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LINEAR DYNAMICAL SYSTEMS OF HIGHER GENUS

V. LOMADZE

Abstract. A class of linear systems which after ordinary linear sys-
tems are in a certain sense the simplest ones, is associated with every
algebraic function field. From the standpoint developed in the paper
ordinary linear systems are associated with the rational function field.

§ 0. Introduction.

As is well known, there is a close relationship between linear systems and
the rational function field. The subject of the paper is to study new linear
systems which are closely connected with arbitrary algebraic function fields.

The idea of introducing linear systems of ”higher genus” is due to R.Her-
mann [7]. He tries to describe them in terms of linear spaces of infinite
dimension. Our approach is different and uses vector bundles (of finite
rank) over algebraic function fields.

In what follows we shall assume that the reader is familiar with the
elementary concepts of commutative algebra such as a discrete valuation,
a Dedekind domain, a maximal ideal, an exact sequence of modules and a
localization. In the appendix we give all necessary concepts and facts from
the theory of algebraic function fields.

Throughout the paper, k will denote a ground field, and m and p input
and output numbers, respectively. We fix once and for all:

an algebraic function field R over k;
a discrete valuation v of R trivial on k and such that its residue field

coincides with k;
a function s such that v(s) = −1.
The simplest example (?) is given by the following data:
R = k(z) where z is an indeterminate;
v = discrete valuation determined by the formula v(f/g)=deg g − deg f

if f, g ∈ k[z], g 6= 0;
s = z.
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Let X denote the set of all places of R. Recall that each place x gives
a discrete valuation ordx of R trivial on k, and that this correspondence is
bijective. Denote by ∞ the place corresponding to v and call it the infinite
place. Let O denote the standard vector bundle over R. For any divisor D
the associated vector bundle is denoted by O(D). For each integer n let us
write O(n) instead of O(n∞). Let A denote the ring of functions which are
regular outside from ∞. This is a Dedekind domain. Its maximal ideals are
in the one-to-one correspondence with places distinct from ∞. Finally, let
K denote the divisor of the differential ds and g the genus of R.

We define a linear system over (R, v, s) as a quintuple (V, E , θ, B, C)
consisting of a linear space V over k, a vector bundle E over R, a morphism
θ : O ⊗ V → E and linear maps B : km → H0E(−1), C : V → kp. It is
required that the following conditions hold:

(1) H1E(K) = 0;
(2) θ induces a bijective linear map V → E(∞);
(3) the canonical map H0O(K)⊗V ⊕H0O(K)m → H0E(K) is surjective.
It is the goal of the paper to show that this definition should lead to an

interesting theory.
Let us see what linear systems are in the example (?). We have: K =

−2∞, H0O(−2) = H1O = 0. So the conditions (1) and (3) can be rewritten
as H1E(−2) = 0 and H0E(−2) = 0, respectively. Vector bundles with the
above properties and linear spaces (of finite dimension) are made equivalent
by the functors E → H0E(−1) and W → O(1) ⊗W . Next, giving a mor-
phism θ : O ⊗ V → O(1)⊗W is equivalent to giving a pair of linear maps
E, A : V → W . It follows that in the case of (?) a linear system can be
described in terms of linear algebra, namely, as a sextuple (V, W,E, A, B, C)
where V and W are finite-dimensional linear spaces, E : V → W is a bijec-
tive linear map and A : V → W , B : km → W , C : V → kp are arbitrary
linear maps. It is easily seen that such sextuples are equivalent to ordinary
linear systems. (The equivalence is established by

(V,W,A, E, B, C) −→ (V, E−1A,E−1B, C). )

Thus linear systems associated with (?) and ordinary linear systems are the
same thing.

The paper is organized as follows.
In §1 we define controllability, observability, transfer functions and Mar-

tin–Hermann sheaves. Here we also introduce a category Σ whose objects
are triples (F , D, N) consisting of a coherent sheaf F generated by global
sections, a morphism D : Om → F such that D(∞) : km → F(∞) is a
bijection and a morphism N : Op → F such that N(∞) : kp → F(∞) is
zero.

In §2 we prove that the category of linear systems is equivalent to the
opposite category of Σ. This means that a linear system can be defined as an
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object of Σ.1 From this we easily derive Kalman’s theorem on realization.
In §3 we define a feedback equivalence and prove the Martin-Hermann

theorem which says that two linear systems are feedback equivalent if and
only if their Martin–Hermann sheaves are isomorphic. Then we discuss the
pole-placement theorem. Unfortunately, we prove it for one input linear
systems only.

