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LIMIT BEHAVIOR OF SOLUTIONS OF ORDINARY
LINEAR DIFFERENTIAL EQUATIONS

FRANTIŠEK NEUMAN

Abstract. A classification of classes of equivalent linear differential
equations with respect to ω-limit sets of their canonical representa-
tives is introduced. Some consequences of this classification to the
oscillatory behavior of solution spaces are presented.

1. Introduction

Many authors dealt with the behavior of solutions of differential equations
to the (mostly right) end of the interval of definition – the limit behavior
(often considered for the independent variable tending to ∞). Asymptotic,
oscillatory and other qualitative properties of solutions of linear differential
equations were intensively studied e.g. by N.V.Azbelev and Z.B.Caljuk [1],
J.H.Barrett [2], G.D.Birkhoff [3], O.Bor

◦
uvka [4], W.A.Coppel [5], M.Greguš

[6], G.B.Gustafson [7], M.Hanan [8], I.T.Kiguradze and T.A.Chanturia [9],
G.Sansone [14], C.A.Swanson [15], and many others.

The aim of this paper is to introduce a certain classification of the limit
behavior of solutions of linear differential equations, a classification which
is invariant with respect to the most general pointwise transformations of
these equations. This classification has natural consequences to the oscil-
latory and asymptotic behavior of solutions. The main tool is based on
the geometric approach introduced in [11] which enables us to convert some
”non-compact” problems into ”compact” ones. This method was applied
for solving some open problems [12], and it has recently been explained
systematically in detail together with other methods and results concerning
linear differential equations in the monograph [13].

1991 Mathematics Subject Classification. 34A26, 34A30, 34C05, 34C10, 34C11,
34C20.

315



316 FRANTIŠEK NEUMAN

2. Background and preliminary results

Let Cn(I) denote the set of all functions defined on an open interval
I ⊆ R with continuous derivatives up to and including the order n. For
n ≥ 2, let Ln stand for all ordinary linear differential equations of the form

Pn ≡ y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y = 0 on I,

I being an open interval of the reals, pi are real continuous functions defined
on I for i = 0, 1, . . . , n− 1, i.e. pi ∈ C0(I), pi : I → R.

Consider Qn ∈ Ln,

Qn ≡ z(n) + qn−1(t)z(n−1) + · · ·+ q0(t)z = 0 on J.

We say that the equation Pn is globally equivalent to the equation Qn if
there exist two functions,

f ∈ Cn(J), f(t) 6= 0 for each t ∈ J, and

h ∈ Cn(J), h′(t) 6= 0 for each t ∈ J, and h(J) = I,

such that whenever y : I → R is a solution of Pn then

z : J → R, z(t) := f(t) · y(h(t)), t ∈ J, (1)

is a solution of Qn.
Let y(x) = (y1(x), . . . , yn(x))T denote an n-tuple of linearly independent

solutions of the equation Pn considered as a column vector function or as
a curve in n-dimensional euclidean space En with the independent variable
x as the parameter and y1(x), . . . , yn(x) as its coordinate functions; MT

denotes the transpose of the matrix M .
If z(t) = (z1(t), . . . , zn(t))T denotes an n-tuple of linearly independent

solutions of the equation Qn, then the global transformation (1) can be
equivalently written as

z(t) = f(t) · y(h(x)) (1′)

or, for an arbitrary regular constant n× n matrix A,

z(t) = Af(t) · y(h(x)) (1′′)

expressing only that another n-tuple of linearly independent solutions of the
same equation Qn is taken.

Denote the n-tuple v = (v1, . . . , vn)T ,

v(x) := y(x)/‖y(x)‖,

where ‖y(x)‖ := (y2
1(x) + · · ·+ y2

n(x))1/2 is the euclidean norm of y in En.
It was shown (see [11] or [13]) that v ∈ Cn(I), v : I → En, and the Wronski
determinant of v is different from zero on I. Of course, ‖v(x)‖ = 1, i.e.
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v ∈ Sn−1, where Sn−1 is the unit sphere in En. Denote by Tn the differential
equation from Ln which has this v as its n-tuple of linearly independent
solutions. Evidently Tn is globally equivalent to Pn. Moreover (see again
[11] or [13]), if

u(s) := v(g(s)),

where the function g satisfies

g(s) : J → I ⊆ R, g(J) = I, |(g−1(x))′| = ‖v′(x)‖

for the inverse g−1 to g, and hence g ∈ Cn(J), g′(s) 6= 0 on J , we have
‖u′(s)‖ = 1, i.e. this u is the length reparametrization of the curve v. Of
course, ‖u(s)‖ = ‖v(g(s))‖ = 1. If Rn denotes the differential equation
admitting u as its n-tuple of linearly independent solutions on J ⊆ R, then
the above considered equation Pn is globally equivalent both to equation Tn

and to Rn; equation Rn is also called the canonical equation of the whole
class of equations from Ln globally equivalent to Pn. Canonical equations
are characterized by admitting n-tuples of linearly independent solutions u
satisfying

