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ESTIMATES OF FOURIER COEFFICIENTS

V. TSAGAREISHVILI

Abstract. Some well-known properties of the trigonometric system as well
as of the Haar and Welsh systems are generalized to general orthonormal
systems.
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1. INTRODUCTION

In the theory of functions an important place is occupied by generalization
of properties of specific orthonormal series to general orthonormal systems.

Here we note only some of the authors who have significant results concerning
the mentioned problems: Marcinkiewicz [1], Stechkin [2], Olevskii 3], Bochkarev
4], [5], Mitiagin [6], Kashin [7], McLaughlin [8].

It was proved that in many cases some properties of the well-known orthogo-
nal systems are typical for general orthogonal systems (see, e.g., [2], [3], [4], [5]).
However, not all properties of the well-known orthogonal systems are extending
on general orthogonal systems. Therefore, in order to obtain well-known results
for general orthogonal systems, we need to impose specific conditions on the
given system.

2. AUXILIARY NOTATION AND RESULTS

Let 6 € (0,1]. If a function f € C([0,1]), then its modulus of continuity is
defined as follows

w(d, f) = sup max |f(z) = f(z+h),

|h|<6& 0<z<1-h

where 0 < h < 1.
If a function f € Ly([0, 1]), then the integral modulus of continuity has the
form

1—h 3
at f) = s ([ 160 = s+ )
[h|<6 \JO
We say that a function f € Lipa if w(d, f) = O(0%) as 6 — 0.
Let (¢,,) be an orthogonal system on [0, 1]. Then the Fourier coefficients with
respect to (¢,) for the function f € L([0, 1]) are defined as follows

cn(f):/o F@)on(@)dr, n=1,2,...
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The best approximation with respect to the system (p,) in the sense of
L5([0,1]) is defined by the following equality:

E@(f) = inf
() = it

f(l‘) - Z amgom(x)

2

If (¢,,) is a complete system on [0, 1], then

EQ(f) = <i ci<f>) B

k=n

In the sequel we will denote by (1)) either one of the orthonormal systems of
Haar or Walsh (see, e.g., [9, p. 53, 54]), or the trigonometric system. For these
systems the following results are valid. They are important for our purpose.

Theorem A. If
en(f) = [ f(@)¢n(z)dz,
/

then the following relations are valid:
a) c,(f) =0 (w(%,f)) for every f € C([0,1]);
b) c,(f) =0 (wg(% ,f)) for every f € Lo([0,1]).

]
Theorem B. For every function f € Ly([0,1]) the relation
1
0fu (1)
n

The relation a) of Theorem A for the Haar system was proved by B. Golubov
[10] and the relation b) was proved by P. Ul'yanov [11], for the Walsh system
it was proved by Fine [12].

Theorem B for the Haar system was proved by Ul'yanov [11]. As to the
trigonometric system, Theorems A and B are well-known (see, e.g., [13, p. 79]).

It is well-known that Theorems A and B are not valid for general orthogonal
systems. In fact, the following theorem holds.

holds.

Theorem C. Let f be a function from Ly([0,1]) and (c,) be an arbitrary
sequence from ly satisfying the condition

o0 1
2 _ 2
7?:1 c; = /0 fo(x) de.

Then there exists an orthonormal system (p,) on [0, 1] such that

cn:/olf(x)gon(x)dx, n=1,2,....



ESTIMATES OF FOURIER COEFFICIENTS 365

Theorem C is proved by A. Olevskii [3]. From this theorem follows that if
f € Ly([0,1]) and the numbers ¢, satisfy the conditions

o 1
a) Zci:/ f*(z)dr and D) lim ¢=+oo,
n=1 0

n—oo wy(=, f)

then there exists an orthonormal system of functions (¢,,) such that

1
Cp = / f(@)pn(z)de, n=1,2....
0
Therefore there exists a function f € Lo(]0, 1]) such that

- en(S)]

lim ——~ = +o0.
n—oo w2(% ) f)

The following propositions are valid (see [15]).

Lemma 1. Let the function f € Ly([0,1]) take finite values at every point of
the interval [0,1] and ® € Ly([0,1]). Then the following equality is valid:

/Olf(x)(I)(x) dx 1 <f (g) iy (z;1>) /qu)(x) .
1/ (f(x) —f (%)) d(x) dx+f(1)/01<1>(x) dz. (1)

Lemma 2. Let (¢,) be an orthonormal system of functions on [0,1]. Let E,
denote the set 0f the natural numbers i (i =1,2,...,n) for which there ezists a
point t € (ﬂ, %) such that

n

[y

+

Vi

7

i—1
n

t
sign/ on(x) de # sign/ on(x) de.
0 0

Then the inequality

1

< (/01¢i(x>dw)2

2.

