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FRACTIONAL TYPE OPERATORS IN WEIGHTED
GENERALIZED HOLDER SPACES

S.G. SAMKO AND Z.U. MUSSALAEVA

ABSTRACT. Weighted Zygmund type estimates are obtained for the
continuity modulus of some convolution type integrals. In the case
of fractional integrals this is strengthened to a result on isomorphism
between certain weighted generalized Holder type spaces.

1. INTRODUCTION

A great number of results is known concerning boundedness of convolu-
tion type operators in spaces of summable functions, including the weighted
case. In the spaces of continuous functions such as H§ (p) the convolution
type operators are less investigated. The goal of this paper is to fill a gap
to a certain extent in investigations of such a kind.

We consider here the Volterra convolution type operators

Kgp:/k(x—t)tp(t) dt, a<z<b, (1.1)

in the weighted generalized Holder spaces H§ (p) (see definitions in Sec.2),
—00 < a < b < 0o. The kernel k(z) is assumed to be close in a sense to a
power function.

The result of the type

K Hg (p) — Hy (p) (1.2)

for certain characteristic functions w(h) and wy(h) was earlier known in the
case of the power kernel k(z) = 27!, 0 < a < 1, and a power weight
function p(t). We deal here with arbitrary kernels and weights, i.e. not
necessarily power ones.

We introduce a certain class V) of kernels and the class w,, of weight
functions for which we manage to give the weighted Zygmund type estimate,
that is, to estimate the modulus of continuity w(pKy, k) by the modulus of
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continuity w(py, h). This estimate provides the general result of the type
(1.2).

In the case of purely power kernel, i.e. in the case of the fractional
integration operator

x

IS o= ﬁ /(x 1) pt)dt, 0<a<l, (1.3)

a

the result (1.2) is extended to isomorphism:

a+[HG (p)] = Hg* (p) (1.4)

with wy (h) =h*w(h). This is achieved by the preliminary derivation of Zyg-

mund type estimate for fractional differentiation. The latter is treated in a

difference form due to A.Marchaud [9] and G.H.Hardy and J.E.Littlewood [2]:
(See [17], Sec.13, in this connection.)

. B f(x) o [ @) f®)
Pas @) = v e —ar T T - a) / w—nire (1)

O<a<l.

The paper is organized as follows. In Sec.2 we give necessary prelim-
inaries. Sec.3 contains Zygmund type estimates for the operator (1.2) in
the case of kernels in V) in the non-weighted case first (Theorem 1) and
afterwards in the weighted case (Theorem 2). In Theorem 3 we give con-
ditions of Zygmund-Bari-Stechkin type on a characteristic function w(h)
guaranteeing the result (1.2) for k(z) € V) and weighted functions in w,,.
The characteristic function wy (k) in (1.2) proves to be equal to hk(h)w(h).
We note corollary of Theorem 3 for k(z) =z~ (In2)%, v > b—a.

In Sec.4 we establish the weighted Zygmund type estimate for Dg,
with a weight function in w, (Theorem 4). We prove the assertion Dg, :
H§ (p) — Hy = (p) with w_4(h) = h~®w(h) under appropriate assumptions
on w(h) and p(z) (Theorem 5).

As a corollary of Theorems 3 and 5 we give conditions for validity of the
second index law of E.R.Love within the framework of the spaces Hg (x#)

Finally, in Sec.5 we prove the isomorphism (1.4) (Theorem 6).

Presented theorems generalize the results of the papers [10]-[12],[18],
where the power case for both k(z) = 27! and p(z) = (z — a)* was
considered. The presentation of the results of [10] in the non-weighted case
can be also found in [18], Sec.13. Note that in [12] the case p(z) = (x —
a)*(b— z)¥ was also considered, not contained in the results of the present
paper. The origin of the statement (1.4) is the classical result by G.H.Hardy
and J.E.Littlewood [2] for the fractional integration concerning the case
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w(h) =h*, p(z) =1, a+ X < 1. (As for the case w(h) = [[,_, |z — zg|*,
see [13] and [17]. Sec.13.)

We also note the papers [4], [5] where Zygmund type estimates are given
for the fractional integrodifferentiation in the case of L,-moduli of continu-
ity.

The question we finally note as open is whether I, [H§ (p)] = Hg (p) in
the case of purely imaginary «, under the appropriate assumptions on w(h)
and p(z). We refer to the paper [7] by E.R.Love concerning such fractional
integrals (see also [17], Sec.2, n’4).

