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ON MAXIMAL ot-SUBSETS OF THE EUCLIDEAN PLANE

A. KHARAZISHVILI

Abstract. We say that a subset X of the plane R2 is an ot-set if any three
points of X form an obtuse triangle. Some properties of ot-sets are inves-
tigated. It is shown that no finite ot-subset of R2 is maximal, but there
exists a countable maximal ot-subset of R2. Several related problems are
formulated and discussed.
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There are many interesting problems and open questions in the geometry
of Euclidean spaces, which have a set-theoretic flavour and are closely con-
nected with point set theory and convexity (see, e.g., [1]–[6]). A number of such
problems was raised by P. Erdös (cf. [1]). Similar questions frequently arise
in combinatorial geometry, classical measure theory and equidecomposability
theory.

Here we would like to discuss one problem of this kind for the Euclidean plane
R2. We begin with some definitions.

Let X be a subset of the plane. We shall say that X is an ot-set if any
three-element subset of X forms an obtuse triangle.

We shall say that an ot-set X ⊂ R2 is maximal if there is no ot-set on the
plane properly containing X.

Each ot-set in R2 is contained in some maximal ot-subset of the plane (this
fact follows directly from the Kuratowski–Zorn lemma).

As far as we know, the following problem remains unsolved.

Problem. Give a characterization of all maximal ot-subsets of the plane.

Here are some simple examples of maximal ot-sets in R2.

Example 1. Let X be a semi-circumference on the plane without one of its
end-points. It can be easily verified that X is a maximal ot-set in R2.

Example 2. Let f : R → R be a function, let Xf denote the graph of f and
suppose that the following conditions are satisfied:

(1) f is increasing and continuous;
(2) no three points of Xf belong to a straight line, i.e. all points of Xf are

in general position.
Then it is not difficult to show that Xf is a maximal ot-set in R2. Note also

that conditions (1) and (2) imply at once that the given function f is strictly
increasing.
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Let x and y be any two distinct points in R2. We denote by l(x, y) the
straight line passing through x and y.

Let l and l′ be any two distinct parallel straight lines on R2. We recall that
all points of R2 lying between l and l′ form the strip determined by these two
lines. This strip is denoted by S(l, l′). In the sequel, only closed strips are
under consideration, i.e. we assume throughout the paper that S(l, l′) contains
both lines l and l′. The width of S(l, l′) is equal (by definition) to the distance
between l and l′.

A single straight line may be regarded as a strip whose width is equal to zero.
Let x and x′ be any two distinct points of R2, let l be the straight line passing

through x and perpendicular to the segment [x, x′], let l′ be the straight line
passing through x′ and perpendicular to the same segment. We shall say in the
sequel that the strip S(l, l′) is determined by the points x and x′. In this case
we also denote S(x, x′) = S(l, l′).

Let {Si : i ∈ I} be a family of strips in R2. We shall say that these strips are
in general position if, for any two distinct strips Si and Sj, a boundary line of
Si is not parallel to a boundary line of Sj.

It is not hard to show that the plane cannot be covered by finitely many
strips and straight lines. From this circumstance it readily follows that no finite
ot-subset of R2 can be maximal.

Note that the maximal ot-sets described in Examples 1 and 2 above are of
cardinality continuum. In this connection, it is natural to ask whether there
exists a countable maximal ot-set in R2.

The main goal of this paper is to demonstrate that there are countable locally
finite maximal ot-subsets of R2. In order to establish this fact, we need some
auxiliary notions and statements.

Let {Si : i ∈ I} and {Sj : j ∈ J} be two families of strips in R2. We shall
say that these two families are in general position if all strips of the extended
family {Si : i ∈ I} ∪ {Sj : j ∈ J} are in general position.

Let X be a subset of R2 and let {Si : i ∈ I} be a family of strips. We shall
say that X and {Si : i ∈ I} are in general position if the families {Si : i ∈ I}
and {S(x, x′) : x ∈ X, x′ ∈ X, x 6= x′} are in general position.

If Z is a subset of R2 and ε > 0, then the symbol V (Z, ε) denotes, as usual,
the ε-neighbourhood of Z. Accordingly, we utilize the notation V (z, ε) for a
point z ∈ R2 and ε > 0.

We shall say that a set C is an open circle in R2 if

C = {x ∈ R2 : x2
1 + x2

2 < r},
where r is a strictly positive real number.

Lemma 1. Let X be a finite set of points in R2, such that all the strips
S(x, x′) (x ∈ X, x′ ∈ X, x 6= x′) are in general position, and let C ⊂ R2 be an
open circle containing X. Then, for every ε > 0, there exists a finite family of
strips {Si : i ∈ I} satisfying the relations:

1) for each i ∈ I, the width of Si is less than ε;
2) X and {Si : i ∈ I} are in general position;
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3) X ⊂ C \ ∪{Si : i ∈ I} ⊂ V (X, ε).

We omit an easy proof of Lemma 1.

Lemma 2. Let C be an open circle in R2, let X be a finite ot-subset of
R2 and let {S1, S2, . . . , Sm} be a finite family of strips in R2 such that X
and {S1, S2, . . . , Sm} are in general position. Then there exist pairwise distinct
points y1, z1, y2, z2, . . . , ym, zm satisfying the relations:

1) {y1, z1, y2, z2, . . . , ym, zm} ⊂ R2 \ C;
2) X∗ = X ∪ {y1, z1, y2, z2, . . . , ym, zm} is an ot-subset of R2;
3) for each natural number i ∈ [1,m], we have Si = S(yi, zi);
4) the family of strips {S(x, x′) : x ∈ X∗, x′ ∈ X∗, x 6= x′} is in general

position.

