are
entire functions of two variables. Consequently, J, -[f] is a bivariate entire
function for every fixed pair (o, 7) of positive numbers. Obviously, in view
of (14), Jo - [f1(-,-) € Es-. O

Proposition 5. The singular integral (12), with a positive parameter o,
has the following basic properties:

(i) JLHf1(-,v) € E, for almost every v € R,

(ii) JL[f](21,") € Lioe(R) for every complex 21,

(ii)) J5[f](,-) € Lioc(1?).

Proof of (i). By Fubini’s theorem, condition (10) implies

’/ flu d‘<oo and / Mdu<oo
Coo LU

for almost every v € R. Hence, for these v and z; = z1 + iy,

@M(zl,v)z/oo ’f(u,v)g(,(Zl_ )‘du<oo (n=1,...,k)

and
Y(zl,v)z/ fu,v)Go (21 — w)du =
R
N (R [T nouy
7;( UMM(M) /mf(u’v)g”( p >d'
Writing

x1+1
zZ1 —
SOIL 21,V / / / ‘fuvga<
x1+1

and proceeding as in the proof of Proposition 4, we obtain

Y

21,0) = z%T elo/mlul u, v W27 du
eu(e1.0) = O((1+ 2t [ [fu o)l +42) Mdu)  (16)

uniformly in x1,y1,v. This immediately implies the O-relation for Y (z1,v),
in which the right side is as in (16) with g = 1.

Further, Y (-, v) are entire functions, by the Weierstrass theorem. Conse-
quently, Y (-,v) € E, for almost every v. Thus the assertion (i) is
obtained. O
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Proof of (ii). Given u,n € N and any complex number z; = z1 + iy, we

have
5131+1 20
/ / (u,v) ) e?lvil/ iy dv +
x1—1 2r
K olyil/n
+/ / +/ / flu,v)|| —— ) eV Fdudv < oo.
( —00 -n z1+1 —n)‘ ( )|<m1—u)

Applying Fubini’s theorem we conclude that Y (z1,:) € Ljo(R), which
implies (ii). O
Proof of (iii). Let pu,n € N, 1 € R. By Tonelli’s theorem,

[ L
/_n / / uvlga )dudu}dx1 (17)

The inner double integral of the right-hand side of (17) does not exceed

/jﬁ_l/_n f(u,v) 1") Tdudv—i—
+( [ il () <

r ntl n
27’ ’ / / |f (w,v)|du dv + 2p" (1 +n)?") (1 + n?")I(f).

n—1

flu vg(7 u)’dudvﬁ

uvgg

u) ’dudv dry =

Thus the left-hand side of (17) is finite.

Now, the Fubini theorem ensures that Y(-,-) € Lj,.(R?), and (iii)
follows. O

Analogous properties of the singular integral (13) can easily be formu-
lated. They will also be used in the sequel.

4. Approximations by the sums of pseudoentire functions. Let
f and the operators J, -, JL, J? be as in Section 3. Putting

(I)(Zh U) = _JJ,T[f](Zh 'U) - J;[f](zlv U)v
U(u, z) = J2[f)(u, 22),
where z1 = x1 + iy1, 22 = T2 +iy2 (;,y; € R), and u,v € R, it can easily
be observed (see Propositions 4,5) that ®(-,-) € W}, ¥(-,-) € W2.
Introduce the approximant Qo . [f](z1, z2) := ®(x1, 22)+¥(x1, 22), which
is defined almost everywhere on R? and Qo -[f] € Lioc(R?). Assuming that
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k1 <2r—2(kl,r € N)and 1 < p < oo, we will present some Jackson
type estimates.

In discussions below, the symbols Cj(g, ...) will mean positive constants
depending on the indicated parameters g, ..., only.

Theorem 1. Under the restriction 0 < 0,7 < 0o, we have

If = Qorlfllp < 2" CrL(rwra (10, 1/73 f)p-

Proof. Take into account the real numbers z1, x5 for which J[f](-, 22) € E,,
J2[f](z1,-) € E,. In this case,

$17$2 Qor[f](thfz) =
k+l

_ //R ELF (1, 22) g0 (3)g- (1) ds dt. (18)

Yo VT

Hence, by Minkowski’s inequality and (5),
70’77”]0 - Qa,‘r[.ﬂ”!’ S
<onat/o1/7i 1)y [[ (@15l + 04t + 190 (5190 (1) d .
R2