2. PRELIMINARIES

We follow the papers [14], [15] in the definitions below.

Definition 1. We say that ¢(x) € W, = W,([0,1]) if ¥(x) € C([0,1]),
P(0)=0, ¥(x) > 0 for x > 0, 1(x) is almost increasing, while ¢ (x)/z" is
almost decreasing and there exists a constant ¢ > 0 such that

U(@) — )| ()

= . 2.1
— 2 = max(a,) 1)

We remind that a non-negative function ¥(z), 0 < z <1, 0 <l < oo, is
called almost increasing (decreasing) if ¥(z) < cyp(y) for all x < y (z > y,
resp.), this notion being due to S.Bernstein.

Definition 2. We say that ¢(z) € Wy if ¢(x) € W), and ¢(z)/zH~° is
almost increasing for all £ > 0.

We shall also need the following modification of the Definition 2.

Definition 3. We say that a non-negative function k(x) on [0, ] belongs
to the class V), A > 0 if

i) k(z) £ 0, 2 k() is almost increasing and a:Ak‘(x)’m:O =0;

ii) there exists &, 0 < & < ), such that 2*~k(z) is almost decreasing;

iii) there exists ¢ > 0 such that

’k(x) ‘ < @)

Tr—y x*

, =¥ = max(z,y). (2.2)

Remark 1. 2*k(x) € Wy = k(z) € Vi and k(z) € V) = k(z) € W,.

Remark 2. If the almost monotonicity in Definitions 1 and 3 is replaced
by the usual monotonicity, then conditions (2.1) and (2.2) are satisfied au-
tomatically.

Indeed, let us prove e.g. (2.1), following [14]. If ¢(x)/x* is decreasing, so
that 1 — ¢(2)/@(y) < 1—a#/y* for y > x, then p(y) — p(x) < L= (y).
Since y* — o < c(y — x)y* 1, we obtain (2.1).

Definition 4 ([1]). A non-negative function ¢(¢) on [0,!] belongs to
Zygmund class Z = Z([0,1]) ffh W gt < ep(h), 0 < h < 1.
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Definition 5 ([1]). A non-negative function () belongs to Zygmund
class Z; = Z,((0,1)) if f,ﬁ @ dt < c@.

Definition 6. A function ¢(z) belongs to the generalized Holder space
H® = H¥([a, b)) if

def
w(p,h) = sup  sup  [p(z+1t) — @(x)] < cw(h), (2.3)
0<t<h z,z+t€[a,b]
where w(h) is a given positive function on [0,!], w(0) = 0; we set ||| g =
lelle 4 suppsolwle, h)/w(h)].

By Hy we denote the subspace of functions in H“ which vanish at x = a.

The function w(h) is called a characteristic of the space H*.

Definition 7. By H{(p) we denote the space of functions f(z) such
that p(z)f(z) € HE, |fllueep) = llpfllag, where p(z) is a non-negative
weight function.

In the sequel we shall use the following inequalities:

1) if w(¢p, h) is the continuity modulus (2.3), then

w(i’ ") < cw(i’ Do ¥ (2.4)
2)if 0 < a < 1, then
h
7h ’t
0
3) if ¥ (x) € W, then
V@) <e(T) vl 22y (2.6)

4) if (z) € W, with 0 < p < 1, then (2.1) holds with z* replaced both
by x and y:

bl =) 906)

T—y - oz

2.7
4= ) 00, 27
r—y |17y’
5) if k(z) € Vi, then
A
k@) < e(2) k), z<y, (2.8)
and there exists € > 0 such that
Y A—¢
k@) <e(2)" k), @2y (2.9)
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6) if A < 1, then

2t =y < el —y)y*t, 2>y >0, (2.10)

and if A > 0, then

2 — M <elx —y)z*t, 2>y >0. (2.11)

Lemma 1. Let k(x) € Vi, A > 0 and let w(z) > 0 be an almost increas-
ing function. Then w(x)k(x) < cfi Wdt for0<xz<l/2.

Proof. By (2.8) we have

. 1 2z
/w(t)tk(t) dthw(:ﬂ)x)‘k(x)/tflf,\ ch(ﬂf)xAk(x)/%:cw(x)k(x) -

x x x

3. MAPPING PROPERTIES OF CONVOLUTION OPERATORS IN THE SPACE
Hg (p)

The following theorem provides a Zygmund type estimate for the integral
(L.1).