‖u(s)‖ = 1, ‖u′(s)‖ = 1;

for more details see [13].
The following result describes the connection between the behavior of

curves y, v and u and the zeros of solutions of the corresponding equations
Pn, Tn and Rn, see [11] or [13].

Proposition 1. Let Pn, Tn and Rn be equations from Ln, and let y,
v and u denote their n-tuples of linearly independent solutions defined as
above. For an arbitrary nonzero constant vector c = (c1, . . . , cn)T , the
solution cT y(x) of the equation Pn has the zero at x0 if and only if the
hyperplane

H(c) ≡ c1ξ1 + · · ·+ cnξn = 0 in En

intersects the curve y at the point of the parameter x0.
Moreover, the solution cT v(x) of the equation Tn has the zero at x0 if

and only if the great circle H(c) ∩ Sn−1 intersects the curve v at the point
of the parameter x0. And the solution cT u(s) of the equation Rn has the
zero at s0 = g−1(x0) if and only if the great circle H(c) ∩ Sn−1 intersects
the curve u at the point of the parameter s0.

In each of the above cases, the order of contact corresponds to the multi-
plicity of zero.
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3. Classification of ω-limit behavior

We have seen that a class of globally equivalent equations from Ln is
characterized by curve v ∈ Sn−1, having coordinates in Cn with the nonva-
nishing wronskian. Since the sphere Sn−1 is compact, the ω-limit set of v,
denoted by ω(v), is nonempty, closed and connected, see e.g. [10]. Exactly
one from the following cases occurs:

a1: ω(v) is a point p ∈ Sn−1, i.e. a connected subset of the inter-
section of a 1-dimensional subspace with Sn−1;

a2: ω(v) ⊆ (Sn−1 ∩ E2), where E2 is a 2-dimensional subspace of
En, and the case a1 is not valid;

. . .
ai: ω(v) ⊆ (Sn−1 ∩ Ei), where Ei is an i-dimensional subspace of
En, and neither from the above cases is valid;

. . .
an−1: ω(v) ⊆ (Sn−1 ∩ En−1), and neither from the above cases
holds;

an: neither from the above cases is valid.
We will consider also the following subcases of the cases ai for i = 1, . . . , n:

a0
i : if the case ai is valid and ω(v) ⊆ S0

n−1, where S0
n−1 is an open

hemisphere of Sn−1.
Evidently the case a1 coincides with a0

1.

4. Main result

Theorem. Consider an equation Pn from Ln; let Tn and Rn be equations
defined as in §2, and y, v and u denote their n-tuples of linearly independent
solutions. Let ω(v) and ω(u) be the ω-limit sets of v and u, respectively.
If, for some i, the case ai is valid for v (or for u), then the same case holds
for every equation globally equivalent to Pn. Moreover, if the subcase a0

i is
valid for some i, then the same subcase is true for every equation globally
equivalent to Pn.

Proof. Suppose first that the case ai is valid for Pn ∈ Ln. First it means
that ω(v) ⊆ Sn−1 ∩ Ei for v := y/‖y‖. Then for each z,

z(t) := Af(t) · y(h(t)),

obtained by a global transformation (1′′), we have

ω(z/‖z‖) = ω(Af · y(h)/‖Af · y(h)‖) ⊆ Sn−1 ∩ (AEi),

where AEi is again an i-dimensional subspace of En. Moreover, if ω(z/|z|) ⊆
Sn−1 ∩ (AEj) for some j < i, we would get the contradiction to our sup-
position. Hence the case ai is valid for every equation from Ln globally
equivalent to Pn.
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Now suppose that the subcase a0
i is valid for Pn, that means that ω(v) ⊆

