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INVESTIGATION OF TWO-DIMENSIONAL MODELS OF
ELASTIC PRISMATIC SHELL

M. AVALISHVILI AND D. GORDEZIANI

Abstract. Statical and dynamical two-dimensional models of a prismatic
elastic shell are constructed. The existence and uniqueness of solutions of
the corresponding boundary and initial boundary value problems are proved,
the rate of approximation of the solution of a three-dimensional problem by
the vector-function restored from the solution of a two-dimensional one is
estimated.
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1. Introduction

In mathematical physics and theory of elasticity one of the urgent issues is
constructing and investigating lower-dimensional models. I. Vekua proposed one
of the methods of constructing two-dimensional models of prismatic shells in [1].
It must be pointed out that in [1] boundary value problems are considered in Ck

spaces and the convergence of sequences of approximations to exact solutions
of the corresponding three-dimensional problems is not investigated. In the
statical case the existence and uniqueness of a solution of the reduced two-
dimensional problem in Sobolev spaces were investigated in [2] and the rate
of approximation of an exact solution of a three-dimensional problem by the
vector-function restored from the solution of the reduced problem in Ck spaces
was estimated in [3]. Later, various types of lower-dimensional models were
constructed and investigated in [4–18].

In the present paper we consider static equilibrium of a prismatic elastic shell
and a dynamical problem of vibration of a shell. Due to I. Vekua’s reduction
method we construct a statical two-dimensional model of the plate and inves-
tigate the obtained boundary value problem. Moreover, if the solution of the
original problem satisfies additional regularity properties, we estimate the accu-
racy of its approximation by the vector-function restored from the solution of a
two-dimensional problem. We reduce the dynamical three-dimensional problem
for a prismatic shell to the two-dimensional one, prove the existence and unique-
ness of the solution of the corresponding initial boundary value problem and
show that the vector-function restored from the latter problem approximates
the solution of the original problem. Also, under the regularity conditions on
the solution of the original problem we obtain the rate of its approximation.
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Let us consider a prismatic elastic shell of variable thickness and initial con-
figuration Ω ⊂ R3; x = (x1, x2, x3) ∈ Ω, Ω denotes the closure of the do-
main Ω ⊂ R3 (the domain is a bounded open connected set with a Lipschitz-
continuous boundary, the set being locally on one side of the boundary [25]).
Assume that the ruling of the lateral surface Γ of the plate is parallel to the Ox3-
axis (Ox1x2x3 is a system of Cartesian coordinates in R3) and the upper Γ+,
lower Γ− surfaces of the plate are defined by the equations x3 = h+(x1, x2), x3 =
h−(x1, x2), h+(x1, x2) > h−(x1, x2), x1, x2 ∈ ω̄, h−, h+ ∈ C1(ω̄), where ω ⊂ R2

is a domain with boundary γ. Let γ0 denote the Lipschitz-continuous part of γ
with positive length.

In order to simplify the notation, we assume that the indices i, j, p, q take
their values in the set {1, 2, 3}, while the indices α, β vary in the set {1, 2} and
the summation convention with respect to repeated indices is used. Also, the

partial derivative with respect to the p-th argument
∂

∂xp

is denoted by ∂p. For

any domain D ⊂ Rs, L2(D) denote the space of square-integrable functions
in D in the Lebesgue sense, Hm(D) = Wm,2(D) denotes the Sobolev space of
order m and the space of vector-functions denote with Hm(D) = [Hm(D)]3,
L2(D) = [L2(D)]3, s, m ∈ N.

Let us suppose that the material of the plate is elastic, homogeneous, isotropic
and λ, µ are the Lamé constants of the material. The applied body force density
is denoted by f = (fi) : Ω× (0, T ) → R3 and the surface force densities on the
surfaces Γ+, Γ− by g+ and g−, respectively, g± = (g±i ) : Γ± × [0, T ] → R3. The
plate is clamped on the part Γ0 = {(x1, x2, x3) ∈ R3; (x1, x2) ∈ γ0, h−(x1, x2) ≤
x3 ≤ h+(x1, x2)} of its lateral surface Γ, while the surface Γ1 = Γ\Γ0 is free.
For the stress-strain state of the plate we have the following initial boundary
value problem:

∂2ui

∂t2
−

3∑
j=1

∂

∂xj

{
λepp(u)δij + 2µeij(u)

}
= fi(x, t), (x, t) ∈ ΩT , (1.1)

u(x, 0) = ϕ(x),
∂u

∂t
(x, 0) = ψ(x), x ∈ Ω, (1.2)

u = 0 on Γ0
T = Γ0 × [0, T ],

3∑
j=1

(
λepp(u)δij + 2µeij(u)

)
nj =





g+
i on Γ+

T = Γ+ × [0, T ],

g−i on Γ−T = Γ− × [0, T ],

0 on Γ1
T = Γ1 × [0, T ],

(1.3)

where ΩT = Ω × (0, T ), u = (ui) : ΩT → R3 is the unknown displacement
vector-function, ϕ,ψ : Ω → R3 are initial displacement and velocity of the
plate, n = (nj) denotes the unit outer normal vector along the boundary ∂Ω.
δij is the Kronecker symbol and e(u) = {eij(u)} is the deformation tensor

eij(u) =
1

2

(∂ui

∂xj

+
∂uj

∂xi

)
, i, j = 1, 2, 3.
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In Section 2 we study the statical case of problem (1.1)–(1.3) and construct
a statical two-dimensional model of the plate, investigate the convergence of
the sequence of vector-functions restored from the solutions of the correspond-
ing boundary value problems to the solution of the original three-dimensional
problem. In Section 3 we consider problem (1.1)–(1.3) in the suitable functional
spaces, construct and investigate a hierarchic dynamical two-dimensional model
of a prismatic shell.

2. Statical Boundary Value Problem

As we have mentioned in the introduction, in this section we study the statical
case of problem (1.1)–(1.3). In this case the latter problem admits the following
variational formulation: find a vector-function u ∈ V (Ω) = {v = (vi) ∈ H1(Ω),
v = 0 on Γ0}, which satisfies the equation

BΩ(u,v) = LΩ(v), ∀ v ∈ V (Ω), (2.1)

where

BΩ(u,v) =

∫

Ω

(
λepp(u)eqq(v) + 2µeij(u)eij(v)

)
dx,

LΩ(v) =

∫

Ω

fividx +

∫

Γ+

g+
i vidΓ +

∫

Γ−
g−i vidΓ.

