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ON SOME CONVEXITY PROPERTIES OF GENERALIZED
CESÁRO SEQUENCE SPACES
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Abstract. We define a generalized Cesáro sequence space and consider it
equipped with the Luxemburg norm under which it is a Banach space, and
we show that it is locally uniformly rotund.
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1. Preliminaries

For a Banach space X, we denote by S(X) and B(X) the unit sphere and
unit ball of X, respectively. A point x0 ∈ S(X) is called

a) an extreme point if for every x, y ∈ S(X) the equality 2x0 = x + y implies
x = y;

b) a locally uniformly rotund point (LUR-point for short) if for any sequence
(xn) in B(X) such that ‖xn + x‖ → 2 as n → ∞ there holds ‖xn − x‖ → 0 as
n →∞;

c) an H-point if for any sequence (xn) in X such that ‖xn‖ → 1 as n → ∞,

the weak convergence of (xn) to x0 (write xn
w→ x0) implies that ‖xn − x‖ → 0

as n →∞.
A Banach space X is said to be rotund (R) if every point of S(X) is an

extreme point.
If every x ∈ S(X) is a LUR-point, then X is said to be locally uniformly

rotund (LUR).
X is said to possess property (H) provided every point of S(X) is an H-point.
For these geometric notions and their role in Mathematics we refer to the

monographs [1], [6], [12] and [13]. Some of them were studied for Orlicz spaces
in [1], [7], [8], [12] and [14].

Let X be a real vector space. A functional % : X → [0,∞] is called a modular
if it satisfies the conditions

(i) %(x) = 0 if and only if x = 0;
(ii) %(αx) = %(x) for all scalar α with |α| = 1;
(iii) %(αx+βy) ≤ %(x)+%(y) for all x, y ∈ X and all α, β ≥ 0 with α+β = 1.

The modular % is called convex if
(iv) %(αx + βy) ≤ α%(x) + β%(y) for all x, y ∈ X and all α, β ≥ 0 with

α + β = 1.
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If % is a modular in X, we define

X% =
{
x ∈ X : lim

λ→0+
%(λx) = 0

}
,

and X∗
% =

{
x ∈ X : %(λx) < ∞ for some λ > 0

}
.

It is clear that X% ⊆ X∗
% . If % is a convex modular, for x ∈ X% we define

‖x‖ = inf
{

λ > 0 : %
(x

λ

)
≤ 1

}
. (1.1)

Orlicz [13] proved that if % is a convex modular in X, then X% = X∗
% and ‖.|| is

a norm on X% for which it is a Banach space. The norm ‖.‖ defined as in (1.1)
is called the Luxemburg norm.

A modular % on X is called

(a) right-continuous if limλ→1+ %(λx) = %(x) for all x ∈ X%;
(b) left-continuous if limλ→1− %(λx) = %(x) for all x ∈ X%;
(c) continuous if it is both left-continuous and right-continuous.

The following known results gave some relationships between the modular %
and the Luxemburg norm ‖.‖ on X%.

Theorem 1.1. Let % be a convex modular on X and let x ∈ X% and (xn) a
sequence in X%. Then ‖xn− x‖ → 0 as n →∞ if and only if %(λ(xn− x)) → 0
as n →∞ for every λ > 0.

Proof. See [11, Theorem 1.3]. ¤
Theorem 1.2. Let % be a convex modular on X and x ∈ X%.

(i) If % is right-continuous, then ‖x‖ < 1 if and only if %(x) < 1.
(ii) If % is left-continuous, then ‖x‖ ≤ 1 if and only if %(x) ≤ 1.
(iii) If % is continuous, then ‖x‖ = 1 if and only if %(x) = 1.

Proof. See [11, Theorem 1.4]. ¤
Let us denote by l0 the space of all real sequences. For 1 ≤ p < ∞, the

Cesáro sequence space (cesp, for short) is defined by

cesp =

{
x ∈ l0 :

∞∑
n=1

( 1

n

n∑
i=1

|x(i)|
)p

< ∞
}

equipped with the norm

‖x‖ =

( ∞∑
n=1

( 1

n

n∑
i=1

|x(i)|
)p

) 1
p

.

