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THE MAXIMUM PRINCIPLE IN OPTIMAL CONTROL
PROBLEMS WITH CONCENTRATED AND DISTRIBUTED
DELAYS IN CONTROLS

G. KHARATISHVILI AND T. TADUMADZE

ABSTRACT. In the present work there has been posed and studied a
general nonlinear optimal problem and a quasi-linear optimal prob-
lem with fixed time and free right end. It contains absolutely continu-
ous monotone delays in phase coordinates and absolutely continuous
monotone and distributed delays in controls. For these problems the
necessary and, respectively, sufficient conditions of optimality in the
form of the maximum principle have been proved.

1. Statement of the problem. The maximum principle. Let O; C
R™, O3 C R" be open sets and S = [—s1,0] X -+ X [—54,0], s > -+ >
s1 > 0. Let an n-dimensional vector-function f(t,x1,...,Zs, U1,.. ., Uytk)
with fixed t € I = [0,7p] be continuously differentiable with respect to
(T1y ey Ty ULy ey Upyk) € OfxO’;rk. For fixed (z1,...,%s, U1,- -, Uptk) €
03 % Oé’Jrk let this function be measurable with respect to t € I, like the
matrix-functions fy,, 1 = 1,...,s, fu;, j = 1,...,v + k. For each pair of
compacts K C Oy, M C O let there exist a function m(t) = mg p(t)
summable on [ such that

v+k

+ D | fu
=1

V(b x1,. . sy Uy ey Uptk) €1 X K° x MYtk

|f(t,l’1,,x5,'l,L1,7uy+k)|+z|le Sm(t)7 (]')
i=1

Let now the functions 7;(t), ¢ = 1,...,s, 6;(¢), j = 1,...,v, t € I, be
absolutely continuous, satisfy the conditions 7;(t) < ¢, 7(t) > 0, i =
1,...,s,0;(t) <t 0;(t) >0,j=1,...,v, and 7 = min(r(0),...,7(0)),
6 = min(#:(0),...,0,(0),—sg); U1 C Oz, N C O; be convex sets and
O = QUy) = {u € Loolu(t) € Uy, t € [0,Tp], the closure of u([d,To]) is
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compact and belongs to Os}. Let Lo, be a space of essentially bounded
measurable functions w : [, Tp] — R” with the norm |ju|| = ess sup |u(¢)],
te[0,To); G ={p € Eylp(t) € N, t e [r,0]}, E, be the space of piecewise
continuous functions ¢ : [7,0] — R™ with a finite number of discontinuity
points of the first kind with the norm || = sup|p(t)|, t € [,0], and let
q‘(t,xo,71), (t,x0,71) € I x O?, i =0,...,l, be continuously differentiable
scalar functions.

Definition 1. We shall call the element (= (T, zg, ¢, u) € I xO1 xGx
admissible if the corresponding solution x(t) = x(¢; () of the system

/f (b a(ra(B), . a(ra(6)), w1 (1)), - (B, (6)), ult + 51). ...
u(t + sk))dS, tel0,T]Cl, ue (2)
(here and in what follows dS stands for ds; ... dsy), with the initial condition
z(t) = ¢(t), t€[7,0), x(0) = o, (3)
is defined on the interval [0, 7] and satisfies the condition
¢'(T,z0,x(T)) =0, i=1,...,1 (4)

We shall denote a set of admissible elements by Aj.

Definition 2. We call the element ¢ = (T, %o, 3, %) € Ay, T € (0,Tp)
optimal if there exists a number § > 0 such that for each element ( =
(T, zo, p,u) € Ay satisfying the condition

[T =T+ lwo — Tol + ¢ — &l + u — @l <6,
the inequality
(T, %0, #(T)) < ¢°(T, o, x(T)) (5)
is fulfilled, where #(t) = z(t;C), z(t) = 2(t; ().

The optimal problem consists in finding the optimal elements.

Theorem 1 (The necessary conditions of optimality). Let E €A
be an optimal element and t =T be a Lebesque point of the function

/ftm (1) 76 (1),
(O, Tt + 51). ..., Tt + 51))dS.
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Then there exist a nonzero vector 1 = (mg,...,m), mo < 0, and a solution
Y(t), t € 10, T] of the system

B(t) ==Y () fa, (i (1) (), te0,T], w(t)=0, t>T, (6)
J=1

such that the following conditions are fulfilled:
1. the integral mazimum principle:

S 0 _
ST s, ()i (0Bt >
s 0

=Y V(5 (0) o, (13 (0)3; (D)t Ve € G, (7)
j=177i(0)

f v k N
JRCISACOOED DY W NCEE
7 v
Xt + 5i)dS fdt 2/0 w(t){;fui(t)u(ei(t)) +

k
+ Z /s Jupis (51,0, sp)u(t + si)dS}dt7 Yu € Qy; (8)
i=1

2. the conditions of transversality:

7Qr = —p(T)F(T), 7Quy = —1(0), 7Qu, =(T). (9)

Here Q = (¢°,...,q"), the tilde sign over Q means that the corresponding
gradient is calculated at the point (T,Zo,z(T)), ~v,(t) is the inverse of the
function 7;(t),

J:";j(t):/S]?xj(t,sl,...,sk)dS,

Fo (b 81, 81) = fo, (LETL)), -, B(To(1), W(OL(E)), - .-
(0, (), Ut + s1), . Ut + sk)).