The variational problem (2.1) has a unique solution if λ ≥ 0, µ > 0, f ∈
L2(Ω), g± ∈ L2(Γ±), which is a unique solution of the following minimization
problem: find u ∈ V (Ω) such that

JΩ(u) = inf
v∈V (Ω

JΩ(v), JΩ(v) =
1

2
BΩ(v,v)− LΩ(v), ∀ v ∈ V (Ω).

In order to reduce the three-dimensional problem (2.1) to a two-dimensional
one, let us consider equation (2.1) on the subspace of V (Ω), which consists of
polynomials of degree N with respect to the variable x3, i.e.,

vN =
N∑

r=0

a
(
r +

1

2

)
r
v Pr(ax3 − b),

r
v= (

r
vi), r = 0, N,

where a =
2

h+ − h−
, b =

h+ + h−

h+ − h−
, and Pr is a Legendre polynomial of degree

r. Thus we get the following problem:

BΩ(wN ,vN) = LΩ(vN), ∀ vN ∈ VN(Ω), (2.2)

VN(Ω) =
{

vN =
N∑

r=0

a
(
r +

1

2

)
r
v Pr(ax3 − b);

r
v∈ H1(ω),

r
v= 0 on γ0, r = 0, N

}
.
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In problem (2.2) the unknown function wN ∈ VN(Ω) is of the form

wN =
N∑

r=0

a
(
r +

1

2

)
r
w Pr(ax3 − b),

so we have to find the vector-function ~wN = (
0
w, . . . ,

N
w),

~wN ∈ ~VN(ω) =
{
~vN = (

0
v, . . . ,

N
v);

r
v∈ H1(ω),

r
v= 0 on γ0, r = 0, N

}
,

such that the corresponding wN is a solution of problem (2.2).
Taking into account properties of the Legendre polynomials [19] equation

(2.2) can be written in the following form

N∑
r=0

(
r +

1

2

) ∫

ω

a
(
λ

r

θ (~wN)
r

θ (~vN) + 2µ
r
eij (~wN)

r
eij (~vN)

)
dx1dx2

=
N∑

r=0

(
r +

1

2

) ∫

ω

a
r

f i

r
vi dx1dx2 +

N∑
r=0

(
r +

1

2

) ∫

ω

ag̃+
i k+

r
vi dx1dx2

+
N∑

r=0

(
r +

1

2

) ∫

ω

ag̃−i k−(−1)r r
vi dx1dx2, ∀ ~vN ∈ ~VN(ω), (2.3)

where g̃±i (x1, x2) = g±i (x1, x2, h
±(x1, x2)), (x1, x2) ∈ ω, i = 1, 3,

r

θ (~vN) =
r
eii (~vN),

r
eij (~vN) =

1

2

(∂ vr
i

∂xj

+
∂ vr

j

∂xi

)
+

1

2

N∑
s=r

(
r

bis
s
vj +

r

bjs
s
vi),

r

bαr= −(r + 1)
∂αh+ − ∂αh−

h+ − h−
,

r

b3r= 0,

r

bjs=





0, s < r,

−(2s + 1)
∂αh+ − (−1)s+r∂αh−

h+ − h−
, j = α, s > r,

(2s + 1)
1− (−1)s+r

h+ − h−
, j = 3, s > r,

k± =

√
1 +

(∂h±

∂x1

)2

+
(∂h±

∂x2

)2

,
r

f i=

∫ h+

h−
fiPr(ax3 − b)dx3, r, s = 0, N.

Thus three-dimensional problem (2.1) we have reduced to two-dimensional
one. For the last problem (2.3) we obtain the existence and uniqueness of its
solution. First we prove the inequalities of Korn’s type in this case.

Theorem 2.1. Assume that ω ⊂ R2 is a bounded domain with Lipschitz
boundary γ = ∂ω.
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a) There exists a constant α > 0, which depends only on ω, such that

N∑
r=0

(
r +

1

2

) ∫

ω

a
r
eij (~vN)

r
eij (~vN)dx1dx2 +

N∑
r=0

∫

ω

r
vi

r
vi dx1dx2 ≥ α‖~vN‖2

H1(ω),

for any ~vN ∈ H1(ω), where H1(ω) = [H1(ω)]N+1.
b) There exists a constant α > 0, which depends only on ω and γ0, such that

N∑
r=0

(
r +

1

2

) ∫

ω

a
r
eij (~vN)

r
eij (~vN)dx1dx2 ≥ α‖~vN‖2

H1(ω), ∀ ~vN ∈ ~VN(ω).

Proof. Let us introduce the space

E(ω) =
{
~vN = (

0
v, . . . ,

N
v) ∈ L2(ω) = [L2(ω)]N+1,

r
eij (~vN) ∈ L2(ω), r = 0, N

}
.

Then, equipped with the norm ‖.‖ defined by

‖~vN‖ =
{|~vN |20,ω + |e(~vN)|20,ω

}1/2
,

where

|~vN |20,ω =
N∑

r=0

∫

ω

r
vi

r
vi dx1dx2,

|e(~vN)|20,ω =
N∑

r=0

(
r +

1

2

) ∫

ω

a
r
eij (~vN)

r
eij (~vN)dx1dx2,

the space E(ω) is a Hilbert space. Indeed, let us consider the Cauchy sequence

{~v(k)
N }∞k=1 in the space E(ω). By the definition of the norm ‖.‖ there exists

r
vi∈ L2(ω) and

r
eij∈ L2(ω) such that

r
v

(k)

i → r
vi,

r
eij (~v

(k)
N ) →r

eij in L2(ω), as k →∞.

Moreover, for any ϕ ∈ D(ω) (D(ω) is a space of infinitely differentiable functions
with compact support in ω) the following equality is valid:

∫

ω

r
eij (~v

(k)
N )ϕdx1dx2 =

1

2

∫

ω

(
− r

v
(k)

i ∂jϕ− r
v

(k)

j ∂iϕ

+
N∑

s=r

(
r

bis
s
v

(k)

j +
r

bjs
s
v

(k)

i )ϕ
)
dx1dx2, ∀ k ∈ N.

Hence, passing to the limit as k →∞, we obtain
r
eij=

r
eij (~vN).

Let us show that the spaces E(ω) and H1(ω) are isomorphic. It is clear that
H1(ω) ⊂ E(ω). Moreover, if we take ~vN ∈ E(ω), then for any 1 ≤ i, j, p ≤ 3 and
r = 0, N we get

∂p
r
vi∈ H−1(ω),

∂j(∂p
r
vi) = ∂j

r
eip (~vN) + ∂p

r
eij (~vN)− ∂i

r
ejp (~vN)
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− 1

2

N∑
s=r

(
∂j(

r

bis
s
vp +

r

bps
s
vi) + ∂p(

r

bis
s
vj +

r

bjs
s
vi)− ∂i(

r

bps
s
vj +

r

bjs
s
vp)

) ∈ H−1(ω)

since if y ∈ L2(ω), then ∂py ∈ H−1(ω). By virtue of the lemma of Lions [20–22]

we have ∂p
r
vi∈ L2(ω), and therefore the spaces E(ω) and H1(ω) coincide.

To prove the item a) of the theorem note that the identity mapping from
H1(ω) into E(ω) is injective, continuous and, by virtue of the preceding result,
is surjective. Since both spaces are complete, the closed graph theorem [23]
shows that the inverse mapping is also continuous, which proves the desired
inequality.