This space was introduced by J.S. Shue [16]. It is useful in the theory of
matrix operators and others (see [9] and [10]). Some geometric properties of
the Cesáro sequence space cesp were studied by many mathematicians. It is
known that cesp is LUR and possesses property (H) (see [10] ). Y. A. Cui and
H. Hudzik [2] proved that cesp has the Banach-Saks property, and it was shown
in [5] that cesp has property (β).
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Now let p = (pk) be a sequence of positive real numbers with pk ≥ 1 for all
k ∈ N. The Nakano sequence space l(p) is defined by

l(p) =
{
x ∈ l0 : σ(λx) < ∞ for some λ > 0

}
,

where σ(x) =
∑∞

i=1 |x(i)|pi . We consider the space l(p) equipped with the norm

‖x‖ = inf
{

λ > 0 : σ
(x

λ

)
≤ 1

}

under which it is a Banach space. If p = (pk) is bounded, we have

l(p) =
{

x ∈ l0 :
∞∑
i=1

|x(i)|pi < ∞
}

.

Several geometric properties of l(p) were studied in [1] and [4].
The generalized Cesáro sequence space ces(p) is defined by

ces(p) =
{
x ∈ l0 : %(λx) < ∞ for some λ > 0

}
,

where %(x) =
∑∞

n=1(
1
n

∑n
i=1 |x(i)|)pn . We consider this space equipped with the

so-called Luxemburg norm

‖x‖ = inf
{

λ > 0 : %
(x

λ

)
≤ 1

}

under which it is a Banach space. If p = (pk) is bounded, we have

ces(p) =

{
x = x(i) :

∞∑
n=1

( 1

n

n∑
i=1

|x(i)|
)pn

< ∞
}

.

W. Sanhan [15] proved that ces(p) is nonsquare when pk > 1 for all k ∈ N. In
this paper, we show that the Cesáro sequence space ces(p) equipped with the
Luxemburg norm is LUR and has property (H) when p = (pk) is bounded with
pk > 1 for all k ∈ N.

Throughout this paper we assume that p = (pk) is bounded with pk > 1 for
all k ∈ N, and M = supk pk.

2. Main Results

We begin by giving some basic properties of the modular % on the space
ces(p). By the convexity of the function t → |t|pk , for every k ∈ N we have that
% is a convex modular. So we have the following proposition.

Proposition 2.1. The functional % on the Cesáro sequence space ces(p) is
a convex modular.

Proposition 2.2. For x ∈ ces(p), the modular % on ces(p) satisfies the
following properties:

(i) if 0 < a < 1, then aM%
(x

a

)
≤ %(x) and %(ax) ≤ a%(x),

(ii) if a ≥ 1, then %(x) ≤ aM%
(x

a

)
,

(iii) if a ≥ 1, then %(x) ≤ a%(x) ≤ %(ax).
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Proof. All assertions are clearly obtained by the definition of %. ¤

Proposition 2.3. The modular % on ces(p) is continuous.

Proof. For λ > 1, by Proposition 2.2 (ii) and (iii), we have

%(x) ≤ λ%(x) ≤ %(λx) ≤ λM%(x). (2.1)

By taking λ → 1+ in (2.1), we have limλ→1+ %(λx) = %(x). Thus % is right-
continuous. If 0 < λ < 1, by Proposition 2.2 (i), we have

λM%(x) ≤ %(λx) ≤ λ%(x) (2.2)

By taking λ → 1− in (2.2), we have that limλ→1− %(λx) = %(x), hence % is
left-continuous. Thus % is continuous. ¤

Next, we give some relationships between the modular % and the Luxemburg
norm on ces(p).

Proposition 2.4. For any x ∈ ces(p), we have

(i) if ‖x‖ < 1, then %(x) ≤ ‖x‖,
(ii) if ‖x‖ > 1, then %(x) ≥ ‖x‖,
(iii) ‖x‖ = 1 if and only if %(x) = 1,
(iv) ‖x‖ < 1 if and only if %(x) < 1,
(v) ‖x‖ > 1 if and only if %(x) > 1,
(vi) if 0 < a < 1 and ‖x|| > a, then %(x) > aM , and
(vii) if a ≥ 1 and ‖x‖ < a, then %(x) < aM .

Proof. If ‖x‖ ≤ 1 , it follows by the convexity and continuity of % that %(x) =

%
(
‖x‖ x

‖x‖
)
≤ ‖x‖%

( x

‖x‖
)
≤ ‖x‖. So (i) is obtained. If ‖x‖ > 1, then there

is ε0 > 0 such that ‖x‖ − ε > 1 for all ε ∈ (0, ε0). Consequently, %(x) =

%
(
(‖x‖ − ε)

x

‖x‖ − ε

)
≥ (‖x‖ − ε)%

( x

‖x‖ − ε

)
> ‖x‖ − ε, so (ii) is satisfied. It

is clear that (iii), (iv) and (v) follow by Theorem 1.2, and properties (vi) and
(vii) follow by Proposition 2.2. ¤

Proposition 2.5. Let (xn) be a sequence in ces(p).