1€by,

/O:L on(x) dz

holds.
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3. MAIN RESULTS

Let (a,) be a sequence of real numbers from /5, Introduce the following no-

tation:

N+m
P](Vm)(x) = Z ak@k(a:), m = 1727 cee

k=N
N-1| ok
Hy = supz / P (z) da|,
" k=1 |V0
(o9} %
hy = Z ai)
k=N

Theorem 1. Let f € C([0,1]) and (v,) be an orthonormal system of functions

1
on [0,1] satisfying [ ¢n(x)de =0, n=1,2,....
0

)

holds if and only if the condition

Then the relation

Hy = O(hy) for every sequence (ay) € {2

15 fulfilled.

Proof. Sufficiency. 1If ¢, (f) = [ f(z)pn(z)dz, then

o .

N+m N+m 1
S A=Y al) / J(@)eu() de
k=N k=N 0
- / @) S el Fn() do = / F(@) P () da

Using the assertion of Lemma 1, we obtain

/ P ) de = (f (ﬁ) y ( ;1)) / " P ) da

i

+ ; / - <f(a:) —f (%)) Py (x) de + (1) / P (a) di

0

(2)

(3)
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Estimate the right-hand side of equality (3). We have

> (1(5) - () [ e

=1

S (3) (| e
<w (% ,f) Ng /Ofv PO (2) dz| < O(1) w (%f) . (@)

Applying the Holder inequality, we obtain

]jz_;l/:l (f(x) —f (%>) P

() [y (1) ([ (0o )
: 1

1
Finally, since [ ¢,(z)de =0, n=1,2,..., from (3), (4) and (5) we have

/0 F(2)PY () de

Hence, applying (2), we get

N+m 1

>N =0(w(57)er).
k=N

i.e.,

iczq):o(w (%f) eN>, (6)

k=N

(gcim)%@(w (7))

Sufficiency of the theorem is proved.
Necessity. Let Hy # O(hy), i.e.,

From (6) we have

lim — = +o0.
N hn
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Therefore there exist a sequence (a,) € ¢3 and natural numbers m, T oo such
that

_ (mN)
lim o =T (7)
where
N-1] ,k
H) = / PU) () dx
k=1 |/O
and
N+mN
Py (@) = Y awpula).
k=N

Consider the sequence of functions

Fal@) :/Om <sign/0uP](VmN)(t) dt) du, N=1,2,.... (8)

1
Taking into account the condition [ ¢,(z)dx =0, n =1,2,..., from (1) we

obtain

N i
1 m
<33 [0 A a
-1 /5
1
1 N+m 2
L pmo V2 N ] A
SN(/O (PNN(x)) da;) -+ ,;:N: a2 . (10)

Taking into account the assertions of Lemma 2 and (8), we get

5 (1 () () [ e

i=1

- 5 () () f e

i€EFN\EN
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S () (T [ e

SN

where Fy = {1,2,...,N}.
If ¢ GFN\EN, then

. 1 Hz\—ll ”
In (%) In <Z+ ):—/_ sign/o PU™(4) dt du
= —— 81gn/0

z‘eg\:EN( ( ) (Z+1>) J(VmN)<33'>dSC

Therefore

(12)

() -0 (57 < 4

and, by virtue of Lemma 2, we have
1 2 3
/ mN ) dx)
0

/ON P x)dz (
— N+mN < ( ) : (14)

Then, taking into account (13) and (14), we obtain

i v

i€BEN
N=12. . .

At last, as far as

< —hy,  (15)

1
N

Using (12) and (15), we get

5 ( () - (5) [ e

1 ¥ (m
¥ 2| A
iGFN\EN 0

L (my) hwn

gy N

NN N

i

/NP““<
v V() dx
0

v

v
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Hence due to (7) we have

1
(my)
N || fn(x)Py V' (x)dx m
[@P @] e
hy ~ hy hy'
and consequently
; (my)
N\ [ fv(z) Py~ (x) dx
lim —= = +00. (16)

Further, since

|fn(z) = fn(y)l
|z =yl

)

| fnllLipr = [ fvlle + sup
aj’y

then from (8) it follows that

[ fnlliip < 2. (17)

Finally, by virtue of the Banach-Steinhaus theorem (see (16) and (17)) there
exists a function fy € Lip 1 such that

1

N[ fu(@) Py (@) da
[im —= = +00. (18)
n—00 hN
As far as
' (myy) Lo
/ fo(z)Py V' (x)dz| = / fo(z) Z appr(z) dx
0 0 k=N
N+mN 1 N+mN
= Z ak/ fo(z)pr(x) dz| = Z axcx(fo)
k=N 0 k=N
1 1
N+my 2 [N+my 2
< Z ai Z Cz(fo) < hn - en,
k=N k=N

then taking into account that w (% , fo) = O (%), from (18) we have

) hy -en
lim = 400,
n—00 (Y (%’fo) . hN
i.e.,
lim N = +4o00. ]

e w (375 o)
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Theorem 2. Let the functions f and ® be from Ly([0,1]). Then

/f z) dx

<wn(5.f) (V2o

/Olq)(x)dx |

1
+n/11 |f(z)| dx

where V,, = Z | J k/n (z) dz|.