Remark 1. If the rank of the matrix (@t, @wo, @11) is equal to 1+1, then
Y(t) #0.

Consider now the problem with a fixed time and a free right end:

i:(t):ZAi(t)x(Ti(t))+/Sf(t,u(91(t)),...
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CLu(0,(0), ult + s1), ..., ult + si))dS, (10)
z(t) = ¢(t), te€[r,0), x(0)=umzy, ¢€GqG,

To
10 = [ [ottau®).....am®) + [ e,

(0, (1), ult+ 1), ult+ sk))ds} dt,

where A;(t), i = 1,...,s, t € I, are the summable matrix-functions; the
function f(t,uq,...,u,4r) with fixed ¢ € I is continuous with respect to
(u1,...,Uuptg) € O;Hc, and with fixed (u1,...,up4x) € O;H€ it is mea-

surable with respect to ¢t € I; for each compact M C Os there exists a
summable function mq(t) = mps(t) such that

|f(tau17"'7ul/+k)| < ml(t)v v(taula"'auu+k) €1 x My+k;

the function g(t,x1,...,xs) with fixed ¢ € T is continuously differentiable
and convex with respect to (z1,...,x5) € OF®, with fixed (z1,...,25) € OF*
it is measurable with respect to t € I, and for each compact K C O3 there
exists a summable function msg(t) = my(t) such that

lg(t, 1, ..., xs)| <ma(t), Y(E,x1,...,25) € I x OFF;

O3 C R™ is a convex open set; the scalar function f° satisfies some condi-
tions like f; moreover, Qo = Q(Usy), where Us C Os is an arbitrary set and
xo € R™ is a given point.

Definition 3. An element { = (3, %) € Ay = G x Q is called optimal if
for each ¢ € Ay the inequality

I(¢) < I(Q)
is fulfilled.

Theorem 2. For an element E € Ay to be optimal, it suffices to fulfill
the following conditions:

S 0
>/ o (P340 (1) = T, ()32 2

j=1

s 0
> Z/(O) [( (1) A (75 (1) = Gay (v ()] (D (B)dt, Yoo € G, (11)

/0 TR F(E0) — O a)]dt > / et ul)) -
—fO(t,u(-)]dt, Vu € Q. (12)
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Here
f(t7 u()) = / f(t7 u(gl(t))7 ey U(QV(t))a U(t + S1)7 ey U(t + Sk))ds7
S

fO(t,u(-)) is defined analogously; Gz, (t) = Gz, (t,f(ﬁ(t)), . ,%(T(g(t))) and
Y(t) is the solution of the system

S

D(t) =D [0 (8))ga; (1 (1) = ¥ (3 (£)) 43 (35 ()] 45 (1) ¢ € 0, T], (13)

i=1
Y(t) =0, t>Tp, Po(t) =1, t€[0,To], vo(t)=0, t>Tp. (14)

Remark 2. Theorems 1 and 2 are valid in the case where 6,(t), t € I, j =
1,...,v, are piecewise absolutely continuous functions (with a finite number
of discontinuity points) satisfying the conditions 0;(t) <t and 6;(t) > 0.

2. Proof of Theorem 1.

2.1. Continuous dependence and differentiability of the solution. Let
¢ = (T,7Zo,p,u) € Ay, T < Ty be an optimal element of the problem
(2)—(5) and let Z(t) = z(t:0), t € [0,7] be the corresponding solution of
system (2).

Lemma 1. For each € > 0 there exists a number 6 = d(¢) > 0 such that
for each p = (o, p,u) € O1 X G x Q4 satisfying the condition

|20 — Zo| + [l — @Il + llu —ull <6, (15)

the system

g'c(t):/Sf(t,x(rl(t)),...,x(Ts(t)),u(Ol(t)),...