Theorem 1. Let k(z) € Vi, 0 < A <1 and ¢(x) € C([a,b]), ¢(a) = 0.
Then

b—a
w(K ¢, h) < chk(h)w(p, h) + ch / w dt. (3.1)
h

Proof. Let a = 0 for simplicity. We denote g(z) = ¢(z) — »(0) and f(z) =
Jy k(z —t)g(t)dt. For all z,x + h € [0,b] we have

x

ﬂx+@—f@w3/m$fw—mmwa+Mﬁf

—h

—/[g(x—t) —g(a:)}k(t)dt—i—g(x)[/k(t+h)dt—/k(t)dt].
0 —h 0

So,

0
#o+ ) = F@)I < [lote 1)~ gkt + hyat| +
—h

x z+h

+] flate—)-g@) ko) - k(e+mlat] + |ote) [ ke)dt] = 41+ 404 4,
0 T
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Taking (2.8) and increasing of w(¢y,t) into account, we have for A;:

h

h
Alg/@@zwuhfoﬁgxw@%mkag/(ﬁ%?)ﬁﬁgdmuwwmy(3@
0 0

For Ao, applying (2.2) and (2.9), we obtain in the case h > a:

x

Ay < ch/ wdt < chk(h)hx—e/M —

t+h (t+ h)ITr—s
' o/h 1
= chk(h / f_fl’}ifte < chk(h / t+1 1+>\ e S
gzhkﬁwaiw,h) 0 (3.3)

In the case h < & we write Ay < foh + f}f = B; + B,. For B the estimate
(3.3) is valid, while for By we have

b
w(ep, t)k(t)
h

As regards Az, we have in the case h > x:

Ay < e b+ W)+ ) [ <

h
Sw@ﬁW@M/%Sw@M%W. (3.5)

If h < z, we use Lemma 1 to obtain

b b
@<w()Mm<m/ﬂﬁ¥@ﬂgm/%%ﬁ@ﬁ@@
h

x

Gathering all the estimates for A;, i = 1,2, 3, we arrive at (3.1). O

Theorem 2. Let k(xz) € V), 0 < XA < 1, p(x) = ¥(x —a), Y(x) € W,,
0 < pu<2. Assume that

i) p(x)p(x) € C(la,b]) and p(x)p(z)|,_, = 0;
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ii) fo t Yw(pp, t)dt < co, v = max(1,u). Then the following Zyg-
mund type estimate holds:

h
w(pKp, h) < chk(h /‘”"P’ dt + h/Mdt, (3.7)
0
fOo<pu<l+4+Xand

h

w(pKp, h) / (pp,t dt+h/ p‘P’)dt, (3.8)
0

fl+A<pu<2.
Proof. Let wo(z) = p(z)p(z) and a = 0 for simplicity. We have

x

@) (Kp)a) = [ ko= a0 + [ W k(e — Dpo(t)dt =
0

0
= fi(@) + fa(2).

Since o € C(]0,]) and ¢o(0) = 0, the first term f; () is covered by Theorem
1. To estimate w(fa, h) we represent the difference fo(x+h)— fo(x) as

x+h

fla+0) - h@) = | mekmh—wdw
+i Wath) - i) wo(t)k(z +h —t)dt +
(0

[ @) -v(t) )
+/W [k(z—t4h)—k(z—t)|po(t)dt = I, + I, + I.

Estimate for I;. A) Let 0 < p < 1 at first. Taking (2.4), (2.7) and (2.8)
into account, we have

x+h
Ll < / (x—i—h—t)k(x—i—th—t)w(goo,t)dt <

x+h h
t —_
< chk(h) / (‘Pot’ix < chk(h / d “’0’ (3.9)
T 0
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B) If 1 < p < 2, then by (2.4),(2.6) and (2.8) we obtain

h
<o [ Um0 ZDE T w0t g

(z + )P L z+t o
h h# 1
x+
< chk(h t)dt. 3.10
0

In the case h < x we derive from (3.10)

h h
L] < chk(h /x Hfod )t /“ o)t 0y
0 0
In the case h > x the inequality (3.10) yields
h h
| §chk(h)h“*1/ (JET;)Z _ < chik(h /“’ 0.0t g o)
0

So from (3.9), (3.11) and (3.12) there follows the estimate

w(<p0, t)dt

|Il| < Ch’yk(h‘) y V= ma’X(laM)' (313)

Tt~

Estimate for I,. A) Let 0 < p < 1. By (2.6) and (2.7) we have

x

k h—t t)dt
1| gch/ (z+ t)“’(‘”’ at (3.14)
0
In the case h < x we represent (3.14) as |I5] < f0h+f(r+h +f(m+h)/2 =
L+1)+1). 1t is clear that
/ d
t)dt
I, < chk(h)/%. (3.15)
0