§ 1. Linear Systems

In this section we do not impose the third condition on linear systems.
So by a linear system here we shall mean a quintuple (V, E , θ, B, C) where V
is a linear space, E is an effective vector bundle such that H1E(K) = 0, θ is
a morphism of O ⊗ V into E such that the linear map θ(∞) : V → E(∞) is
bijective, B is a linear map km → H0E(−1) and C is a linear map V → kp.

1. Let σ = (V, E , θ, B, C) be a linear system.

Definition. We define the rank of σ as the rank of E or, what is the
same, as the dimension of V . We define the McMillan degree of σ as the
degree of E .

Definition. The characteristic sheaf of σ is defined to be the cokernel
of θ.

If C denotes the characteristic sheaf of σ, then, by definition, one has an
exact sequence

0 −→ O ⊗ V −→ E −→ C −→ 0. (1)

Definition. The state sheaf of σ is defined to be C(K), and the pole
sheaf of σ is defined to be Ext1(C,O).

Observe that to give a linear map km → H0E(−1) is to give a morphism
Om → E , which induces a zero map on the reduced stalks at infinity. (This
follows from the exact sequence 0 → H0E(−1) → H0E → E(∞).) Likewise,
to give a linear map V → kp is to give a morphism O ⊗ V → Op. For
this reason we shall use the same letters B and C for the corresponding
morphisms.

One defines morphisms of linear systems in the obvious way.
2. Let σ = (V, E , θ, B, C) be a linear system.

Definition. If x is a finite place, then we say that
(a) σ is reachable at x if rk[θ(x)B(x)] = dim V, i.e. if the morphism

[θ B] : O ⊗ V ⊕Om −→ E

1Such a definition was in fact the starting point of the paper. One immediately comes
to it through Corollary 4 of Theorem 1 from [10].



508 V. LOMADZE

is surjective at x;
(b) σ is observable at x if

rk
[

θ(x)
C

]

= dim V,

i.e. if the morphism
[

θ
C

]

: O ⊗ V −→ E ⊕Op

is left invertible at x.
Because θ is bijective at one place, namely at infinity, it should be bijec-

tive at all but finitely many places. This implies, in particular, that every
linear system is reachable (observable) at all but finitely many places.

For each N ≥ 0 put Ω(−N) = H0O(K + (N + 2)∞). We then have a
composition series

H0O(K) ⊆ Ω(0) ⊆ Ω(−1) ⊆ Ω(−2) ⊆ · · · .

Let Ω = ∪Ω(−N). Ω consists of the sections of O(K) over the affine
open set X − {∞}, and therefore, is a projective A-module of rank 1. All
successive quotients in the above series are one dimensional linear spaces.

Example. For (?) we have: H0O(K) = 0 and Ω(−N) = {the space of
polynomials in s of degree ≤ N}. Therefore Ω = k[s].

Set Γ = R/Ω. This is an injective A-module. We have

R/H0O(K) ⊇ R/Ω(0) ⊇ R/Ω(−1) ⊇ R/Ω(−2) · · ·

and Γ = ∩R/Ω(−N).
Following R.Kalman we call Ωm the input module and Γp the output

module.
Now let C, S and P denote the characteristic, the state and the pole

sheaves of σ, respectively. These three sheaves may be regarded as A-
modules of finite length because their supports do not contain ∞.

Tensoring the morphism [θ B] by O(K), we obtain a morphism O(K)⊗
V ⊕ O(K) → E(K). This gives a morphism Om(K) → S and hence a
homomorphism of A-modules

I(σ) : Ωm −→ S.

Further, dualizing
[

θ(K)
C

]

, we obtain a morphism E∗⊕Op → O⊗ V ∗.

This gives a morphism Op → P and hence a homomorphism of A-modules
Ap → P . Applying now the functor HomA(·, Γ), we get a homomorphism

O(σ) : S −→ Γp.
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We call I(σ) the input homomorphism and O(σ) the output homomor-
phism of σ.

Proposition 1. Let σ be as above and x be a finite place. Then
(a) σ is reachable at x if and only if I(σ) is surjective at x.
(b) σ is observable at x if and only if O(σ) is injective at x.

Proof. (a) To say that I(σ) is surjective at x is equivalent to saying that
the morphism Om → C is surjective at x. The assertion follows now from
the commutative diagram

0 Ox ⊗ V Ex Cx 0

Om
x

6

- - - -

�
��3

having an exact row.
(b) σ is observable at x if and only if the morphism [θ∗ C∗] is surjective at

x. From this, as above, it follows that a necessary and sufficient condition for
σ to be observable at x is that the homomorphism Op

x → Px be surjective.
Since Px is an Ox-module of finite length, this homomorphism gives rise to
a homomorphism Ôp

x → Px where ˆ denotes the adic completion. Moreover,
the surjectivity of the first one is equivalent to that of the second one. Now
applying the functor Hom(·, R/Ωx), we complete the proof. (Recall that
the above functor is exact, and by the local duality

Hom(Px, R/Ωx) = Sx and Hom(R/Ωx, R/Ωx) = Ôx.