Proof. Applying the Abel transformation, we get

nz ki f(x) alzzc/n1 O(x)dx

—l—n/ll f(x) dx/01q>(:c) dx. (20)

Since

= [0 [ @) = pe) v de 21
and

/0 )o@y de =3 / F()D(x) da, (22)
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then, taking into account (20), (21) and (22), one has

[ i) o= ; / F()0(a) d —n ; / o / B() do
+n:21/i(f(w)f(x+%)) dm/oqu) d+nl/1 oy [ ol
_ z(/f syis—n [ i [ o )
L (o (e+3)) /f

o[ e [ otwyie=n3 [*[F o) oy ot asa
+”Z/(f()—f(+%)> [ ot d+n/lif /

[ (s (oo b)) armd [ (oo s5) - (e d))

2 [ (rew) - (o)) a
Hen

i) e e o)
e o )
— e (5) (24)

dt
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By virtue of the Holder inequality we obtain

/ / (x)dxdt
k—1 k—1

L s N :
§%< / L, @)= @) dxdt) ( /knlw)da:) . (@)

Applying the equality (see [11])

/ / () — F(O)Pdwdt =2 /OH ( /ab_érf<y+s>—f<y>|pdy) i,

we get

e s [nE
Jo Jo v@ = sopaa=z | ( I |f(y+§)—f(y>!2dy> . (26)

Therefore, by virtue of (25) and (26) we have

) WY ACCRR O

STZ(/ /; fly+) - ))Qdyd£>é.</;q)2(x)dx)%
§7</i Fly+6) - f())Qdyd§>;'<kzn;/liq>2(x)d:c>%
s7</ Flu+€) ~ ) dydg)%.(/;m)dx)é

2 () el = 22 (). @

At last, taking into account (24), we have

kj/ﬂ( (ﬁl))dx/f@(x)dx

1 /(1 =y wy (L, f
Sz‘”(ﬁ’f);/o 2(w)dr) = 2(n by,
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Hence from (23) and (27) we get
1
n’ 2||P 1
n n n

+n/11i 1 (2)|da /01q><x) iz

Theorem 2 is proved completely. U

Theorem 3. Let (v,,) be an orthonormal system of functions on [0, 1] satis-
1

fying the condition [ ¢,(x)dz =0, n=1,2,.... Then
0

cn(f) =0 (UJQ (% ,f)) for every f € Ls([0,1])
if and only if

where V,, = z ‘fo" on(x) dx|.

Proof. Sufficiency. Assuming in (19) that ®(x) = ¢, (z), we obtain
1 1

<w (ﬂ) W 2lgalepsn [ 11| [ ute)
0

k
n 1

Since V,, = Z | [ on(z)dz] =O(1) and [ ¢, (z)dr =0, n=1,2,..., we have
0 0

: D=0 (w2 (3.£)).

Necessity. If V,, # O(1), then as it is known (see [15]) there exists fy € Lip 1
such that

(x) dz

hm nlen(fo)| = +o0. (28)
Asfaraswy (1, fo) =0 (E)v from (28) we have
lim C"(fo) = +00. 0

= w; (3 Jo)

Theorem 4. Let (¢,) be an orthonormal system on [0, 1] satisfying

Then the relation
1
ey =0 (Ldz (— f)) for every f € Ls(]0,1])



ESTIMATES OF FOURIER COEFFICIENTS 375
holds if and only if
HN - O(hN)

for every sequence (a,) € (5.