Now we will prove the item b) of the theorem. Notice that the semi-norm |.|
defined by |~vN | = |e(~vN)|0,ω is the norm in the space ~VN(ω) when the measure
of γ0 is positive. Indeed, if |e(~vN)|20,ω = 0, then [4]

0
v1 (x1, x2) =

1

a

(
b3x2 +

1

2
(h+ + h−)b1 + c1

)
,

0
v2 (x1, x2) =

1

a

(
− b3x1 +

1

2
(h+ + h−)b2 + c2

)
,

0
v3 (x1, x2) =

1

a

(− b1x1 − b2x2 + c3

)
,

(x1, x2) ∈ ω,

1
v1 (x1, x2) =

b1

3a2
,

1
v2 (x1, x2) =

b2

3a2
,

1
v3= 0,

r
vi= 0, i = 1, 3, r = 2, N,

for any real constants b1, b2, b3, c1, c2, c3. Since ~vN = 0 on γ0 and the measure
of γ0 is positive, we get ~vN = 0 on ω.

To prove the inequality of the item b) we argue by contradiction. Then

there exists a sequence {~vk
N}∞k=1, ~vk

N ∈ ~VN(ω) such that ‖~vk
N‖H1(ω) = 1 for all

k ∈ N, lim
k→∞

|e(~vk
N)|0,ω = 0. Since the sequence {~vk

N}∞k=1 is bounded in the space

H1(ω), a subsequence {~vkl
N}∞l=1 converges in L2(ω) by the Rellich–Kondrašov

theorem. Each sequence {r
eij (~vkl

N )}∞l=1, r = 0, N, also converges in L2(ω). The

subsequence {~vkl
N}∞l=1 is thus a Cauchy sequence with respect to the norm ‖.‖.

According to the inequality of the item a) we have that the subsequence

{~vkl
N}∞l=1 is a Cauchy sequence with respect to the norm ‖.‖H1(ω) too. The space

~VN(ω) is complete as a closed subspace of H1(ω) and hence there exists ~vN ∈
~VN(ω) such that

~vkl
N → ~vN in H1(ω), as l →∞,

and |e(~vN)|0,ω = lim
l→∞

|(~vkl
N )|0,ω = 0. Therefore ~vN = 0, which contradicts the

relations ‖~vkl
N‖H1(ω) = 1 for all l ≥ 1. ¤

On the basis of Theorem 2.1 we prove the theorem on the existence and
uniqueness of a solution of problem (2.3).
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Theorem 2.2. Assume that the Lamé constants λ ≥ 0, µ > 0, f ∈ L2(Ω),

g± ∈ L2(Γ±), then the symmetric bilinear form BΩ
N : ~VN(ω)× ~VN(ω) → R,

BΩ
N(~uN , ~vN) =

N∑
r=0

(
r +

1

2

) ∫

ω

a
(
λ

r

θ (~uN)
r

θ (~vN) + 2µ
r
eij (~uN)

r
eij (~vN)

)
dx1dx2

is continuous and coercive, the linear form LΩ
N : ~VN(ω) → R,

LΩ
N(~vN) =

N∑
r=0

(
r +

1

2

) ∫

ω

a
r

f i

r
vi dx1dx2 +

N∑
r=0

(
r +

1

2

)∫

ω

ag̃+
i k+

r
vi dx1dx2

+
N∑

r=0

(
r +

1

2

) ∫

ω

ag̃−i k−(−1)r r
vi dx1dx2

is continuous. The two-dimensional problem (2.3) has a unique solution ~wN ∈
~VN(ω), which is also a unique solution to the following minimization problem:

~wN ∈ ~VN(ω), JN(~wN) = inf
~vN∈~VN (ω)

JN(~vN),

JN(~vN) =
1

2
BΩ

N(~vN , ~vN)− LΩ
N(~vN), ∀ ~vN ∈ ~VN(ω).

Proof. By the inequality of the item b) of Theorem 2.1, the bilinear form BΩ
N is

coercive

BΩ
N(~vN , ~vN) ≥ 2µ

N∑
r=0

(
r +

1

2

) ∫

ω

a
r
eij (~vN)

r
eij (~vN)dx1dx2 ≥ 2µα‖~vN‖2

H1(ω).

Therefore, applying the Lax–Milgram theorem we obtain that problem (2.3)
has a unique solution ~wN , which can be equivalently characterized as a solution
of the minimization problem of the energy functional JN(~vN). ¤

Thus we have reduced the three-dimensional problem (2.1) to the two-dimen-
sional one and for the latter problem proved the existence and uniqueness of its
solution. For the reduced two-dimensional problem (2.3) the following theorem
is true.

Theorem 2.3. If all the conditions of Theorem 2.2 hold, then the vector-

function wN =
N∑

r=0

a
(
r +

1

2

)
r
w Pr(ax3− b) corresponding to the solution ~wN =

(
0
w, . . . ,

N
w) of the reduced problem (2.3) tends to the solution u of the three-

dimensional problem (2.1) wN → u in the space H1(Ω) as N →∞. Moreover,
if u ∈ Hs(Ω), s ≥ 2, then the following estimate is valid:

‖u−wN‖2
H1(Ω) ≤

1

N2s−3
q1(h

+, h−, N),

q1(h
+, h−, N) → 0 as N →∞.

(2.4)



24 M. AVALISHVILI AND D. GORDEZIANI

If, additionally, ‖u‖Hs(Ω)≤c, where c is independent of h = max
(x1,x2)∈ω̄

(h+(x1, x2)−
h−(x1, x2)), then the following estimate holds:

‖u−wN‖2
E(Ω) ≤

h2(s−1)

N2s−3
q2(N), q2(N) → 0 as N →∞,

where ‖v‖E(Ω) =
√

BΩ(v,v), ∀ v ∈ V (Ω).

Proof. By virtue of Theorem 2.2 ~wN is a solution of the minimization problem
of the energy functional JN , i.e.

JN(~wN) =
1

2
BΩ

N(~wN , ~wN)− LΩ
N(~wN)

≤ JN(~vN) =
1

2
BΩ

N(~vN , ~vN)− LΩ
N(~vN), ∀ ~vN ∈ ~VN(ω). (2.5)

Taking into account that

BΩ
N(~vN , ~vN) = BΩ(vN , vN), LΩ

N(~vN) = LΩ(vN), ∀ ~vN ∈ ~VN(ω),

where vN =
N∑

r=0

a
(
r +

1

2

)
r
v Pr(ax3 − b), and applying (2.5), we obtain

BΩ(u−wN , u−wN) ≤ BΩ(u,u)− 2LΩ(vN) + BΩ(vN , vN).