(i) If ‖xn‖ → 1 as n →∞, then %(xn) → 1 as n →∞.
(ii) ‖xn‖ → 0 as n →∞ if and only if %(xn) → 0 as n →∞.

Proof. (i) Suppose ‖xn‖ → 1 as n → ∞. Let ε ∈ (0, 1). Then there exists
N ∈ N such that 1 − ε < ‖xn‖ < 1 + ε for all n ≥ N . By Proposition 2.4 (vi)
and (vii), we have (1 − ε)M < %(xn) < (1 + ε)M for all n ≥ N , which implies
that %(xn) → 1 as n →∞.

(ii) It follows from Theorem 1.1 that if ‖xn‖ → 0 as n →∞, then %(xn) → 0
as n → ∞. Conversely, suppose ‖xn‖ 6→ 0 as n → ∞. Then there is ε ∈
(0, 1) and a subsequence (xnk

) of (xn) such that ‖xnk
‖ > ε for all k ∈ N. By

Proprosition 2.4 (vi), we have %(xnk
) > εM for all k ∈ N. This implies %(xn) 6→ 0

as n →∞. ¤
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Proposition 2.6. Let (xn) ⊆ B(l(p)) and (yn) ⊆ B(l(p)). If σ
(xn + yn

2

)

→ 1, then xn(i)− yn(i) → 0 as n →∞ for all i ∈ N.

Proof. We first note that if x ∈ B(`(p), then σ(x) ≤ 1. Supose that xn(i) −
y(i) 6→ 0 as n →∞ for some i ∈ N. Without loss of generality we may assume
that i = 1, and then assume without loss of generality (passing to a subsequence
if necessary) that, for some ε > 0,

∣∣xn(1)− yn(1)
∣∣p1 ≥ ε ∀ n ∈ N.

Thus

2p1(|xn(1)|p1 + |yn(1)|p1) ≥ ε ∀ n ∈ N. (2.3)

Since the function t → |t|p1 is uniformly convex, there exists δ > 0 such that

∣∣∣xn(1) + yn(1)

2

∣∣∣
p1 ≤ (1− δ)

( |xn(1)|p1 + |yn(1)|p1

2

)
∀ n ∈ N. (2.4)

It follows from (2.3) and (2.4) that for each n ∈ N,

σ
(xn + yn

2

)
=

∞∑
i=1

∣∣∣xn(i) + yn(i)

2

∣∣∣
pi

=
∣∣∣xn(1) + yn(1)

2

∣∣∣
p1

+
∞∑
i=2

∣∣∣xn(i) + yn(i)

2

∣∣∣
pi

≤ (1− δ)
( |xn(1)|p1 + |yn(1)|p1

2

)
+

1

2

∞∑
i=2

|xn(i)|pi +
1

2

∞∑
i=2

|yn(i)|pi

=
1

2
σ(xn) +

1

2
σ(yn)− δ

( |xn(1)|p1 + |yn(1)|p1

2

)

≤ 1

2
+

1

2
− δ

ε

2p1+1
= 1− δ

ε

2p1+1
.

This implies that σ
(xn + yn

2

)
6→ 1 as n → ∞, a contradiction, which finishes

the proof. ¤

Proposition 2.7. Let (xn) ⊆ B(ces(p)) and x ∈ S(ces(p)). If %
(xn + x

2

)
→ 1

as n →∞, then xn(i) → x(i) as n →∞ for all i ∈ N.

Proof. For each n ∈ N and i ∈ N, let

sn(i) =

{
sgn(xn(i) + x(i)) if xn(i) + x(i) 6= 0,

1 if xn(i) + x(i) = 0.
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Hence we have

1 ← %
(xn + x

2

)
=

∞∑

k=1

(1

k

k∑
i=1

∣∣∣xn(i) + x(i)

2

∣∣∣
)pk

=
∞∑

k=1

(1

k

k∑
i=1

sn(i)
xn(i)

2
+

1

k

k∑
i=1

sn(i)
x(i)

2

)pk

. (2.5)

Let an(k) = 1
k

∑k
i=1 sn(i)xn(i) and bn(k) = 1

k

∑k
i=1 sn(i)x(i) for all n, k ∈ N.

Then (an) ∈ l(p) and (bn) ∈ l(p), and from (2.5) we have

σ
(an + bn

2

)
→ 1 as n →∞.

Form Proposition 2.6 we have

an(i)− bn(i) → 0 as n →∞ (2.6)

for all i ∈ N. Now we shall show that xn(k) → x(k) as n → ∞ for all k ∈ N.
From (2.6) we have

sn(1)xn(1)− sn(1)x(1) → 0 as n →∞.