See [5].)

3. Let us call a function f ∈ R strictly proper if ord∞(f) > 0.

Definition. A transfer function is a (p × m)-matrix whose entries are
strictly proper functions.

A transfer function may be identified with a homomorphism Om
∞ → Op

∞
which takes values in tOp

∞.
Let σ = (V, E , θ, B, C) be a linear system. We have a sequence of O∞-

homomorphisms

Om
∞

B−−−−→ E∞
θ−1

−−−−→ O∞ ⊗ V C−−−−→ Op
∞.

Since B(∞) : km → E(∞) is zero, the composed linear map

km B(∞)−−−−→ E(∞)
θ−1(∞)−−−−−→ V C−−−−→ kp

is also zero. This implies that the above composed homomorphism is a
transfer function. We denote it by T (σ) and call the transfer function of σ.
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4. Let Σ denote the category of triples (F , D, N), where F is a globally
generated coherent sheaf of rank m, D is a morphism of Om into F such
that D(∞) : km → F(∞) is bijective, and N is a morphism of Op into
F such that N(∞) : kp → F(∞) is zero. Morphisms of this category are
defined in the obvious way.

Definition. Let σ = (V, E , θ, B, C) be a linear system. We let MH(σ)
denote the cokernel of the morphism

[

θ∗

B∗

]

−→ O ⊗ V ∗ ⊕Om

(which is clearly injective) and call it the Martin–Hermann sheaf of σ. Next,
we let D(σ) denote the canonical morphism Om → MH(σ) and call it the
denominator of σ. Finally, we let N(σ) denote the composition of C∗ and
the canonical morphism O⊕ V ∗ → MH(σ), and call it the numerator of σ.

Definition. Let σ be a linear system. Put FR(σ)=(MH(σ), D(σ), N(σ))
and call it the fraction representation of σ.

It is easily seen that FR is a contravariant functor from the category of
linear systems to the category Σ.

Let σ = (V, E , θ, B, C) be a linear system and let FR(σ)=(F , D, N).

Proposition 2. The McMillan degree of σ is equal to degF .

Proof. The proof follows immediately from the exact sequence

0 −→ E∗ −→ O ⊗ V ∗ ⊕Om −→ F −→ 0. � (2)

Proposition 3.The pole sheaf P of σ is canonically isomorphic to coker D.

Proof. Dualizing (1) we get an exact sequence

0 −→ E∗ −→ O ⊗ V ∗ −→ P −→ 0.

From this and from (2) follows the statement.

Proposition 4. Let x be a place. Then
(a) σ is reachable at x if and only if F is locally free at x.
(b) σ is observable at x if and only if the morphism [D N ] is surjective

at x.

Proof. (a) We have an exact sequence

0 −→ E∗x −→ Ox ⊗ V ∗ ⊕Om
x −→ Fx −→ 0.

σ is reachable at x if and only if the linear map E∗(x) → k(x)⊗V ∗⊕k(x)m

is injective. Hence, the assertion follows from Proposition 6 of [2], Ch.2, §3.
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(b) Let P be the pole sheaf. From the proof of Proposition 1 we know
that σ is observable at x if and only if Op

x → Px is surjective. So, the
assertion follows from the commutative diagram

Om
x Fx Px 0

Op
x

6
�

�
�>

- - -

having an exact row.

Proposition 5. The transfer function of σ is equal to N∗
∞ ◦D∗−1

∞ .

Proof. Let L denote the canonical morphism O⊗V ∗ → F . Using the exact
sequence

0 −→ E∗∞ −→ O∞ ⊗ V ∗ ⊕Om
∞ −→ F∞ −→ 0,

one easily verifies that D∞ ◦ B∗
∞ ◦ θ∗−1 = L∞. It follows from this that

B∗
∞ ◦ θ∗−1 ◦ C∗∞ = D−1

∞ ◦N∞.

§ 2. Realization Theorem

Lemma 1. Let (V, E , θ, B,C) be a linear system and F be its Martin–
Hermann sheaf. Then dim V ≤ dim H0F(−1).

Proof. By Serre’s duality, H0E∗ = H1E(K) = 0. Hence, from (2) we get an
exact sequence

0 −→ V ∗ ⊕ km −→ H0F .