S0
n−1 ∩Ei for v := y/‖y‖. Then for each z, z(t) := Af(t) · y(h(t)), we have

ω(z/‖z‖) ⊆ Ŝ0
n−1 ∩ (AEi), where Ŝ0

n−1 = {s; s = Ar/‖Ar‖, r ∈ S0
n−1} is

again an open hemisphere in En and AEi is an i-dimensional subspace of En.
Hence the case a0

1 is valid for every equation from Ln globally equivalent to
Pn. �

Remark 1. This theorem also shows that we may speak about the above
cases and subcases with respect to a given equation and not only with res-
pect to a particular n-tuple of its solutions, because, due to an arbitrary
matrix A in (1′′), these cases and subcases are characterized by the proper-
ties which are invariant with respect to a choice of an n-tuple of linearly
independent solutions of the considered equation.

5. Consequences

Oscillation or nonoscillation will be always considered with respect to the
right end of the definition interval of a considered equation.

Corollary 1. (Oscillatory behavior of solutions). If the case a1 is valid
for Pn ∈ Ln, then there do not exist n linearly independent oscillatory
solutions (for t → b−) of Pn. Moreover, there exist n linearly independent
nonoscillatory solutions of Pn as (t → b−).

Proof. Let Pn be a given equation, and y denote an n-tuple of its linearly
independent solutions. Suppose that there exist n linearly independent os-
cillatory solutions of Pn. Then, due to Proposition 1, there are n great
circles on Sn−1, not containing a common point, each of them being inter-
sected by v = y/‖y‖, or equivalently, by u (see notation in §2) at points
with infinitely many parameters to the right end of the interval of definition.
Hence on each of these great circles there is at least one point belonging to
ω(v) (ω(u)). Under our assumption, the case a1 is valid for Pn, i.e. ω(v)
is a single point, say p on Sn−1. Thus this point must be common to n
considered circles, which is a contradiction to the linear independence of
the solutions. Hence there do not exist n linearly independent oscillatory
solutions of Pn.

Now choose n independent vectors c1, . . . , cn in En such that the hy-
perplanes H(ci), i = 1, . . . , n do not go through the point p. Then each
solution cT

i ·y(x) is nonoscillatory. In fact, if cT
i ·y(x) were oscillatory, then

y/‖y‖∩H(ci) would be an infinite sequence on the great circle Sn−1∩H(ci)
that should have an accumulation point in ω(y/‖y‖) = p, contrary to our
choice of the hyperplanes. �
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Corollary 2. (Asymptotic behavior of solutions). If the case a1 is valid
for equation Pn from Ln, then Pn admits an n-tuple y∗ = (y∗1 , . . . , y∗n)T of
linearly independent solutions such that

lim
x→b−

y∗1
√

(y∗1)2 + · · ·+ (y∗n)2
= 1

and

lim
x→b−

y∗i
√

(y∗1)2 + · · ·+ (y∗n)2
= 0 for i = 2, . . . , n.

Proof. In the case a1 we have limx→b− y(x)/‖y(x)‖ = p, p being a point
on Sn−1. Choose an n-tuple of orthonormal vectors c1, . . . , cn, where c1 :=
p, otherwise arbitrary. Denote by C the orthogonal matrix (c1, . . . , cn).
Define y∗i := cT

i · y, i.e. y∗ = CT · y. Then

lim
x→b−

y∗1/‖y∗‖ = lim
x→b−

cT
1 y

‖yT CCT y‖
= cT

1 · lim
x→b−

y/‖y‖ =

cT
1 · p = cT

1 · c1 = 1

and for i = 2, . . . , n,

lim
x→b−

y∗i /‖y∗‖ = lim
x→b−

cT
i y

|yT CCT y|
= cT

i · lim
x→b−

y/‖y‖ =

cT
i · p = cT

i · c1 = 0. �

Corollary 3. If the second order equation

y′′ + p1(x)y′ + p0(x)y = 0 on I = (a, b), −∞ ≤ a < b ≤ ∞ (2)

is nonoscillatory (for x → b−), then the case a1 is valid for (2). If the
equation (2) is oscillatory (for x → b−), then the case a2 holds for (2). The
subcase a0

2 cannot occur.