Since x +h — ¢ >t in I}, we obtain

b
< ch/w. (3.16)
h
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Further, z + h —t <t in I}, so by (2.4)

k(z+h —t)w(pg,x + h—t)dt <

I/I/< h
=¢ x+h—t -

(z+h—t)/2
b

< ch/M. (3.17)

h

If h > x,then (3.14) immediately yields

h
t)dt
| < chk(h)/%. (3.18)
0
B) Let now 1 <y < 2. Taking (2.1) into account, we have
[ (z+h)"Ue(x + b — H)w(ipo, t)dt

0

Hence
h

1| < ch“k(h)/
0
in the case h > x. If h < x, we represent (3.19) as

w(po, t)dt
th

h (z+h)/2 z
|12|§/+ / + / = B; + By + Bs.
0 h (z+h)/2

Taking into account that x+h < 2(x+h—t) in By, in the case 0 < p—1 < A
we obtain

h
— )1 —
By < ch/ (x+h—1t) k(a;j— h —t)w(wo, t)dt <
0

h
< ch™k(h) / “’(‘p;’i;t)dt (3.20)
0
by (2.9). If p — 1 > A, the function t*~1k(t) is bounded. So

h
By < ch/M. (3.21)
tH
0
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Since z + h < 2(z + h — t) again, we have

(z+h)/2

_ \p—1 _
By < e / (z+h—t)kz+h—t)
tH
h
Here z + h — t > t, so that
/ k d
t t)dt
B, < ch/ ( )w(fo’ ) (3.22)
h
by (2.9),if p —1 < A. If u — 1 > A, by boundedness of t*~1k(t) we have
/ d
By < ch/ wito, (3.23)
i
h

To estimate Bs we notice that t > x4+ h —t in Bs. So by (2.4) we have

b
B3 < ch k(x—'—h_t)i("]jo’”;""h_t)dtgch/w,
€T —
w+h—t/2 h (3.24)

Thus, I, admits the estimate

h b
t)dt k(t t)dt
|Iz|gcmk(h):/W+ch/M, 7 =max(L, ),
0 b (3.25)

if u <14 X and

h b

t)dt t)dt

|I,| Sch/%—kch/% (3.26)
0 h

ifp>1+ A\
Estimate for I3. Let 0 < p < 1. By (2.2) and (2.4) we have

|I3| < ch/ k(z + h — t)w(po, t)dt
0

t

which coincides with the estimate in (3.14). If 1 < pu < 2, we derive from
(2.1),(2.2) and (2.6):

x

=1 — p—1 .
|13|§Ch/x k(x+h t)w(@mt)dtgch/(x—i—h) k(z+h—t)w(po, t)dt
0

tH tH '
0
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The latter coincides with (3.19). Gathering estimates for Iy, I and I3, we
obtain (3.7)-(3.8). O

Theorem 3. Let p(z) = Y(x —a), Y(x) € W,, 0 < p < 2, k(t) € Vi,
0 < A < 1. Assume that

) p<A+1;

i) ¢—maxOn=Ny(t) e Z, th(t)w(t) € Z;.
Then the operator K is bounded from Hg(p) into Hi*(p) with wx(h) =
hk(h)w(h).

Proof. Let f = K¢ with ¢ € H§(p) and let a« = 0. To prove that f €
Hi*(p) we remark at first that

b
/ wlpe:t) dt < oo, = max(1,p). (3.27)

tY
0

Therefore Zygmund type estimate (3.27) concerning the case 0 < p < 14+ A
holds which gives

h b
w(pfv h) h’yil w(t) 1 W(t)k(t)dt
WSW@HH&”{M(MO/ = dtJrk:(h)w(h)h/ - } (3.28)
Hence by the condition ii) we have

Jh
Pl < el o

(3.29)

It remains to prove that p(a:)f(x)|z:0 = 0. After the change of variable
t =x — &x we have

|900 x — x§)|k(x€)dg

p(@) S i
Since o (0) = 0, this yields
[ wlpol,1 -~ E)dg
w 4100 71
o) f(a)| < covta) [ LT EE, (3.30)
) Wz —ag)
According to (2.6) and (2.8) we see that
1
lo(2) f(2)] < cxk(z /“’gi”’l_ = cizk(z) >0 (3.31)
0
as ¢ — 0 in view of (3.27). So p(x)f(x)’xzo =0. O
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Corollary 1. The operator (1.1) with the kernel k(t) = t*~1(In )%,
b—a,0<a<1,8>0isbounded from HE (p) into Hy*" (p), where p(z)
Y(z —a), Y(z) € W, and wa, B(h) = w(h)h*(In 1)? under the assumption
that 0 < p < 2 — o and h~™®Or=Dy(h) € Z, h*(In 1)Pw(h) € Z;.

v

In the case ¥ (z) = 2* and w(h) = h* the assertion of Corollary 1 was
proved in [6] (see [17], Theorem 21.2).