This implies xn(1) → x(1) as n →∞. Assume that xn(i) → x(i) as n →∞ for
all i ≤ k − 1. Then we have

sn(i)(xn(i)− x(i)) → 0 as n →∞ (2.7)

for all i ≤ k−1. Since sn(k)(xn(k)−x(k)) = k(an(k)−bn(k))−∑k−1
i=1 sn(i)(xn(i)−

x(i)), it follows from (2.6) and (2.7) that sn(k)(xn(k) − x(k)) → 0 as n → ∞.
This implies xn(k) → x(k) as n → ∞. So we have by induction that xn(k) →
x(k) as n →∞ for all k ∈ N. ¤

Theorem 2.8. The space ces(p) is LUR.

Proof. Let (xn) ⊆ B(ces(p)) and x ∈ S(ces(p)) be such that ‖xn + x‖ → 2

as n → ∞. Then
∥∥∥xn + x

2

∥∥∥ → 1 as n → ∞. By Proposition 2.5 (i) we have

%
(xn + x

2

)
→ 1 as n →∞. By Proposition 2.7 we have xn(i) → x(i) as n →∞

for all i ∈ N.
Now let ε > 0 be given. Then there exist k0 ∈ N and n0 ∈ N such that

∞∑

k=k0+1

(1

k

k∑
i=1

|x(i)|
)pk

<
ε

3

1

2M+1
, (2.8)

k0∑

k=1

(1

k

k∑
i=1

|xn(i)− x(i)|
)pk

<
ε

3
for all n ≥ n0, (2.9)

k0∑

k=1

(1

k

k∑
i=1

|xn(i)|
)pk

>

k0∑

k=1

(1

k

k∑
i=1

|x(i)|
)pk − ε

3

1

2M
for all n ≥ n0. (2.10)
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By Proposition 2.4 (i) and (iii) we have %(xn) ≤ 1 for all n ∈ N and %(x) = 1.
From these together with (2.8), (2.9), (2.10) and the fact that (a + b)pk ≤
2pk(apk + bpk) for a, b ≥ 0 we have that for all n ≥ n0,

%(xn − x) =
∞∑

k=1

(1

k

k∑
i=1

|xn(i)− x(i)|
)pk

=

k0∑

k=1

(1

k

k∑
i=1

|xn(i)− x(i)|
)pk

+
∞∑

k=k0+1

(1

k

k∑
i=1

|xn(i)− x(i)|
)pk

<
ε

3
+ 2M

( ∞∑

k=k0+1

(1

k

k∑
i=1

|xn(i)|
)pk

+
∞∑

k=k0+1

(1

k

k∑
i=1

|x(i)|
)pk

)

=
ε

3
+ 2M

(
%(xn)−

k0∑

k=1

(1

k

k∑
i=1

|xn(i)|
)pk

+
∞∑

k=k0+1

(1

k

k∑
i=1

|x(i)|
)pk

)

≤ ε

3
+ 2M

(
1−

k0∑

k=1

(1

k

k∑
i=1

|xn(i)|
)pk

+
∞∑

k=k0+1

(1

k

k∑
i=1

|x(i)|
)pk

)

<
ε

3
+ 2M

(
1−

k0∑

k=1

(1

k

k∑
i=1

|x(i)|
)pk

+
ε

3

1

2M
+

∞∑

k=k0+1

(1

k

k∑
i=1

|x(i)|
)pk

)

=
ε

3
+2M

(
%(x)−

k0∑

k=1

(1

k

k∑
i=1

|x(i)|
)pk

+
ε

3

1

2M
+

∞∑

k=k0+1

(1

k

k∑
i=1

|x(i)|
)pk

)

=
ε

3
+ 2M

( ∞∑

k=k0+1

(1

k

k∑
i=1

|x(i)|
)pk

+
ε

3

1

2M
+

∞∑

k=k0+1

(1

k

k∑
i=1

|x(i)|
)pk

)

=
ε

3
+ 2M

(
2

∞∑

k=k0+1

(1

k

k∑
i=1

|x(i)|
)pk

+
ε

3

1

2M

)

=
ε

3
+ 2M+1

∞∑

k=k0+1

(1

k

k∑
i=1

|x(i)|
)pk

+
ε

3
<

ε

3
+

ε

3
+

ε

3
= ε.

This shows that %(xn − x) → 0 as n → ∞. By Proposition 2.5(ii) we have
‖xn − x‖ → 0 as n →∞. This completes the proof of the theorem. ¤

It is known in general that a locally uniformly rotund space has property (H).
So we have the following result.

Corollary 2.9. The space ces(p) possesses property (H).
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