The map V ∗ → H0F must have its image in H0F(−1) because the com-
posed map V ∗ → H0F → F(∞) is zero. Consequently, we have a canon-
ical injective linear map V ∗ → H0F(−1). Furthermore, the composition
km → H0F → F(∞) is bijective.

Lemma 2. Under the notations of the previous lemma the following con-
ditions are equivalent:

(a) dim V = dim H0F(−1);
(b) the map H0O(K)⊗ V ⊕H0O(K)m → H0E(K) is surjective;
(c) the canonical sequence H0O(K)m → H0S → V → 0, where S is the

state sheaf, is exact.

Proof. It follows from the proof of the previous lemma that (a) is equivalent
to the bijectivity of the linear map V ∗⊕km → H0F . On the other hand, by
Serre’s duality, (b) is equivalent to the injectivity of the linear map H1E∗ →
H1O⊗V ∗⊕H1Om. So, the equivalence (a) ⇔ (b) follows immediately from
the cohomological exact sequence

0 −→ V ∗ ⊕ km −→ H0F −→ H1E∗ −→ H1O ⊗ V ∗ ⊕H1Om,



512 V. LOMADZE

which can be derived from (2). The equivalence (b) ⇔ (c) follows immedi-
ately from the exact cohomological sequence

0 −→ H0O(K)⊗ V −→ H0E(K) −→ H0S −→ V −→ 0

induced by the exact sequence

0 −→ O(K)⊗ V −→ E(K) −→ S −→ 0. �

In what follows we restrict attention only to linear systems which satisfy
the equivalent conditions of the previous lemma, i.e. to linear systems
defined as in Introduction.

Theorem 1. The functor FR establishes an equivalence of the category
of linear systems with the category Σop.

Proof. Let (F , D,N) be an object of Σ. Since F is generated by global
sections, we have, in particular, an exact sequence

0 −→ H0F(−1) −→ H0F −→ F(∞) −→ 0.

Because the composed map

km −→ H0F −→ F(∞)

is bijective, this exact sequence splits canonically, i.e. there is a canonical
isomorphism H0F ' H0F(−1)⊕ km. Furthermore, because N(∞) is zero,
the map H0N takes values in H0F(−1).

Now put
Φ(F , D,N) = (V, E , θ, B,C), where V = (H0F(−1))∗, E = (ker(O ⊗

H0F → F))∗, θ is the canonical morphism O ⊗ V → E , B is the canonical
linear map km → H0E and C is the dual map to kp → H0F(−1). It is easy
to see that this is a linear system.

Clearly, Φ is a contravariant functor from the category Σ to the category
of linear systems, and one checks without difficulty that FR and Φ are
inverse to each other.

Corollary (Kalman’s theorem on realization). The assignment
σ → T (σ) induces a bijective correspondence between the isomorphism classes
of canonical linear systems and the transfer functions.

(The sense of the word ”canonical” is evident.) To prove the corollary
we need one lemma.

Let q = m+p. Let Grassm(Rq) be the set of m-dimensional subspaces in
Rq and let LFQm(Oq) be the set of locally free quotients of Oq of rank m.
The elements of Grassm(Rq) may be identified with the equivalence classes
of (m×q)-matrices of rank m with entries in R. (Two such matrices M1 and
M2 are equivalent if M2 = GM1 for some G ∈ GL(m,R).) The elements of
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LFQm(Oq) may be identified with the isomorphic classes of pairs (F , f),
where F is a vector bundle of rank m and f is an epimorphism of Oq onto
F . (Two such pairs (F1, f1) and (F2, f2) are isomorphic if f2 = φ ◦ f1 for
some isomorphism φ : F1 → F2.)

Lemma 3. There is a natural bijection between the sets Grassm(Rq)
and LFQm(Oq).

Proof. Let F be a nondegenerate (m × q)-matrix with elements in R and
let f1, . . . , fq be its columns. Define a vector bundle F by the formula

F =
(

Rm,
(

q
∑

i=1

Oxfi
))

.

Clearly, all fi ∈ H0F . Hence, we may view the matrix F as a morphism
Oq → F (of course, surjective). If now F ′ = GF , where G ∈ GL(m, R),
and F ′ is the corresponding vector bundle, then G clearly defines an iso-
morphism of F onto F ′ such that the diagram

Oq

F

F ′
?