Corollary 2. The operator of the form ff k(t—x)p(t)dt is bounded from
HY (p) into Hy*(p) under the assumptions of Theorem 3 if the requirement
pf|w:a = 0 in the definition of the space H§ (p) is replaced by pf|$:b =0.

4. MAPPING PROPERTIES OF FRACTIONAL DIFFERENTIATION IN THE
SPACES HY (p)

Now we give Zygmund type estimate for the fractional derivative (1.5).

Theorem 4. Let p(x) = ¥(xz —a), Y(z) € W,, 0 < u <2, and

b—a

/ wig{;f) dt < oo, = max(l,p).
0
Then
h
w(pD2, f,h) < ch?~! / “’gfj{’f) dt. (4.1)
0
Proof. According to (1.5) we have
)DL Ne) =
@)~ S
+ﬁ () / %dt. (4.2)

We set a = 0 and denote 6(z) = 1(z) [ %dt. To estimate the
difference 6(z + h) — 6(x) we represent it in the form 6(z + h) — 6(z) =
22:1 Ag(x) (as in [13] in the purely power case), where

- v(x) 1 [ glx+h) - g(y)
o =[1- il [ TR

x+h

9(y) 1
As(z) = [(z + h) — ¥(x)] / (z+h—y)tolp@+h) w(y)}
0

dy,
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x+h
(o) g(x+h) —g(y)
0= o | G
x+h

) =00 [ 9() L

1
(w+h—ywﬂiwu+h>_wwﬂd%

x
x

Aa@:1/ww>—mwa+h—yr*ﬂwa—wfkﬂd%

(=)

Ag(@)=1(z) [9(y) [ﬁ—ﬁ} ()™=~ (=)= ay,
0
1 vl . .
(@) = 2 S s @+ ) =@ = @+ R,
Aste) = 5 0@l [ — ) [0 @ e,

Estimate for A;. By (2.1) we have

z+h xz+h

h w(g,z+h—y) h /w(g,t)

< dy= dt. 4.3

|A1|—Ca:+h /(a:+h—y)1+a Y=%xn | ita (4.3)
0 0

If A > z, it is obvious that

h
144] < c/ (9. 4y (4.4)
0

If h < x represent (4.3) as |4;| < f0h+f}f+h = A} + AY. For A] the
estimate (4.4) holds. As regards AY, applying (2.4) and (2.5), we have

z+h (o)
w(g,t) dt dt
Ay <en [ 29D 8 <anoh [ 4 <
h

x

ha — t1+a
0

h
< Meh) c/w(g’t) dt. (4.5)



550 S.G. SAMKO AND Z.U. MUSSALAEVA

Estimate for As. A) In the case 0 < p < 1, using (2.7), we obtain

n z+h ( ) h/2  z+h
w9,y / "
Al < dy = = A5 + AL,
| 2‘_Cerh/y(:Hh—y)“ Y /+/ 2+ 42
0 0 h/2

Obviously, A, < ¢ foh “ﬁﬂi) dt. Using (2.4) and (2.5), we derive the following
estimate for A}:

x+h h
h) dy w(g, h) w(g, t)
A < w(g, / _ ) < / )t
22 Th ) @rh—ge Yathe =) pte
0 0
B) If 1 <u<2—a, taking (2.1) and (2.6) into account, we obtain for As:
A ( )d h/2  x+h
w\g,y)ay
Ayl < = = B; + Bs.
R S ad =il B i
0 0 h/2
It is obvious that
[ wlo.1
-1 [wig,t
By < ch#1 / A dt. (4.6)
0
As regards B, we apply (2.4) and obtain
x+h
B, < . W9:N) / dy <
(@+h)2m | yrHa+h—y)~
h/2
1
w(g,h) / dt w(g, h)
c =c .
=@t h)e ) 1= a4 k)
0

Using then (2.5), we notice that the estimate for By is the same as in (4.6).
Estimate for As. Since ¥(x) is almost increasing, we have