Proof. Sufficiency. Let f € Ly([0,1]). As it was shown above (see (2)), the
equality
N+k N+k

1 1
> @ = [ 1@ Y cwpnlrdo= [ f@PP@ds (29
m=N 0 m=N 0

holds. By virtue of Theorem 2, we get

! 1
[ s@pPwan <o (5.0) (Hx e 200L). G0

and by virtue of the condition of Theorem 4 Hy = O(ey), from (30) we have

/o f(:z:)P](\fC)(x) dz| < c-ws (% ,f) eN,

where ¢ does not depend on N.
Finally, from (29) we get

N+k

1
Zcfn(f)ﬁc‘wz(ﬁyf)em b=l
m=N

hence
(o)

A see (g of)ex 31

m=N

weofo ()

Thus the sufficiency is proved.
Necessity. Let Hy # O(hy). Then by virtue of Theorem 1 there exists a
function fy € Lip 1 such that

From (31) we have

m NeN = +00.

n—oo

As far as for the function fy the relation ws (%, fo) = O (%) holds, from (31)

it follows
EN

= +00.
e (3 fo)
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Theorem is proved completely. 0]
Theorem 5. From every orthonormal system ¢, on [0,1] satisfying the
condition f(pn Jdx =0, n=1,2,..., one can choose a subsystem Yy = @y,

for which the following conditions are fulfilled:
) ealf)=0(w2(;. 1))
2) en=0(w(x.f)),
3 en=0(w(.)).

Proof. Let
00 i 2
S =Y (/kcps(ac)dx> =12k
0

s=1
By virtue of the Bessel inequality, ¢;(k) < 1 for every i = 1,2,..., k. Therefore
for each fixed k we can choose a number s;(k) such that the inequality

ESIS

2
- 1
Z / ps(x)dr | < 3
s=si(k) \"° h
holds. Now if s(k) = max s;(k), then
1<i<k
00 i 2
® 1
Z / ps(x)de | <5
s=s(k) 0 k
Hence for every ¢ = 1,2, ...,k we have
k 1
/o ps(x)dr| < W
if s > s(k). Assuming @) = V5, we get
%
/0 Yr(z) dz| < =Tk
This inequality implies the inequality
B=1| i
:Z/ Ye(z)dz| <1, n=1,2,..., (32)
— |/o

and also the estimate

i k4l

/Zamwm Ydz| <
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is valid. Therefore

Hence the validity of Theorem 5 follows from Theorems 1,2,3,4 and from the
relations (32) and (33). O

Remark 1. Tt follows from the proof of Theorem 1 that the relation

=ofa(1)

holds for every f € C([0,1]) if and only if relation (34) holds for every f € Lip 1.
Hence it follows

Corollary 1. Relation (34) holds for every f € Ls([0,1]) if and only if the

condition
1
en=0 (N)

holds for every function f € Lip 1.

Corollary 2. The relation

n-0((31)

holds for every f € Lo([0,1)) if and only if the condition

ot =0(3)

holds for every f € Lip1 (see [15]).

Remark 2. a) If (p,) is a trigonometric system, then the inequality

n—1 k n—1
n 1 1
V, = / sinnz dr| < —_—< -
is valid.
b) Let (x,) be the Haar system (see [11]). Then if n = 2™ +1 (1 <1 < 2™),
we have
" 2
/ Xn(z)dr| <272 < —.
0 n

k
On the other hand, note that only one integral [ x,(x)dx is different from
0

zero when k£ =1,2,....,n. Thus
n—1 % 9
Vo = Xn(z)do| < —.
k=1 |70 n
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Further on, it is easy to verify that if n = 2° 4 [, in case [ < 2° the following
estimate is valid:

k
/P x)dr| =
0

k=1
n-+q

< i Z A X () dae
k=1

Applying the Holder inequality, we get

n+q
</ 1P (g |d;c<<za) < h,. (37)

n+q

/Zame
+Z/ P (x) dx| .

25+1

n—1

D

(36)

k

/ " q) da:

k
2s+1

n

D

k=1
Then, if n + ¢ > 2°*1, then

_k_ n+q n k d
s+1 +1
’ amxm(x) dx| < Z Z A X () dx
n-+q
s+1
+ Z i Ay X (T (38)
=2st141

Since m > 257! we have

T
/ Xm(x)dxr =0
0

and the second summand in (38) is equal to zero.
On the other hand, as far as 2571 — n < 2%, we get

25+1 9s+1
Z / Zame ) dzx
k=1

25+1

<Z|am|Z

2S+1

2s+1 25+1 % 25+1 1 %
< ml - — < 2 — | <h,. 39
e o (£) (gm)— .
Finally, taking into account in (36) the inequalities (37), (38) and (39), we

obtain

n k

3 / " PO () de| = O(hy).
k=1 |70
Consequently,
H, = O(h,).
c¢) Let now (¢,,) be the Walsh system (see [12]). Then since
" ; 1
| entwraa] < 1,
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we get

n—1 k
V=) / () dz| < 1.
k=1 |70

In this case the inequality

18

2,

10.

11.
12.
13.
14.

15.

H, = O(h,)
analogously proved as in case of the Haar system.
In conclusion, we can say that the efficiency of the conditions of Theorems 1,
and 3 is evident.
It should be noted that the above results were partially announced in [14].
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