From the latter inequality we have

BΩ(u−wN ,u−wN) ≤ BΩ(u− vN ,u− vN), ∀ vN ∈ VN(Ω). (2.6)

Since γ0 is Lipschitz-continuous, by the trace theorems for Sobolev spaces
[24], for any v ∈ H1(Ω), v = 0 on Γ0, there exists a continuation ṽ ∈ H1

0(Ω1)
of the function v, where Ω1 ⊃ Ω, ∂Ω1 ⊃ Γ0. From the density of D(Ω1) in
H1

0(Ω1) we obtain that the space of infinitely differentiable functions in Ω, which
are equal to zero on Γ0, is dense in V (Ω), and since the set of polynomials is

dense in L2(−1, 1), we conclude that
⋃
N≥1

VN(Ω) is dense in V (Ω), and therefore

wN → u in the space H1(Ω) as N →∞.
Let us prove estimate (2.4). Suppose that u ∈ Hs(Ω), s ≥ 2, then

εN = u− uN = u−
N∑

r=0

a
(
r +

1

2

)
r
u Pr(ax3 − b),

r
u=

∫ h+

h−
uPr(ax3 − b)dx3.

Applying the properties of Legendre polynomials [19], we obtain

‖εN‖2
L2(Ω) =

∞∑
r=N+1

∫

ω

a
(
r +

1

2

)
(

r
ui)

2dx1dx2,

∥∥∥∂εN

∂x3

∥∥∥
2

L2(Ω)
=

∞∑
r=N

∫

ω

a
(
r +

1

2

)
(

r

∂3ui)
2dx1dx2 +

∫

ω

a
N(N − 1)

4
(

N

∂3ui)
2dx1dx2

+

∫

ω

a
N(N + 1)

4
(
N+1

∂3ui)
2dx1dx2,
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∥∥∥∂εN

∂xα

∥∥∥
2

L2(Ω
≤ 2

( ∞∑
r=N+1

∫

ω

a
(
r +

1

2

)
(

r

∂αui)
2dx1dx2

+

∫

ω

a
N + 1

4

(
N

( ∂h̃

∂xα

)2

+ (N + 2)
( ∂h̄

∂xα

)2)
(

N

∂3ui)
2dx1dx2

+

∫

ω

a
N + 1

4

(
(N + 2)

( ∂h̃

∂xα

)2

+ N
( ∂h̄

∂xα

)2)
(
N+1

∂3ui)
2dx1dx2

)
,

where α = 1, 2, h̄ = 1
2
(h+ + h−), h̃ = 1

2
(h+ − h−).

It should be mentioned that

r
u=

∫ h+

h−
uPr(ax3 − b)dx3 =

1

a(2r + 1)

( r−1

∂3u −
r+1

∂3u
)
, r = 1, 2, . . . , N,

and thus we have

‖ r
u ‖2

L2(ω) ≤
c

r2s

r+s∑

k=r−s

∥∥∥ 1

as

k

∂3 . . . ∂3︸ ︷︷ ︸
s

u
∥∥∥

2

L2(ω)
, (2.7)

where c = const is independent of r, h+, h−. Therefore from (2.7) we get

‖εN‖2
L2(Ω) ≤

1

N2s
q(h+, h−, N),

∥∥∥∂εN

∂xi

∥∥∥
2

L2(Ω)
≤ 1

N2s−3
q(h+, h−, N),

q(h+, h−, N) → 0 as N →∞,

where i = 1, 2, 3. Taking into account (2.6) and the coerciveness of BΩ, we
obtain

‖u−wN‖2
H1(Ω) ≤

1

N2s−3
q1(h

+, h−, N), q1(h
+, h−, N) → 0 as N →∞. (2.8)

From (2.7) we also have

‖εN‖2
L2(Ω) ≤

h2s

N2s
q̄(N),

∥∥∥∂εN

∂xi

∥∥∥
2

L2(Ω)
≤ h2(s−1)

N2s−3
q̄(N),

q̄(N) → 0 as N →∞, i = 1, 2, 3, (2.9)

where h = max
(x1,x2)∈ω̄

2h̃(x1, x2).

From inequalities (2.9) we obtain the second inequality of the theorem

‖u−wN‖2
E(Ω) ≤

h2(s−1)

N2s−3
q2(N), q2(N) → 0 as N →∞.

3. Dynamical Initial Boundary Value Problem

Now we proceed to studying the dynamical problem (1.1)–(1.3), constructing
and investigating a dynamical two-dimensional model of a prismatic shell. This
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problem admits the following variational formulation: find u ∈ C0([0, T ]; V (Ω)),
u′ ∈ C0([0, T ];L2(Ω)), which satisfies the equation

d

dt
(u′,v)L2(Ω) + BΩ(u,v) = LΩ(v), ∀ v ∈ V (Ω) (3.1)

in the sense of distributions in (0, T ) and the initial conditions

u(0) = ϕ, u′(0) = ψ, (3.2)

where ϕ ∈ V (Ω), ψ ∈ L2(Ω).
Note that the formulated three-dimensional dynamical problem (3.1), (3.2)

has a unique solution u for λ ≥ 0, µ > 0, f ∈ L2(Ω × (0, T )), g±,
∂g±

∂t
∈

L2(Γ± × (0, T )), which satisfies the following energetical identity: ∀ t ∈ [0, T ],

(u′(t),u′(t))L2(Ω) + BΩ(u(t),u(t)) = (ψ,ψ)L2(Ω) + BΩ(ϕ, ϕ) + 2L̃Ω(u)(t),

where

L̃Ω(u)(t) =

∫ t

0

(
f(τ),u′(τ)

)
L2(Ω)

dτ +
(
g+(t),u(t)

)
L2(Γ+)

+
(
g−(t),u(t)

)
L2(Γ−)

− (
g+(0),u(0)

)
L2(Γ+)

− (
g−(0),u(0)

)
L2(Γ−)

−
∫ t

0

(∂g+

∂t
(τ),u(τ)

)
L2(Γ+)

dτ−
∫ t

0

(∂g−

∂t
(τ),u(τ)

)
L2(Γ−)

dτ, ∀ t ∈ [0, T ].

As in the statical case, to reduce the three-dimensional problem (3.1), (3.2)
to a two-dimensional one, let us consider equation (3.1) on the subspace VN(Ω)
(VN(Ω) is defined in Section 2), and choose ϕ,ψ as elements of VN(Ω) and
HN(Ω), respectively, where

HN(Ω) =

{
vN =

N∑

k=0

a
(
k +

1

2

)
k
v Pk(ax3 − b);

k
v∈ L2(ω), k = 0, . . . , N

}
.