+h L h
‘A3| SC/ W(g,ZL'+ 7y) dy*c/w(g’w dt.
0

(@+h—y)ite @) Hiva

x

Estimate for Ay. Let 0 < p < 1 at first. In view of (2.7) we have

h
W(g,]}—f—h—t)
Ayl < — ~ dt. 4.
| 4|—C/ tv(x +h—t) di (4.7)
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In the case h < z we have t < x+h—tin (4.7). So by (2.4) we obtain |A4] <

fh “;E-iﬁ) dt. If h > x, we represent (4.7) as |A4] < f(gH_h /2+f(2+,L)/2.
Since t < x+h—tandt > x + h —t in the first and second terms,
respectively, by (2.4) we derive that

(z+h)/2

h
W( ) w(g,x—l—h—t) W(g,t)
0 (z+h)/2

=

o

Let now 1 < < 2 — . Using (2.1) and (2.6), we get

h

w(g,z+h—t)
dt
= 1#/ T+ h—t)nte

0

|A4| <

If h < x, by (2.4) we have

h
w(g,t) i

,ul
|A4] < c(z+h) /x—f—h—tﬂlt“ra_c/ Sita
0 0

t.

If h > x, then |Ay] < f()(w+h)/2+f(z+h)/2. We use (2.4) in the first term
and the inequality ¢* > (x + h — t)® in the second. This yields

(z+h)/2

h
w(g,t) u—1 w(g,z+h—1)
0 (z+h)/2

h (z+h)/2
t
gc/w(g’ )dt—l—ch“_l / w(g, >dt< ch#~1
0

w(g,1)
ot .

tatn

O\:

T

Estimate for As. Applying (2.11), we have

dy t)dt
Ag| < — = Aralr L
I 5| > Ch/u)(g,l‘ y £E+h y)(x_y)lJra Ch/tlJra t_|_h)
0

In the case h > x it is clear that

h
w(g,t)
|A5] < ¢ dt. (4.8)
/
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If h < z, then |45 < foh + [, = AL+ AY with the same estimate as in (4.8)
for AL. As regards AY, we have

oo h
dt w(g, h w(g,t
A? < ew(g, h)/tHa <c (h‘l ) < c/ t(1+a)dt (4.9)
h

0

by (2.4) and (2.5).
Estimate for Ag. A) Let 0 < p < 1 at first. Applying (2.7) and (2.11)
we arrive at

T z/2 T
w(g,y)dy / / ’ "
< = = A .
i son [ oot [ [ <Al
0 0 z/2
For Af we have
z/2 )
dy
AL <o [ 2wy 4.1
6=¢ /(y+h)y1+a (4.10)
0

Ifh <ax A < Oh/2 +f}f//22 = K; + Ko. It is evident that K; admits the

same estimate as in (4.9). For K5 the application of (2.5) provides the same
result: Ko < cw(g,h) f;;; tfl% < cfoh %dt. If h > z, then immediately

h

w(g,1)

Al < c/ Tt (4.11)
0

To estimate Af we remark that y > z — y so that

x x/2
—y)dy w(g,t)dt
A" < ch w(g,r —y) _ h/ )
T /(szau+hy> RS
x/2

which is the same as in (4.10) and so Af admits the same estimates as in
(4.5).
B) Let 1 < 1 < 2 — . Using (2.1), (2.6) and (2.11), we have

x/2 T

x
_ dy
A<h,u1/ w(g,y) :/+/:U+U
I R CErE A
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If h < x, we set Uy = Oh/z—I-f:/z

/2
yield the inequality

h h h
w(Qvt)dt -1 w(g7t)dt -1 W(g,t)dt
Ul < Ch/ W +Ch'u W < ch” W. (412)

0 0 0

= Uj + U{, whence easy calculations

For U by (2.5) we have

T x/2
w(g, y)dy dt
UQSC%y(ac+h—y><ac—y>aS“"(g””o/t%Hh)S
<Cw(g,h>/°° € jw(g,ﬂdt
=T Jearg =) T

If h > z, the estimation of U; and U, is easy and provides the same as
in (4.2). Gathering all the estimates, we obtain |Ag| < ch?~! Oh jﬁﬂ? dt,
~v = max(1, u).