Q
Q

QQs

����*

commutes.
Thus we have a well-defined map from Grassm(Rq) to LFQm(Oq).
Conversely, let F = (F, (Fx)) be a vector bundle of rank m, and let

f : Oq → F be an epimorphism. We then have a surjective R-linear map
Rq → F . The image of the dual linear map is a linear subspace in Rq (=
Rq×1) of dimension m. By the ”transposing” of this one we get an element
in Grassm(Rq). It is obvious that if we take a pair isomorphic to (F , f),
we shall come to the same element.

So we have a map from LFQm(Oq) into Grassm(Rq).
It is not hard to verify that the above two maps are inverse to each

other.

Proof of the corollary. First note that by

T −→ [I T ∗] mod GL(m,R),

where I is the identity (m×m)-matrix, one can identify transfer functions
with some elements from Grassm(Rq).

Now let T be a transfer function. Let F be the vector bundle correspond-
ing to [I T ∗] as in the proof of the previous lemma, and let D : Om → F
and N : Op → F be the morphisms determined by the matrices I and T ∗,
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respectively. Clearly, F∞ = Om
∞, D∞ = I and N(∞) = 0. So, (F , D,N) is

a linear system. The proof now can be easily completed.

§ 3. Feedback

By a linear system in this section we shall mean a quadruple (V, E , θ, B)
where V is a linear space over k of finite dimension, E is a vector bundle
over R such that H1E(K) = 0, θ is a morphism O ⊗ V → E such that the
induced map V → E(∞) is bijective, and B is a linear map km → H0E(−1).
We shall assume that the equivalent conditions of Lemma 2 hold. It follows
from the proof of Theorem 1 that such a linear system can be defined as a
pair (F , f) where F is a globally generated coherent sheaf and f : Om → F
is such that f(∞) : km → F(∞) is bijective.

1. Definition. Two linear systems (V1, E1, θ1, B1) and (V2, E2, θ2, B2)
are said to be feedback equivalent if there exist an isomorphism φ : E2 → E1,
a bijective linear map α : V2 → V1, a linear automorphism β : km → km

and a linear map L : V2 → km such that

θ2 = φ−1θ1α + φ−1B1L and B2 = φ−1B1β.

Theorem 2 (Martin–Hermann). Two linear systems are feedback
equivalent if and only if their Martin-Hermann sheaves are isomorphic.

Proof. Let σ1 = (V1, E1, θ1, B1) and σ2 = (V2, E2, θ2, B2) be linear systems,
and let F1 and F2 be their Martin–Hermann sheaves, respectively.

Suppose that σ1 and σ2 are feedback equivalent. By definition, we then
have a commutative diagram

E∗1 −−−−→ O ⊗ V ∗
1 ⊕Om

φ∗




y





y

E∗2 −−−−→ O ⊗ V ∗
2 ⊕Om

[

α∗ L∗

0 β∗

]

where φ, α, β and L are as above. Since the vertical arrows here are isomor-
phisms, this diagram yields an isomorphism F1 ' F2.

Conversely, suppose that F1 and F2 are isomorphic, and let ψ be any
isomorphism of F1 onto F2. We then have a commutative diagram

O ⊗H0F1 −−−−→ F1

H0ψ





y





y
ψ

O ⊗H0F2 −−−−→ F2.

Since H0F1 ' V ∗
1 ⊕ km and H0F2 ' V ∗

2 ⊕ km, we can find linear maps
α : V2 → V1, β : km → km, L : V2 → km and G : km → V1 such that
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[

α G
L β

]

is nonsingular and the following diagram

[

α∗ L∗

G∗ β∗

]

O ⊗ V ∗
1 ⊕Om −−−−→ F1




y





y
ψ

O ⊗ V ∗
2 ⊕Om −−−−→ F2

is commutative. This diagram can be extended to the commutative diagram

E∗1 −−−−→ O ⊗ V ∗
1 ⊕Om −−−−→ F1

φ∗




y





y





y
ψ

E∗2 −−−−→ O ⊗ V ∗
2 ⊕Om −−−−→ F2

,

where φ is an isomorphism of E2 onto E1. We thus have

[θ1α + B1L θ1G + B1β] = [φθ2 φB2].

It remains to show that G = 0. By the above equality,

θ1(∞)G + B1(∞)β = φ(∞)B2(∞).

Since B1(∞) and B2(∞) are zero, we obtain from this that θ1(∞)G = 0;
whence G = 0.

2. Let F be a globally generated coherent sheaf of rank m which is
nonsingular at infinity. Given an effective divisor D, which does not contain
∞, one can ask whether there exists an injective morphism f : Om → F
such that χ(coker f) = D. (Note that such a morphism will necessarily be
bijective at infinity.) This is the pole placement problem (PPP).