Consequently, we consider the following variational problem: find wN ∈
C0([0, T ]; VN(Ω)), w′

N ∈ C0([0, T ]; HN(Ω)), which satisfies the equation

d

dt
(w′

N , vN)L2(Ω) + BΩ(wN ,vN) = LΩ(vN), ∀ vN ∈ VN(Ω), (3.3)

in the sense of distributions in (0, T ) and the initial conditions

wN(0) = ϕN , w′
N(0) = ψN , (3.4)

where ϕN ∈ VN(Ω), ψN ∈ HN(Ω).
It must be pointed out that in problem (3.3), (3.4) the unknown is the vector-

function wN(t) =
N∑

k=0

a
(
k +

1

2

)
k
w (t)Pk(ax3 − b) and so this problem is
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equivalent to the following one: find ~wN = (
0
w, . . . ,

N
w) ∈ C0([0, T ]; ~VN(ω)),

~w′
N ∈ C0([0, T ]; [L2(ω)]N+1), which satisfies the equation

d

dt
(P ~w′

N , ~vN)[L2(ω)]N+1 + BΩ
N(~wN , ~vN) = LΩ

N(~vN), ∀ ~vN ∈ ~VN(ω), (3.5)

in the sense of distributions in (0, T ) and the initial condition

~wN(0) = ~ϕN , ~w′
N(0) = ~ψN , (3.6)

where ~ϕN = (
0
ϕ, . . . ,

N
ϕ) ∈ ~VN(ω), ~ψN = (ψ0, . . . , ψN) ∈ [L2(ω)]N+1,

ϕN =
N∑

k=0

a
(
k +

1

2

)
k
ϕ Pk(ax3 − b),ψN =

N∑

k=0

a
(
k +

1

2

) k

ψ Pk(ax3 − b),

P = (Prl), Prl = a
(
r +

1

2

)
δrl, r, l = 0, . . . , N,

and BΩ
N , LΩ

N are defined in Section 2.
Thus we get a two-dimensional model of the prismatic shell. To investigate

problem (3.5), (3.6) let us consider a more general variational problem and
formulate the theorem on the existence and uniqueness of its solution, from
which we obtain the corresponding result for (3.5), (3.6).

Let us suppose that V and H are Hilbert spaces, V is dense in H and con-
tinuously imbedded into it. The dual space of V is denoted by V ′ and H is
identified with its dual with respect to the scalar product, then

V ↪→ H ↪→ V ′

with continuous and dense imbeddings. The scalar product and the norm in the
space V is denoted by ((., .)), ‖.‖, while in the space H by (., .) and |.|. Denote
the norm in the space V ′ by ‖.‖∗, and the dual relation between the spaces V ′

and V by 〈., .〉.
Assume that A,B, L are linear continuous operators such that

B = B1 + B2, B1 ∈ L(V, V ′), B2 ∈ L(V,H) ∩ L(H, V ′), A, L ∈ L(H, H),

B1 is self-adjoint and B1+λI is coercive for some real number λ, A is self-adjoint
and coercive, i.e.,

b1(u, v) = b1(v, u), |b1(u, v)| ≤ cb1‖u‖‖v‖,
b1(u, u) ≥ β‖u‖2 − λ|u|2, β > 0,

∀ u, v ∈ V,

|b2(ũ, ṽ)| ≤
{

cb2‖ũ‖|ṽ|, ∀ ũ ∈ V, ṽ ∈ H,

cb2|ũ|‖ṽ‖, ∀ ũ ∈ H, ṽ ∈ V,

a(u1, v1) = a(v1, u1), a(u1, u1) ≥ α|u1|2, α > 0,

|a(u1, v1)| ≤ ca|u1||v1|, |l(u1, v1)| ≤ cl|u1||v1|,
∀ u1, v1 ∈ H,

(3.7)

where b1(u, v) = 〈B1u, v〉, b2(u, v) = 〈B2u, v〉, l(u1, v1) = (Lu1, v1), a(u1, v1) =
(Au1, v1), b(u, v) = b1(u, v) + b2(u, v), ∀ u, v ∈ V, u1, v1 ∈ H.
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Let us consider the following variational problem: find z ∈ C0([0, T ]; V ), z′ ∈
C0([0, T ]; H), which satisfies the equation

d

dt
a(z′, v) + b(z, v) + l(z′, v) = (F, v) + 〈G, v〉, ∀ v ∈ V, (3.8)

in the sense of distributions in (0, T ) and the initial conditions

z(0) = z0, z′(0) = z1, (3.9)

where z0 ∈ V, z1 ∈ H, F ∈ L2(0, T ; H), G,G′ ∈ L2(0, T ; V ′).
For the latter problem the following theorem is true.

Theorem 3.1. If all the conditions (3.7) hold, then problem (3.8), (3.9) has
a unique solution which satisfies the equality

a(z′(t), z′(t)) + b1(z(t), z(t)) + 2

∫ t

0

b2(z(τ), z′(τ))dτ + 2

∫ t

0

l(z′(τ), z′(τ))dτ

= a(z1, z1) + b1(z0, z0) + 2

∫ t

0

(F (τ), z′(τ))dτ + 2〈G(t), z(t)〉 − 2〈G(0), z0〉

−2

∫ t

0

〈G′(τ), z(τ)〉dτ, ∀ t ∈ [0, T ].

In Theorem 3.1 the existence and uniqueness of the solution can be proved in
a standard way applying the Faedo–Galerkin method [25], while the energetical
equality is obtained by regularization and passing to the limit.

For the reduced problem (3.5), (3.6), from Theorem 3.1 we obtain

Theorem 3.2. Assume that Lamé constants λ ≥ 0, µ > 0,f ∈ L2(Ω ×
(0, T )), g±,

∂g±

∂t
∈ L2(Γ± × (0, T )), ~ϕN ∈ ~VN(ω), ~ψN ∈ [L2(ω)]N+1, then

problem (3.5), (3.6) has a unique solution ~wN(t) and the following energetical
identity is valid:(

w′
N(t),w′

N(t)
)
L2(Ω)

+ BΩ
(
wN(t),wN(t)

)
= (ψN ,ψN)L2(Ω)

+BΩ(ϕN ,ϕN) + 2L̃Ω(wN)(t), ∀ t ∈ [0, T ]. (3.10)

Proof. This theorem is just a consequence of Theorem 3.1. Indeed, it is sufficient
to take V = ~VN(ω), H = [L2(ω)]N+1, z(t) = ~wN(t), v = ~vN ,

a(~wN , ~vN)=(P ~wN , ~vN)[L2(ω)]N+1 , b1(~wN , ~vN)=BΩ
N(~wN , ~vN),

b2 ≡ 0, l ≡ 0, z0 = ~ϕN , z1 = ~ψN ,

〈G,~vN〉 = ( ~Q+, ~vN)[L2(ω)]N+1 + ( ~Q−, ~vN)[L2(ω)]N+1 , ∀ ~vN ∈ ~VN(ω),

~Q± = (
r

Q±)N
r=0,

r

Q+= a
(
r +

1

2

)
g̃+k+,

r

Q−= a(−1)r
(
r +

1

2

)
g̃−k−,

g̃±(x1, x2, t) = g±(x1, x2, h
±(x1, x2), t) , (x1, x2, t) ∈ ω × (0, T ),

F = P ~fN , ~fN = (
r

f)N
r=0,

r

f=

∫ h+

h−
fPr(ax3 − b)dx3, r = 0, N.
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It should be mentioned that all the conditions of Theorem 3.1 are valid and
therefore problem (3.5), (3.6) has a unique solution which satisfies the energet-
ical identity