FEstimate for A;. Applying (2.5) and (2.10) and almost increasing of

P (x), we easily obtain

h
|45 < c/“’@’t) dt. (4.13)
0

Estimate for Ag. Using the inequalities (2.1) and (2.10) for 0 < p < 2—a,
we make sure of validity of the estimate (4.13) for Ag as well.
It remains to consider the first term

oy Va=df@) _ gla)
Nl—a)(z—a)* T(1-a)(z—a)>

in (4.2). Since g(z) € HY, we have the estimate

h
|r(z + h) —r(z)| < c/ %, (4.14)

0
which is derived by direct calculations under the assumptions of the theo-
rem

Collecting all the estimates for A;, i =1,...,8, and (4.14), we obtain the
required inequality (4.1). O
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Theorem 5. Let p(z) = Y(z —a), Y(xr) € W,, 0 < p <2 —« and let

1) w(t)#0, t>0,
2) w(t)t=*|,_, =0, (4.15)

3) wt)tt == e Z, ~v=max(1,pu).
Then the operator D¢, continuously maps H§(p) into Hy *(p) with
w_q(h) = h™%(h).
Proof. Let f(x) € Hy (p) and ¢(x) = D%, f(x). To show that

he h
sup M:C<OO

o<h<b—a w(h)

we observe that the inclusion w(¢)t!~*~7 € Z implies convergence of the

integral fo w(t)t—*~7dt, so Theorem 4 is applicable. Using the estimate
(4.1) of Theorem 4, we obtain

hew(pp, h) _ B ) wipf, e dt
w(h)  ~ w(h)
It remains to show that p(z)p(x)|s=q = 0. By (4.2) we have

< fllugp-  (4.16)

wpf,z— ) o [ wleftt
lp(z)p(x)] < F(l — a)(l‘ —a)° + 1"(1 _ a) / tl+a
0

a ””/“hp(xa)w<xat>|w<pf,zat>dt
) (e —a—1)

= Dq + Dy + Ds. (4.17)

Here Dy <c| f||HE (p )fw(xa)aa), the condition (4.16) implies w(z)x™%| =0 =
0. So lim;_,D; = 0. The equality lim, ., Dy = 0 is obvious by the
existence of the integral in Ds.

For the term Dj in the case 0 < p < 1 we have by (2.7)

r—a

w(pf,z —a—t)dt
Dgéc/ te(x —a—t)

0

We evaluate this separately for x—a—t >t and x—a—t <t by means of (2.4):

(@—a)/2 - .
D?,SC / (pf7 / pf?x_a’_ )dt,

tlto (x —a—t)lte
0 a)/2

whence lim,_,, D3 = 0.
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If1 <p<2-—a, weuse (2.1) and (2.5) and obtain

r—a I a)/2 xr—

bs SC/ <x_a(>/1)ffgw_—aaj e / /

0 (x—a)/2

and similar to what we did above we have

(z—a)/2 z—a
(z —a)"'w(pf,t) (z —a)* w(pf,x —a—1t)
D3 <e¢ / pry dt + ¢ / (@ —a—f)otn dt <
0 (z—a)/2
(z—a)/2 ( / t)dt
—1 w p )
< (‘I - a)H / totp )
0

so that lim,_,, D3 = 0. Therefore, lim,_, p(z)p(x) =0. O

Corollary 1. Let ¢(z) € W, 0 < p < 2 — «, and let w(t) be an almost
increasing function on [0,b — a] such that

1) w(0) =0, w(t)#0 forte (0,b—al;

2) wt)t~ 177 € Z, v=max(1,pu).

Then the operator D&, of fractional differentiation continuously maps
Hy>(p) into HY with p(z) = p(x — a), wa(h) = h*w(h).

Another corollary (of Theorems 5 and 3) will be related to the following
Love’s index law [8]:
Ig+acaloﬁ+x713+mﬂf(x) = f(z), a+B+7=0 (4.18)

well known in fractional calculus. This corollary will provide conditions
guaranteeing validity of (4.18) for functions f € H§ (p). For simplicity we
restrict ourselves with the cases w(z) = * and p(x) = z*. The notation

. a, a<l
o =
1, a>1

is used below.

Corollary 2. Relation (4.18) is valid for all functions f(z) € Hg(x")
and all o, 3,7y € R such that a+ B+~ = 0, if the number X € (0, 1] satisfies
the conditions A > —a, (A +a)* + 8 >0 [(A+ «)* + 8]* + v > 0 while the
weight exponent p satisfies the conditions

1) u<A+a) +1
2) p<[A+a) +0"+1
3) p<{l[A+a) +4} +1.
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5. A THEOREM ON ISOMORPHISM
In Theorem 3 and Corollary 1 of Theorem 5 it was proved that

Ig, - Hg(p) — Hy"(p),
Dg. : Hy*(p) — Hy'(p)

—~
[ BN
N =
— —

under the appropriate assumptions on w(h) and p(z). To derive the asser-

tion Ig, [H§ (p)] = Hy*(p) it remains to show that any function in Hgy*(p)
is representable by the fractional integral of a function in H{(p). This
will be the goal of Theorem 6 below. Preliminarily we state two auxiliary
assertions we need.