Lemma 4. Let f : Om → F be an injective morphism, where F is a
coherent sheaf of rank m. Let T be a torsion subsheaf of F and F1 =
F/T . Then χ(coker f) = χ(coker f1)+χ(T ), where f1 denotes the canonical
morphism from Om to F1.

Proof. We have a commutative diagram

0 −→ 0 −→ Om −→ Om −→ 0




y





y





y

0 −→ T −→ F −→ F1 −→ 0

Applying Proposition 2.10 of [1], we get an exact sequence

0 −→ T −→ coker(f) −→ coker(f1) −→ 0.

By Proposition 6.9 of [1] from this follows the lemma.
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The above lemma means in particular that ”one cannot change the un-
reachable modes by feedback”. One sees also that it reduces the PPP to
the case when F is a vector bundle.

Observe that if F is a vector bundle of rank m and f is an injective
morphism of Om into F , then the class of the divisor χ(coker f) is equal to
the Chern class of F .

Thus, the PPP for a globally generated vector bundle F of rank m can
be posed in the following way: Given an effective divisor D which does not
contain ∞ and is such that cl(D) = ch(F), does there exist an injective
morphism f : Om → F with χ(coker f) = D?

Example. Consider the case (?). For this case the homomorphism deg:
Cl(R) → Z is an isomorphism. Hence, the Chern class of a vector bundle can
be identified with its degree. Next, effective divisors supported in X −{∞}
can be identified with monic polynomials in s. Let now F be a vector bundle
of rank m and degree n. The PPP takes the form: Given a polynomial P in
s of degree n, choose a morphism f : Om → F such that f(∞) is bijective
and χ(coker f) = P . Notice that the sheaf coker f being finite and with
support in X −{∞} can be identified with a finite k[s]-module or, which is
the same thing, with a pair (V, F ), where V is a linear space over k and F is
an endomorphism of V . Clearly, χ(coker f) = the characteristic polynomial
of F .

We do not know if the answer to the PPP is always affirmative. But we
have the following

Theorem 3. The PPP has a solution in the case of one input.

Proof. See Proposition 7.7 in [6], Ch.2. Here is another proof. By hypoth-
esis, the sheaves O(D) and F are isomorphic. Hence the sheaves O and
F(−D) also are isomorphic. The sheaf F(−D) is a subsheaf of F , since D
is effective. Thus, there exists a monomorphism f : O → F whose image is
F(−D). We have: coker f = F/F(−D). Because F is locally free of rank
1, it follows that coker f ' O/O(−D); whence χ(coker f) = D.

The following lemma may be helpful when one attempts to solve the
PPP.

Lemma 5. Let F be a globally generated vector bundle of rank m. Let
O → F be an injective morphism such that its cokernel F1 is a vector
bundle too. (Such a morphism always exists.) Assume that the canonical
map H0F → H0F1 is surjective. If the PPP is solvable for F1, then it is
solvable for F as well.

Proof. Let D be an effective divisor such that ∞ 6∈ Supp D and cl(D) =
ch(F). Clearly, ch(F1) = ch(F). According to our assumption there exists
an injective morphism f1 : Om−1 → F1 such that χ(coker f1) = D. Since
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H0F → H0F1 is surjective, f can be lifted to some f : Om → F . We then
have a commutative diagram

0 −→ O −→ Om −→ Om−1 −→ 0

id





y
f





y
f1





y

0 −→ O −→ F −→ F1 −→ 0.

One can derive easily from it an isomorphism coker f ' coker f1.

Remark. From the above lemma one can deduce at once the classical
result on state feedback. Indeed, let g = 0. Let O → F be any injective
morphism with a locally free quotient F1. We then have an exact sequence

0 −→ O −→ F −→ F1 −→ 0

which yields an exact sequence of cohomologies

H0F −→ H0F1 −→ H1O.

Since H1O = 0, we find that the additional condition of Lemma 6 holds
automatically. By the induction argument we obtain the desired result.

Appendix

Here we give a brief review of the theory of algebraic function fields (in
one variable). For additional information, see [3,4,6,11,12]. (Recall that
algebraic function fields are equivalent as objects to nonsingular complete
irreducible algebraic curves.)

In what follows, k is a ground field.
An algebraic function field over k is a finitely generated extension of k of

transcendence degree 1 or, which is the same thing, a finite extension of a
field isomorphic to the rational function field over k in one indeterminate.