(
P ~w′

N(t), ~w′
N(t)

)
[L2(ω)]N+1 + BΩ

N

(
~wN(t), ~wN(t)

)
=

(
P ~ψN , ~ψN

)
[L2(ω)]N+1

+ 2

∫ t

0

(
P ~fN(τ), ~w′

N(τ)
)
[L2(ω)]N+1dτ + 2

(
~Q+(t) + ~Q−(t), ~wN(t)

)
[L2(ω)]N+1

+ BΩ
N(~ϕN , ~ϕN)− 2

(
~Q+(0) + ~Q−(0), ~ϕN

)
[L2(ω)]N+1

− 2

∫ t

0

(∂ ~Q+

∂t
(τ) +

∂ ~Q−

∂t
(τ), ~wN(τ)

)
[L2(ω)]N+1

dτ, ∀ t ∈ [0, T ],

which is equivalent to identity (3.10). ¤
Thus we have reduced the three-dimensional problem (3.1), (3.2) to the two-

dimensional one (3.5), (3.6) and proved that it has a unique solution. Now,
let us estimate the rate of approximation of the exact solution u of the three-
dimensional problem by the vector-function wN(t) restored from the solution
~wN(t) of the reduced problem. In order to simplify the notation, the norms in
spaces V (Ω) and L2(Ω) are denoted by ‖.‖ and |.|, respectively, and the scalar
product in L2(Ω) is denoted by (., .). The following theorem is true.

Theorem 3.3. If all the conditions of Theorem 3.2 are valid and ϕN ,ψN

corresponding to ~ϕN , ~ψN tend to ϕ,ψ in the spaces V (Ω) and L2(Ω), respec-

tively, then the vector-function wN(t) corresponding to the solution ~wN(t) = (
0
w

(t), . . . ,
N
w (t)) of the two-dimensional problem (3.5), (3.6) tends to the solution

u(t) of the three-dimensional problem (3.1), (3.2) in the space V (Ω)

wN(t) → u(t) strongly in V (Ω),

w′
N(t) → u′(t) strongly in L2(Ω)

as N →∞, ∀ t ∈ [0, T ].

Moreover, if components of ~ϕN , ~ψN are moments of ϕ, ψ with respect to Le-

gendre polynomials, i.e. ~ϕN = (
0
ϕ, . . . ,

N
ϕ), ~ψN = (

0

ψ, . . . ,
N

ψ),

k
ϕ=

∫ h+

h−
ϕPk(ax3 − b)dx3,

k

ψ=

∫ h+

h−
ψPk(ax3 − b)dx3, k = 0, N,

and u satisfies additional regularity properties with respect to the spatial vari-
ables u ∈ L2(0, T ;Hs0(Ω)), u′ ∈ L2(0, T ;Hs1(Ω)), u′′ ∈ L2(0, T ;Hs2(Ω)), s0 ≥
s1 ≥ s2 ≥ 1, s1 ≥ 2, then the following estimate is valid: s = min{s2, s1− 3/2},
|u′ −w′

N |2 + ‖u−wN‖2 ≤ 1

N2s
q(Ω, Γ0, N), q(Ω, Γ0, N) → 0 as N →∞.

If additionally ‖u‖L2(0,T ;Hs0(Ω)) ≤ c, ‖u′‖L2(0,T ;Hs1 (Ω)) ≤ c, ‖u′′‖L2(0,T ;Hs2(Ω)) ≤ c,
where c is independent of h = max

(x1,x2)∈ω̄
(h+(x1, x2)− h−(x1, x2)), then

|u′ −w′
N |2 + ‖u−wN‖2 ≤ q1(Ω, Γ0)

h2s̄

N2s
q2(N), q2(N) → 0 as N →∞,
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where s̄ = min{s2, s1 − 1}.
Proof. By virtue of Theorem 3.2 the vector-function wN(t) corresponding to
the solution ~wN(t) of the reduced problem (3.5), (3.6) satisfies the energetical
equality (3.10) and since ϕN → ϕ in V (Ω) and ψN → ψ in L2(Ω), we get:
∀ t ∈ [0, T ],

|w′
N(t)|2 + ‖wN(t)‖2 ≤ c

(
|ψ|2 + ‖ϕ‖2 +

∫ t

0

|f(τ)|2dτ + ‖g+(t)‖2

L2(Γ+)

+‖g−(t)‖2
L2(Γ−) + ‖g+(0)‖2

L2(Γ+) + ‖g−(0)‖2
L2(Γ−) +

∫ t

0

∥∥∥∂g+

∂t
(τ)

∥∥∥
2

L2(Γ+)
dτ

+

∫ t

0

∥∥∥∂g−

∂t
(τ)

∥∥∥
2

L2(Γ−)
dτ

)
+ c

∫ t

0

(|w′
N(τ)|2 + ‖wN(τ)‖2

)
dτ.

Applying Gronwall’s lemma [26], from the latter inequality we have

|w′
N(t)|2 + ‖wN(t)‖2 < c1, ∀ N ∈ N, t ∈ [0, T ]. (3.11)

Hence {wN(t)} belongs to the bounded set of L∞(0, T ; V (Ω))∩L2(0, T ; V (Ω)),
while {w′

N(t)} belongs to the bounded set of L∞(0, T ;L2(Ω))∩L2(0, T ;L2(Ω)).
Consequently, there exists a subsequence {wν} of {wN} such that when ν →∞,

wν → ũ weakly in L2(0, T ; V (Ω)), weakly- ∗ in L∞(0, T ; V (Ω)),
w′

ν → ũ′ weakly in L2(0, T ;L2(Ω)), weakly- ∗ in L∞(0, T ;L2(Ω)).
(3.12)

Let us prove that ũ is a solution of problem (3.1), (3.2). Since
⋃
N≥0

VN(Ω) is

dense in V (Ω), for any v ∈ V (Ω) there exists vN ∈ VN(Ω) such that vN → v in
V (Ω) as N →∞. For any ζ ∈ D((0, T )), θ = ζv, θN = ζvN , we have

θN → θ strongly in L2(0, T ; V (Ω)),
θ′N → θ′ strongly in L2(0, T ; V (Ω))

as N →∞. (3.13)

Taking into account (3.13), from (3.3) we obtain
∫ T

0

BΩ(wν(t),θν(t))dt−
∫ T

0

(w′
ν(t), θ

′
ν(t))dt =

∫ T

0

(f(t), θν(t))dt

+

∫ T

0

(g+(t),θν(t))L2(Γ+)dt +

∫ T

0

(g−(t),θν(t))L2(Γ−)dt.