Lemma 2 ([17], p.185; p.231 in English ed.). In order a function
f(x) to be representable as f = I, ¢, ¢ € Ly(a,b), —0o < a < b < oo,
it is necessary and sufficient that

i) f(x)(x - a)—a € L;D(a7 b);

ii) ||ve||z, < c < oo with ¢ not depending on e, where

vty = [ e

fora+e<z<band(x)=0 fora<z <a+e.

A close version of Lemma 2 can be found in [16]. (See also [3] for another
version under additional assumptions that f € L, and 1 < p < 1/2c).

Lemma 3. Let w(t)t=° € Z. There exists p > 1 such that w(t)t™17% €
L,(0,1).

Proof. Tt is known that the inclusion ¢(t) € Z implies existence of € € (0, 1)
such that t°¢(t) is almost increasing (see, e.g. [1]). Therefore, there exists
e € (0,1) such that t=*%w(#) is bounded. So w(t) < ct%*¢ and to have a

finite L,-norm for w(t)/t'™ we must choose p < . [

Theorem 6 (On isomorphism). Let ¢(z) € W,, 0 < p < 2 — a and
let w(t) be a continuous function such that w(t)t'™7 € Z, w(t)t* € Zj,
v = max(1l,p), 0 < a < 1. Then the fractional integration operator I
isomorphically maps the weighted space HE (p) with p(x) = y(x—a) onto the
space Hy*(p) with the same weight and the characteristic wq(h) = h®*w(h).

Proof. In view of (5.1)—(5.2) it is sufficient to prove the representability of
a function f € Hi*(p) by a fractional integral. Aiming to apply Lemma 2
we shall prove that there exists p > 1 such that conditions i)-ii) of Lemma
2 are satisfied.
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The estimate

(z —a)® < cllfllmg @ —a) (5.3)
is valid for any f(x) € Hy*(p). Really, by (2.6) we have
(lffx(z))la < cgﬁ(fl{)(ﬂa (5.4)

which immediately provides (5.3).

Since w(x)/2’~" € Z, from (5.3) and Lemma 3 we conclude that there
exists p > 1 such that the condition i) of Lemma 2 is satisfied.

For this p we shall show that a constant ¢ > 0 exists such that

[¢ellr, <e<oo. (5.5)
We set g(x) = f(x)(x — a) and have
1
lg(z |9 d)(r Q) T B— a)”
(o)) € S / iz dt+/ T T g

To estimate F; we use (2.6) and obtain

fi= (z _ca)” / (ff(g—’ t)”‘j di < (z —ca)"/ / (;E(g_’ t)1+‘3 dt. (5.6

Since g(x) € Hy>(p), it is easily proved that (5.6) yields

Cc

< —-:.
1= (x —a)v

For Fy in the case 0 < p < 1 we use (2.6) and (2.7) and obtain

r—a ( ; ) (z—a)/2 r—a
c w(g,x—t—a
Fy < dt =
2*(x—a)/ t(x —t—a) / + /
0 0 (a-a)2

Hence after simple calculations

(z—a)/2 z—a
e / w(t)dt 4 € / w(x —t —a)dt
2= r—a t Tr—a r—t—a -
0 (z—a)/2

w(z —a) c [ w(t)
¢ + dt. (5.8)
/
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Since the condition w(t)t!™* € Z with 0 < pu < 1 implies w(t) € Z, we
derive from (5.8) the estimate F < cw(z —a)/(z — a).
Let now 1 < p < 2 — . We use inequalities (2.1) and (2.6) to obtain

Tr—a

o< /w(g,x—t—a /_ w(x—t—a)dt
Y= 2—a te(z —t—a) —a to(x —t —a)p—a
0 0
(x—a/2 z—a
0 (z—a)/2

Calculations and arguments similar to those in the case 0 < p < 1 give the

estimate Fy < c‘(‘;fm a)a ) Therefore,

< cm, v =max(l, p). (5.9)

So, from (5.8), (5.9) we obtain |¢. (2)|<e22=% € [, Hence [[¢]|z, <c. O

(z—a)Y
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