Further,

1 2 Ve
— [l V(s as < {2t [ gus)ds+
Yo JR 0

o

—|—2kak/ skgg(s) ds} < 2’“{1 + —Uk/ sk_QTds} <
1/o Yo 1/c
< 2’“{1 + 302“1}.
Yo

Observing that
2r—1 [7/2 9\ 2r 2r—1
) [ )
2r 0 7T mr

i ols ko (s)ds k mr)2r—1
%/R< 5]+ 1)*gp(s) ds < 21+ (mr)> 1},

we obtain

Thus

Hf - QJ,T[f]Hp < wk,l(l/a', l/r;f)p . 2k+l{1 + (7_(_,,,)27"71}2’

and the proof is complete. [
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Corollary 1. Let f satisfy all conditions of Proposition 2, with some
positive integers m < k, n < 1. Then

1f = Qorlf1llp < 2" CL(r)o ™™ 7 "W mma-n(1/0, 1/ 75 F7),

This estimate is an immediate consequence of Theorem 1 and inequality

(7)-

Corollary 2. Consider the bivariate functions fo, f1,...,f, defined in
Proposition 3, with fo(,0), fo(0,?) € Lioe(R) and f,—;(+0), fo—;(0,)€ C(R)
when 1 < j < p—1. Suppose that for some non-negative numbers a,b <
2r —p—1and for j =1,...,p the relations

F(a.y) = O((1+ 2 (1 + [y]")).
foi(@,0) = O(1+ |2 ™), f,5(0,9) = O(1 + [y["*))

hold uniformly in x,y € R. Then if k =1 > p, the function f = fy and its
approzimant Q, »|f] have weak derivatives of order p—1 everywhere on R*
and

11

;7 ;7 fp)p

for p =0,....,p—1. Under the additional assumption f, € C(R?), also

the derivatives f*) and Q,(fpl [f] exist on R? and the last inequality remains
valid for = p.

| £ — ijﬂl [Flllp < Colk,r)(0T) " Pwi—ptpih—pns

Indeed, an easy calculation shows that

F9z,y) = fu(z,y) and QV[fl(z,y) = Qo ful(z,y)
for all (z,y) € R?, whenever 0 < < p—1or u=pand f, € C(R?). By
Theorem 1 and a suitable estimate analogous to (9), we obtain
1fi = Qorlflllp < Colk, P)wr 1 (1/0,1/75 fu)p <
< Cok,r) (o) " Pwr—ptpk—ptn(1/0,1/75 fo)p 0 < < p.

The conclusion is now evident.

Theorem 2. Let f € Hgf;lf’)p, where @, are as in Section 1. Denote

by a and B two non-negative numbers such that t=*o(t), t=P(t) are non-
decreasing on (0,1]. Then, for o,7 > 1,

1f = Qo LAIES, < O3k, L)1) {oe(1/0) + 7P4(1/7)}.
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Proof. Write Dy 1 (,3) = f(2,4)— Qs [f)(#,y) (z,y € R) In view of (18),

1
AR Dy (x,y) = X
xoDer(2:9) Yorr
l
// 9o (5)g-(t ZZ ”*”( ><V>A§,’§f(x+u/\,y+un)d5dt

pn=0rv=0

for all A\, € R and almost all (z,y) € R?; whence, by Minkowski’s inequal-

ity,
el 2k+l
HAA:,,DU,TII_ // 90(8)gr ()| AR} f||,ds dt.

Proceeding now as in the proof of Theorem 1, we obtain

AN, Doz llp < A OV (IFIS) 0 (1/0) 6 (1/7). (19)

On the other hand, equality (18) leads to

1
AizlnDa,T(xvy) = Yo yr X
kool Nz
<[] a3 S (1) () Ak st s+ viasa
R? pn=0r=0 H v ’
for almost all (z,y) € R?, which implies
1A% Do rlly < 21 e (V) when An e (0,1). (20)
Next, || Dy, \((lkﬁlp = sup {Q(A\,n) : 0 < A\,p < 1}, where Q(\,n) =
A% /BHAA Dorllp- f1/o < XA < 1and 1/7 < n <1 then, by (19),

Q()\,n) < 4 (MIFI%D 5201 /o) 849 (1/7). From (20) it follows that

sowpg ¥
)
QA m) < 2HFIIC), <
o%o(1/o)mPy(1/7) f0<A<1/o, 0<n<1/7,
xS o%p(1/0) ifo<A<1/o, 1/7<n<1,
P(1/7) ifl/o<A<1,0<n<1/T.
Hence
1Do 185 < 211G {2 Cr(r)o o1 /o) P 1/ 7) +

+0%p(1/0)PY(1/7) + 0%p(1/o) + TPp(1/7)},
and the proof is completed (cf. [4], Theorem 2). O
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Corollary 3. If ¢(8) = 6, ¢(8) = 67 for all & € (0,1] then, in the
case &' > a>0and 8> 06>0, ||f — Qor[f] (akﬁl)p O(ao‘—f—Tﬁﬁ)
uniformly in o, 7 > 1.
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