Passing to the limit as ν →∞ and applying (3.12), (3.13) from this equality we
obtain ∫ T

0

BΩ(ũ(t),θ(t))dt−
∫ T

0

(ũ′(t), θ′(t))dt =

∫ T

0

(f(t),θ(t))dt

+

∫ T

0

(g+(t),θ(t))L2(Γ+)dt +

∫ T

0

(g−(t),θ(t))L2(Γ−)dt.

Hence, ũ ∈ L∞(0, T ; V (Ω)), ũ′ ∈ L∞(0, T ;L2(Ω)) and satisfies equation (3.1).
Therefore ũ ∈ C0([0, T ];L2(Ω)) ∩ L∞(0, T ; V (Ω)), ũ′ ∈ C0([0, T ]; V ′(Ω)) ∩

L∞(0, T ;L2(Ω)) (V ′(Ω) denotes the dual space of V (Ω)) and consequently
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ũ, ũ′ are scalarly continuous functions from [0, T ] to spaces V (Ω) and L2(Ω),
respectively [25]. Note that ũ satisfies the energetical identity, from which we
obtain the continuity of ũ and ũ′, ũ ∈ C0([0, T ]; V (Ω)), ũ′ ∈ C0([0, T ];L2(Ω)),
and as ϕN → ϕ in V , ψN → ψ in L2(Ω), ũ satisfies the initial conditions
(3.2).

Since problem (3.1), (3.2) has a unique solution u, we get that ũ = u and
the whole sequence wN has property (3.12), i.e. when N →∞,

wN → u weakly in L2(0, T ; V (Ω)), weakly- ∗ in L∞(0, T ; V (Ω)),
w′

N → u′ weakly in L2(0, T ;L2(Ω)), weakly- ∗ in L∞(0, T ;L2(Ω)).
(3.14)

Let us prove that {wN} satisfies the convergence properties formulated in
the theorem. Applying the energetical equalities for u(t) and wN(t), we obtain
the following equality for the difference δN(t) = u(t)−wN(t):

(
δ′N(t), δ′N(t)

)
+ BΩ

(
δN(t), δN(t)

)
+ 2BΩ

(
u(t),wN(t)

)

+ 2
(
u′(t),w′

N(t)
)

=
(
δ′N(0), δ′N(0)

)
+ BΩ(δN(0), δN(0))

+ 2
(
u′(0), w′

N(0)
)

+ 2BΩ(u(0),wN(0)) + 2L̃Ω(δN)(t) + 4L̃Ω(wN)(t). (3.15)

Denote

JN(t) =
(
u′(0),w′

N(0)
)

+ BΩ
(
u(0),wN(0)

)−BΩ(u(t),wN(t))

− (
u′(t),w′

N(t)
)

+ 2L̃Ω(wN)(t).

Then from (3.15) we obtain
(
δ′N(t), δ′N(t)

)
+ BΩ

(
δN(t), δN(t)

)
=

(
δ′N(0), δ′N(0)

)

+BΩ
(
δN(0), δN(0)

)
+ 2L̃Ω(δN)(t) + 2JN(t). (3.16)

From (3.11) it follows that for each t ∈ (0, T ] there exists a sequence {wν1(t)}
such that

wν1(t) → χ1 weakly in V (Ω),
w′

ν1
(t) → χ2 weakly in L2(Ω)

as ν1 →∞. (3.17)

Let us take ζ ∈ C1([0, T ]), ζ(0) = 0, ζ(t) 6= 0 and consider the above-mentioned
vector-functions θ = ζv,θN = ζvN , which also have property (3.13). By the
integration by parts we have

∫ t

0

(w′
ν1

(τ),θν1(τ))dτ = (wν1(t), θν1(t))−
∫ t

0

(wν1(τ),θ′ν1
(τ))dτ.

Applying (3.14), (3.17) and passing to the limit as ν1 → ∞, from the latter
equality we obtain

∫ t

0

(u′(τ),θ(τ))dτ = (χ1,θ(t))−
∫ t

0

(u(τ), θ′(τ))dτ.

On the other hand,
∫ t

0

(u′(τ),θ(τ))dτ = (u(t),θ(t))−
∫ t

0

(u(τ),θ′(τ))dτ.
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From the latter equalities we have (u(t), v) = (χ1,v), ∀ v ∈ V (Ω), and therefore
χ1 = u(t).

Hence since χ1 is unique and is equal to u(t), then for any fixed t the whole
sequence {wN(t)} converges to u(t) weakly in V (Ω).

Also, since wN satisfies equation (3.3), we have

−
∫ t

0

(w′
ν1

(τ),θ′ν1
(τ))dτ +

∫ t

0

BΩ(wν1(τ),θν1(τ))dτ

= −(w′
ν1

(t),θν1(t)) +

∫ t

0

LΩ(θν1(τ))dτ,

from which, passing to the limit as ν1 → ∞ and applying (3.14), (3.17), we
obtain

−
∫ t

0

(u′(τ),θ′(τ))dτ +

∫ t

0

BΩ(u(τ),θ(τ))dτ = −(χ2,θ(t)) +

∫ t

0

LΩ(θ(τ))dτ.

Since u is a solution of problem (3.1), (3.2), we get

−
∫ t

0

(u′(τ),θ′(τ))dτ +

∫ t

0

BΩ(u(τ),θ(τ))dτ = −(u′(t), θ(t)) +

∫ t

0

LΩ(θ(τ))dτ,

and therefore

(u′(t),v) = (χ2, v), ∀ v ∈ V (Ω).

From the density of V (Ω) in L2(Ω), it follows that χ2 = u′(t). As in the case
of wν1(t), we obtain that the whole sequence w′

N(t) converges to u′(t) weakly
in L2(Ω). Thus, for any t ∈ [0, T ],

wN(t) → u(t) weakly in V (Ω),
w′

N(t) → u′(t) weakly in L2(Ω)
as N →∞.

Therefore passing to the limit in JN(t) as N → ∞, by the energetical identity
we obtain

JN(t) → (
u′(0),u′(0)

)
+ BΩ

(
u(0),u(0)) + 2L̃Ω(u

)
(t)

− (
u′(t),u′(t)

)−BΩ
(
u(t), u(t)

)
= 0. (3.18)

So, from (3.16) we have

|δ′N(t)|2 + ‖δN(t)‖2 ≤ c
(
2JN(t) +

(
δ′N(0), δ′N(0)

)

+ BΩ
(
δN(0), δN(0)

)
+ 2L̃Ω(δN)(t)

)
. (3.19)

From the conditions of the theorem we have that δN(0) → 0 strongly in V (Ω)
and δ′N(0) → 0 strongly in L2(Ω). Thus due to (3.14), (3.18) we obtain
(
δ′N(0), δ′N(0)

)
+ BΩ(δN(0), δN(0)) + 2JN(t) + 2L̃Ω(δN)(t) → 0 as N →∞.