Let R be such a field. For simplicity assume that it is separable over k.
A place of R is an equivalence class of nontrivial absolute values of R

trivial on k. (Recall that two nontrivial absolute values | |1 and | |2 of
a field are said to be equivalent if they induce the same topology. It is
not hard to prove that this holds if and only if | |2 = | |λ1 for some λ >
0. See [8], Ch.XII, Prop.1.) Denote the set of all places by X. There
is a one-to-one correspondence between the places of R and the discrete
valuations of R trivial to k. A discrete valuation corresponding to a place
x is denoted by ordx.

A function f ∈ R is said to be regular at a place x if ordx(f) ≥ 0.
The set of regular functions at x, denoted by Ox, is a discrete valuation
ring. The residue field k(x) of Ox is a finite extension of k; one denotes
its degree by d(x). A place x is said to be rational if d(x) = 1. An affine
set is a complement to a nonempty finite set of places of X. If U is an
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affine set, then the ring of regular functions on U is a Dedekind domain. Its
maximal ideals are in a natural one-to-one correspondence with the places
in U . The affine sets together with the empty set and the whole space form
a topology on X. A constant is a rational function which is algebraic over
k or, equivalently, which is regular everywhere. The constants form a finite
extension of k. If R possesses at least one rational place, then the constant
field coincides with k.

A divisor is an element of the free abelian group Div(R) generated by
places. There is an evident partial order on divisors. One says that a divisor
D is effective if D ≥ 0. If f is a rational function 6= 0, then ordx(f) = 0 for
almost all x, and therefore [f ] =

∑

ordx(f)x is a divisor. It is called the
principal divisor belonging to f . The quotient group of Div(R) modulo the
principal divisors is called the divisor class group and is denoted by Cl(R).
For any divisor D =

∑

n(x)x one puts deg D =
∑

n(x)d(x). Clearly,
deg : Div(R) → Z is a homomorphism. An important fact is that the degree
of a principal divisor is zero. This makes possible to define deg : Cl(R) → Z.

The space of differential forms of R over k is a ”universal” R-linear space
Ω(R/k) equipped with a k-linear map d : R → Ω(R/k) satisfying the condi-
tion d(fg) = f dg+g df ; f, g ∈ R. Since R/k is a finitely generated separable
extension of transcendence degree 1, this is a linear space of dimension 1.

Let ω be a nonzero differential form. If x is a place and if π is a uni-
formizer at x, then ω = f dπ for some f ∈ R. Put ordx(ω) = ordx(f). This
definition does not depend on choosing π. For all but finitely many places
x one has: ordx(ω) = 0. Therefore the formal sum [ω] =

∑

ordx(ω)x is a
divisor. It is called the divisor associated to ω.

A vector bundle E = (E, (Ex)) of rank r consists of a linear space E over
R of dimension r and of a ’coherent’ system (Ex) of Ox-lattices in E (i.e.
of free Ox-submodules of E of maximal rank). The coherence means that if
(e1, . . . , er) is a basis of E, then Ex = Oxe1 + · · · +Oxer for almost every
x. (See [12], Ch.6.) The elements of E are called the rational sections of E .
The elements of Γ(E) = ∩Ex are called the global sections. The simplest
example of a vector bundle is O = (R, (Ox)).

A morphism of a vector bundle (E, (Ex)) into a vector bundle (F, (Fx) is
a linear map θ : E → F over R such that θ(Ex) ⊆ Fx for each x.

Let E = (E, (Ex)) be a vector bundle of rank r. Let e1, . . . , er be lin-
early independent rational sections of E . For each place x choose any basis
(ex1, . . . , exr) of Ex and put [e1, . . . , er]x = ordx(det(aij)), where aij ∈ R
are defined by exi =

∑

aijexj . This is an integer which does not depend
on choosing (ex1, . . . , exr). Clearly, [e1, . . . , er]x = 0 for almost every x.
Therefore [e1, . . . , er] =

∑

[e1, . . . , er]x · x is a divisor. The class of this
divisor is independent of e1, . . . , er. This is the Chern class of E denoted
by ch(E).
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A vector bundle of rank 1 is called a linear bundle. If D =
∑

nx · x is a
divisor, we have a linear bundle O(D) = (R, ({f | ordx f ≥ −nx})). Every
linear bundle is isomorphic to O(D) for some D. Note that if L is a linear
bundle, then L ' O(D) if and only if ch(L) = cl(D).

A finite sheaf is a collection of Ox-modules Mx of finite length such
that Mx = 0 for almost all x. The characteristic divisor of a finite sheaf
M = (Mx) denoted by χ(M) is defined as the divisor

∑

length(Mx)x.
We are going now to define sheaves and their cohomologies. We shall

do this under the hypothesis that we are given a fixed nonconstant rational
function s.