The proof of Lemma 2 can be obtained by induction on m. We omit the
corresponding technical details (which are not difficult).

Theorem 1. There exists a countable locally finite maximal ot-subset of R2.

Proof. Fix a decreasing sequence {εk : k ≥ 1} of strictly positive real numbers,
such that limk→∞ εk = 0.

Define, by induction on k, two increasing (with respect to the inclusion rela-
tion) families {Xk : k ≥ 1} and {Ck : k ≥ 1} of subsets of R2.

For k = 1, take any finite ot-set X1 ⊂ R2 with the property that all the strips
from {S(x, x′) : x ∈ X1, x′ ∈ X1, x 6= x′} are in general position, and take also
an open circle C1 ⊃ X1 with radius greater than 1.

Suppose that the sets Xk and Ck are already defined for a natural number
k ≥ 1.

Applying Lemma 1 to Xk, Ck and εk, we can find a finite family of strips
{Si : i ∈ Ik} satisfying the following relations:

1) for each i ∈ Ik, the width of Si is less than εk;
2) Xk and {Si : i ∈ Ik} are in general position;
3) Xk ⊂ Ck \ ∪{Si : i ∈ Ik} ⊂ V (Xk, εk).
Now, we apply Lemma 2 to the circle Ck, the set Xk and the family of strips

{Si : i ∈ Ik}. According to the above-mentioned lemma, there exists a finite
ot-set X∗

k ⊂ R2 such that:
a) Xk ⊂ X∗

k ;
b) X∗

k \Xk ⊂ R2 \ Ck;
c) the family of strips S(x, x′) (x ∈ X∗

k , x′ ∈ X∗
k , x 6= x′) is in general

position and contains the family {Si : i ∈ Ik}.
We put Xk+1 = X∗

k . Besides, let Ck+1 be an open circle in R2 containing
Xk+1 ∪ Ck, whose radius is greater than k + 1.

Proceeding in this manner, we are able to construct the desired families of
sets {Xk : k ≥ 1} and {Ck : k ≥ 1}.

Note that, in virtue of our construction, we have the equality

R2 = ∪{Ck : k ≥ 1}.
Finally, we define

X = ∪{Xk : k ≥ 1}.
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A straightforward verification shows that X is a countable locally finite ot-
subset of the plane, and we are going to demonstrate that X is maximal. For
this purpose, take any point t ∈ R2 \X and check that X ∪ {t} cannot be an
ot-set in R2. Since limk→∞ εk = 0, there exists a natural number k0 such that,
for all natural numbers k > k0, we have the relation

t ∈ Ck \ ∪{V (x, εk) : x ∈ Xk}
and, consequently, t ∈ ∪{Si : i ∈ Ik} (see relation 3) above). Hence t ∈ Si

for some i ∈ Ik. But, in view of our construction, Si = S(y, z) where {y, z} ⊂
Xk+1 \ Xk ⊂ X, and we also remember that the width of Si is less than εk.
Now, taking this circumstance into account, it can easily be seen that if k is
large enough, then the values of all three angles in the triangle [t, y, z] do not
exceed π/2, whence it follows that X ∪ {t} is not an ot-subset of R2.

The theorem has thus been proved. ¤
A statement analogous to Theorem 1 can be established for the n-dimensional

Euclidean space Rn where n > 2. In other words, we have the following

Theorem 2. If n > 2, then there exists a countable locally finite maximal
ot-set in the space Rn.

The proof of this statement can be carried out in the same manner as for the
Euclidean plane R2 (some additional purely technical details occur, but they
do not represent essential difficulties).

It would be interesting to find a characterization of all maximal ot-subsets of
the space Rn, where n > 2. In this context, the following example is relevant.

Example 3. Consider the three-dimensional Euclidean space R3 and its
two-dimensional subspace R2 × {0}. Let S be a closed semi-circumference in
R2 × {0} with end-points y and z. Let l(y, z) denote the straight line passing
through y and z. Take any point x on l(y, z) not belonging to the linear segment
[y, z] and put

X = (S \ {y}) ∪ {(x, 1)}.
It is not hard to check that X is an ot-set in R3. Also, as we know, S \ {y} is
a maximal ot-subset of the plane R2 × {0} (see Example 1). Since X properly
contains S \ {y}, we conclude that S \ {y} is not a maximal ot-set in the space
R3.

Moreover, we cannot even assert that X is a maximal ot-subset of R3. For
instance, if the semi-circumference S is such that

(∀t ∈ S)(||t− x|| < 1),

then the set

X ′ = (S \ {y}) ∪ {(x, 1)} ∪ {(x,−1)} = X ∪ {(x,−1)}
turns out to be an ot-subset of R3 and properly contains X.

Remark 1. In connection with Theorem 1, the following question arises nat-
urally: does there exist a countable bounded maximal ot-subset of R2? This
question remains open.
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Remark 2. Let H be a pre-Hilbert space (over the field R) and let X be a
subset of H. We say that X is an rt-set if each three-element subset of X forms
a rectangular triangle. In [5] a characterization of all rt-sets was given (for more
details, see [6]). In particular, it was demonstrated there that card(X) ≤ c for
any rt-set X, where c denotes the cardinality of the continuum. In the case
H = R2, it can easily be shown that X is a maximal rt-subset of H if and only
if X coincides with the set of vertices of a rectangle in H.
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