Therefore from (3.19) we have

|δ′N(t)|2 + ‖δN(t)‖2 → 0 as N →∞.
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Consequently,

wN(t) → u(t) strongly in V (Ω),
w′

N(t) → u′(t) strongly in L2(Ω)
as N →∞, ∀ t ∈ [0, T ].

Now we will prove the validity of the estimates of the theorem. The solution
u of the three-dimensional problem satisfies equation (3.1) for any v ∈ V (Ω)
and hence satisfies it for any vN ∈ VN(Ω) ⊂ V (Ω), i.e.

d

dt
(u′,vN) + BΩ(u,vN) = LΩ(vN), ∀ vN ∈ VN(Ω).

Thus, if we take into account that wN corresponds to the solution ~wN of the
reduced two-dimensional problem (3.5), (3.6), then from the latter equation we
have

d

dt

(
(u−wN)′, vN

)
+ BΩ(u−wN ,vN) = 0, ∀ vN ∈ VN(Ω).

Let u ∈ L2(0, T ;Hs0(Ω)), u′ ∈ L2(0, T ;Hs1(Ω)), u′′ ∈ L2(0, T ;Hs2(Ω)),
s0 ≥ s1 ≥ s2 ≥ 1, s1 ≥ 2. Let us consider the series expansion of the vector-
function u by Legendre polynomials with respect to x3. Denote by uN the piece
of series consisting of first N + 1 terms, and by αN , the remainder term, i.e.

u = uN + αN =
N∑

k=0

a
(
k +

1

2

)
k
u Pk(ax3 − b) + αN ,

k
u=

∫ h+

h−
uPk(ax3 − b)dx3,

k = 0, N. Let us take initial conditions ~ϕN , ~ψN of the reduced problem (3.5),

(3.6) such that ~ϕN = (
0
ϕ, . . . ,

N
ϕ), ~ψN = (

0

ψ, . . . ,
N

ψ),

k
ϕ=

∫ h+

h−
ϕPk(ax3 − b)dx3,

k

ψ=

∫ h+

h−
ψPk(ax3 − b)dx3, k = 0, N.

Thus the vector-function ∆N = uN −wN is a solution of the problem

d

dt
(∆′

N ,vN)+BΩ(∆N , vN)=
(
(α′′

N ,vN)+BΩ(αN ,vN)
) ∀vN ∈VN(Ω),

∆N(0) = uN(0)−ϕN = 0,∆′
N(0) = u′N(0)−ψN = 0.

(3.20)

Applying Theorem 3.1 to problem (3.20), we obtain

(
∆′

N(t),∆′
N(t)

)
+ BΩ

(
∆N(t),∆N(t)) = −2

∫ t

0

(α′′
N(τ),∆′

N(τ)
)
dτ

−2BΩ
(
αN(t),∆N(t)

)
+ 2

∫ t

0

BΩ
(
α′

N(τ),∆N(τ)
)
dτ, ∀ t ∈ [0, T ].

From the latter equality we get

|∆′
N(t)|2 + ‖∆N(t)‖2 ≤ c

∫ t

0

(|∆′
N(τ)|2 + ‖∆N(τ)‖2

)
dτ + c

( ∫ t

0

|α′′
N(τ)|2dτ

+
1

2ε
‖αN(t)‖2 +

ε

2
‖∆N(t)‖2 +

∫ t

0

‖α′
N(τ)‖2dτ

)
,

where c depends only on λ, µ, Ω and Γ0.
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So by taking ε properly we have

|∆′
N(t)|2 + ‖∆N(t)‖2 ≤ c1

( ∫ t

0

(|∆′
N(τ)|2 + ‖∆N(τ)‖2

)
dτ

+

∫ t

0

|α′′
N(τ)|2dτ + ‖αN(t)‖2 +

∫ t

0

‖α′
N(τ)‖2dτ

)
. (3.21)

By Gronwall’s lemma, from (3.21) we obtain that for any t ∈ [0, T ],

|∆′
N(t)|2 + ‖∆N(t)‖2 ≤ c2

( ∫ t

0

|α′′
N(τ)|2dτ + ‖αN(t)‖2 +

∫ t

0

‖α′
N(τ)‖2dτ

)
.

As in the proof of Theorem 2.2 we can show that
∫ t

0

|α′′
N(τ)|2dτ≤ 1

N2s2
q̄(h+, h−, N), ‖αN(t)‖2≤ 1

N2s1−3
q̄(h+, h−, N),

∫ t

0

‖α′
N(τ)‖2dτ≤ 1

N2s1−3
q̄(h+, h−, N), q̄(h+, h−, N)→0 as N→∞.

(3.22)

Therefore

|∆′
N(t)|2 + ‖∆N(t)‖2 ≤ 1

N2s
q̂(Ω, Γ0, N), q̂(Ω, Γ0, N) → 0 as N →∞,

where s = min{s2, s1 − 3/2}.
Since

|α′
N(t)|2 ≤ 1

N2s2
q̃(h+, h−, N), q̃(h+, h−, N) → 0 as N →∞,

we obtain

|u′(t)−w′
N(t)|2 + ‖u(t)−wN(t)‖2 ≤ 1

N2s
q(Ω, Γ0, N),

where q(Ω, Γ0, N) → 0 as N →∞.
If ‖u‖L2(0,T ;Hs0 (Ω)) ≤ c, ‖u′‖L2(0,T ;Hs1 (Ω)) ≤ c, ‖u′′‖L2(0,T ;Hs2 (Ω)) ≤ c, where c

is independent of h = max
(x1,x2)∈ω̄

(h+(x1, x2) − h−(x1, x2)), then instead of (3.22)

we have ∫ t

0

|α′′
N(τ)|2dτ ≤ h2s2

N2s2
q̄1(N), ‖αN(t)‖2 ≤ h2(s1−1)

N2s1−3
q̄1(N),

∫ t

0

‖α′
N(τ)‖2dτ ≤ h2(s1−1)

N2s1−3
q̄1(N), q̄1(N) → 0 as N →∞,

and hence

|∆′
N(t)|2 + ‖∆N(t)‖2 ≤ q̂1(Ω, Γ0)

h2s̄

N2s
q̂2(N),

q̂2(N) → 0 as N →∞,
(3.23)

where s̄ = min{s2, s1 − 1}.
Taking into account that

|α′
N(t)|2 ≤ h2s2

N2s2
q̃1(N), q̃1(N) → 0 as N →∞,
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from (3.23) we obtain the second estimate of the theorem. ¤
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Vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris, 1968.

26. Ph. Hartman, Ordinary differential equations. John Wiley & Sons, Inc., New York–
London–Sydney, 1964.

(Received 22.04.2002)

Authors’ addresses:

M. Avalishvili
Faculty of Mechanics and Mathematics
I. Javakhishvili Tbilisi State University
2, University St., Tbilisi 380043
Georgia
E-mail: mavalish.math@tsu.edu.ge

D. Gordeziani
I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University
2, University St., Tbilisi 380043
Georgia
E-mail: gord@viam.hepi.edu.ge