Proof. For two linearly independent solutions y1, y2 of equation (2), y =
(y1, y2)T , the curve v = y/‖y‖ is an arc on the unit circle S1 in the plane
E2. Due to Proposition 1, if equation (2) is oscillatory for x → b−, then
this arc v infinitely many times encircles the origin (without turning points,
see [13]), and hence ω(v) is exactly S1. If equation (2) is nonoscillatory for
x → b−, then the arc v ends by approaching a point on S1, exactly its
ω-limit set, and the case a1 holds for (2). �

Corollary 4. If the case aj is valid for an equation Pn for some j > 1,
then there exist n linearly independent oscillatory solutions of Pn.
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Proof. In the case aj for some j > 1, the set ω(v) contains two different
points on Sn−1, say p1 and p2. Evidently, there exist n hyperplanes H(ci),
i = 1, . . . , n, in En with linearly independent vectors c1, . . . , cn, each of
them separating points p1 and p2 into opposite open halfspaces of En, i.e.
cT

i p1 > 0 and cT
i p2 < 0 for each i = 1, . . . , n. Hence, due to Proposition 1,

each solution cT
i y(x) oscillates for x → b−, because the curve v intersects

infinitely many times the hyperplane H(ci) as x → b−. �

Remark 1. As an immediate consequence of this corollary we may state:
If equation Ln does not admit n linearly independent oscillatory solu-

tions, then the case a1 is valid for it. In particular, if each solution of
equation Pn is nonoscillatory, then the case a1 takes place for Ln.

Corollary 5. If, for some i = 1, . . . , n, the case a0
i is valid for equation

Pn, then there exist n linearly independent nonoscillatory solutions of Pn.

Proof. Let y denote an n-tuple of linearly independent solutions of Pn.
Under our assumption, ω(y/‖y‖) lies inside an open hemisphere of Sn−1

determined by a hyperplane H(p). Evidently pT y(x) is a nonoscillatory
solution. Moreover, ω(y/‖y‖) is closed, and hence there exists an neigh-
bourhood N of the point p ∈ Sn−1 such that H(q)∩ω(y/‖y‖) = ∅ for each
q ∈ N . If we take n linearly independent vectors (points) q1, . . . ,qn from
N , then

yi := qT
i y, i = 1, . . . , n,

are required nonoscillatory solutions. In fact, if one of these solutions were
oscillatory, then, again due to Proposition 1, the corresponding hyperplane
would intersect the curve y (or equivalently y/‖y‖) infinitely many times.
Hence this hyperplane would contain at least one point in ω(y/‖y‖), con-
trary to our choice of the above hyperplanes. �

Remark 2. Comparing Corollaries 4 and 5 we see that in the case a0
i with

i > 1 for Ln, this equation admits both an n-tuple of oscillatory solutions
and, at the same time, another n-tuple of nonoscillatory solutions.

Remark 3. Also other (e.g. topological) properties of ω(v) that are in-
variant with respect to the centroaffine transformations can be considered
for introducing other, more detailed classifications of the classes of equiva-
lent linear differential equations from Ln.
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6. Examples

1. The differential equation

y(n) = 0 on (0,∞)

has n linearly independent solutions: xn−1, xn−2, . . . , 1. For this equation
the case a1 holds, no solution is oscillatory and

lim
x→∞

xn−1
√

∑n−1
j=0 x2j

= 1,

lim
x→∞

xn−2
√

∑n−1
j=0 x2j

= 0, . . . , lim
x→∞

1
√

∑n−1
j=0 x2j

= 0,

in accordance with Corollary 2 and Remark 1.
2. The equation

y′′′ + 2y′′ + 2y′ = 0 on (0,∞)

admits the solutions: 1, e−x sin x, e−x cos x. For this equation the case a1

is valid. There are two linearly independent oscillatory solutions as x →∞,
there are no three linearly independent oscillatory solutions. This equation
admits three linearly independent nonoscillatory solutions, and

lim
x→∞

1√
1 + e−2x

= 1, lim
x→∞

e−x sin x√
1 + e−2x

= 0, lim
x→∞

e−x cos x√
1 + e−2x

= 0,

as Corollaries 1 and 2 state.
3. However, the equation

y′′′ − 2y′′ + 2y′ = 0 on (0,∞)

admits the solutions: 1, ex sinx, ex cos x; the corresponding ω-limit set is
a great circle on the sphere S2 in E3 and hence the case a2 is valid for
it. However, the subcase a0

2 does not take place. Except of the constant
solutions, each other solution is oscillatory (as x →∞), see Corollaries 4,5
and Remark 2.
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