Let U1 and U2 be the sets where s and s−1 are respectively regular. These
are affine sets, and they cover the whole of X. Denote their intersection
by U and put: A1 = O(U), A2 = O(U2) and A = O(U). A sheaf is a
quintuple (M1,M2,M, r1, r2) where M1,M2 and M are modules over the
rings A1, A2 and A, respectively, and r1 : M1 → M and r2 : M2 → M
are homomorphisms over A1 and A2, respectively. It is required that the
canonical homomorphisms

A⊗A1 M1 −→ M and A⊗A2 M2 −→ M

be isomorphisms. Here are

Examples. 1) Let (E, (Ex)) be a vector bundle. Then
(

⋂

x∈U1

Ex,
⋂

x∈U2

Ex,
⋂

x∈U

Ex, j1, j2
)

,

where j1 and j2 are the canonical inclusions, is a sheaf.
2) Let (Mx) be a finite sheaf. Then

(

⊕
x∈U1

Mx, ⊕
x∈U2

Mx, ⊕
x∈U

Mx, r1, r2
)

,

where r1 and r2 are the obvious restriction maps, is a sheaf.
3) Let E be a linear space over R. Then (E, E,E, id, id) is a sheaf. We

shall denote it simply by E.
A sheaf is said to be coherent if the modules M1 and M2 are of finite type.

It is said to be locally free if these modules are projective, and is said to be
torsion if they are torsion modules. One can identify coherent locally free
sheaves with vector bundles (see Example 1)), and coherent torsion sheaves
with finite sheaves (see Example 2)).

For each sheaf F one defines in the obvious way the space of global
sections Γ(F), the stalk Fx and the reduced stalk F(x) at a point x, the
support SuppF and the rank rk(F). (See, for example, [9], §1.1.) One
defines in the standard way subsheaves and quotient sheaves, morphisms,
kernels, cokernels and images of morphisms, various operations on sheaves
(direct sums, direct limits, tensor products, sheaves Hom, dual sheaves),
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exact sequences of sheaves. For a sheaf F and a divisor D one usually
writes F(D) for F ⊗ O(D). One defines (as in [9], §1.1, for example) the
functors Exti(·,O), i = 0, 1.

If V is a linear space V over k of finite dimension and F is a coherent
sheaf, then Hom(O ⊗ V,F) = Hom(V, Γ(F)). In particular, one has a
canonical morphism O ⊗ Γ(F) → F . If this morphism is surjective, one
says that F is generated by global sections.

If φ : F → G is a morphism, then for each point x one has a homomor-
phism φx : Fx → Gx and a linear map φ(x) : F(x) → G(x).

For each sheaf F = (M1,M2, M, r1, r2) we introduce k-linear spaces
C0F = M1 ⊕M2 and C1F = M , and define k-linear map d : C0F → C1F
by the formula d(m1,m2) = r1(m1) − r2(m2). We denote the kernel and
cokernel of this map by H0F and H1F , respectively, and call them the
0-dimensional and 1-dimensional cohomology spaces of F , respectively.

Clearly, H0 and H1 are functors. Here are their principal properties:
(a) For each exact sequence of sheaves 0 → F1 → F → F2 → 0 there is

an exact sequence of cohomologies

0 −→ H0F1 −→ H0F −→ H0F2 −→ H1F1 −→ H1F −→ H1F2 −→ 0;

(Moreover, this cohomological sequence is functorial).
(b) H0 and H1 commute with direct limits;
(c) H0F = Γ(F) for each F ;
(d) H1F = 0 for each finite F ;
(e) H1R = 0.
(a) follows from Proposition 2.10 of [1]. Other properties are obvious.

It is not difficult to prove that the above properties determine H0 and H1

uniquely.
The following is the basic result on cohomologies.

Finiteness theorem. If F is a coherent sheaf, then hiF = dim HiF <
+∞.

The genus of the curve is the number g = h1O.
The degree of a coherent sheaf F is defined by the formula degF =

h0F − h1F − rk(F)(1− g). The degree is an additive function. This means
that if 0 → F1 → F → F2 → 0 is an exact sequence of coherent sheaves,
then degF = degF1 + degF2.

Note that if M is a finite sheaf, then degM = deg χ(M).
For vector bundles we have the famous

Riemann-Roch theorem. If E is a vector bundle, then deg E =
deg ch(E).

Let K be the divisor of the differential ds. If E is a vector bundle, set
Ě = E∗(K). Clearly, ˇ̌E = E . We finish with the following important result.
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Serre’s duality theorem. For every vector bundle E there is a nonde-
generate canonical pairing H0Ě ×H1E → k.
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