Lu(0,(1), ult 4 s1),. .., ult + si))dS, (16)
x(t) = ¢(t), te€[r,0), z(0) =z,
has the solution x(t; ) which is defined on [0,T + 6] C 1. In this case if
wi = (2, i, i), i = 1,2, satisfy the condition (15), then
2 (t; 1) — x(t; p2)| < e, te[0,T +4].
Proof. We rewrite the system (16) in the form

@(t) = f(ta(r(t), ..., 2(rs(t)) + 6 f (t, x((t), - - -, 2(7s(t))),
x(t) = ¢(t), t€[r,0), z(0) =z,
where

flt, 2y, x5) = /Sf(t,xl,...,ms,ﬂ(ﬁl(t)),...
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L u(0,(0), ut + s1), ..., ult + si))dS,
5f(t,cc1,...,a:s):/ [Fta, (i),
s
w0, (), ult + s1),. ., u(t + sk)) — f(t,:vl, cen s, u(01(1)), ..
O, (1)t + 51), Tl + 1) | dS.
Let My C Oz be the closure of the set w([f,Tp]). Then there exists a
number 6 > 0 such that the functions v € Vs = {u € | ||ju — u|| < 6}
for almost all ¢ € [0, Ty] take values from the compact M; C O2 containing

some neighborhood of the compact Mj.

Let Ko C_O: be a compact containing some neighborhood of the set
{0t € [, 11}

We shall estimate 6 (¢, x1,...,xs) for each (z1,...,25) € K§,u € Vs. It
is not difficult to notice that

1
d ~
6] < /S {/0 ’d—gf(t,xl,...,xs,u(ﬂl(t)) + E8u(B1(t)), ..
(0, (1) + E5u(0,(8)), ult + s1) + Edu(t + s1), - - -
Co AT+ s) + Eult + sk))‘df}ds,
where du(t) = u(t) — u(t).
It is clear that U+ &0u € Vs and hence, u(t) + £du(t) € My for almost all

te [9, To]
Taking (1) into consideration, we obtain

|5f§/s{/01 [l (v GO () - EOUAD). .
j=1

s u(0,(8) + E6ulB, (1)), ult + s1) + Edult + &), . -
Tt sg) 4 ESult + &) ||0u(8;(1))] +

k
A | fus (B1, 2, WO (1)) + E6u(Or (1)), .., U0, (£)) +
j=1

+E6u(B, (1)), ult + s1) + ESult + s1), ..., Ut + si) + ESult + sp))| x
x|Gu(t + s5)|] dé }dS < (s1 -+ sk)mag (O] = il

Thus for each (z1,...,25) € K§, u € Vs, t/,t" € I we have

t//
‘/ Sf(t,z1,. .. xs)dt] < cod. (17)
t/
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Now it is not difficult to see that
S
/ {|(5f(t,a:1, .. ,x3)| + Z |5ij|}dt < ¢1 = const. (18)
I .
Jj=1

The inequalities (17) and (18) allow us to conclude that Lemma 1 implies
Theorem 2.8 (see [1], p.52). O

Now let us introduce the set Vi = {du = (6xg,d¢, du)|dzy € O1 — Zo,
do € G-, 0u € —u,|dry| <c=const, ||dp| <c, ||dul| < c}.

Lemma 2. There exist numbers g > 0, dg > 0 such that for each
e € [0,e0] and Su € Vi the solution z(t;edp) = z(t;p + edu),
= (Zo,p,u), is defined on [0, T + dg], and
lir% a(t;edp) = x(t; fi) is uniform over (t,6p) € [0,T + 8o x V4.
£—
Moreover
z(t;edp) = T(t) 4 eba(t; 6p) + R(t;e6p), t € [0,T + bq), (19)

where Z(t) = x(t; 1),

dx(t; 6u) = Y (0;t)0xo + Z/ o ij (75(8)) x

<S(©O8@e+ [ YED{ 3RO, +
j=1

k
430 [ Fuvss€osree mdu(e +)dS e, (20)
j=1"9
lir% e R(t;e0u) = 0 is uniform over (t,6u) € [0,T + 6] x V4. (21)

E—

Here Y (&), &,t € I is a matriz function satisfying both the matriz equation

+ZY7] fzj('Y](f))ij(g):Oa 0<¢<t,

and the condition

Y (&5t)

E7 f:t,
0, £€>t.
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Proof. The first part of the Lemma is a simple corollary of Lemma 1.
It is easily seen that the function Ax(t) = x(t) — Z(¢), where z(t) =
x(t;edp), satisfies the system

4 aas /f (tyo(ri (1), . w(7a(8), W(OL(1)) +
+€(5u(91( )y (0, () + e6u(B, (1)), u(t + s1) +
Fedu(t + 1), .., Ut + s) + edu(t + s1,))dS — f(t), (22)

and the initial condition
Ax(t) =edp(t), te€[r,0), Azx(0)=-cedxo.

We can rewrite the system (22) in the form

fALL' Z f:x: ASC T] ) +e Z ]?;I«j (t)éu(ej (t)) +

+e Z/ Jupy; (t 515000, 58)0u(t + s5)dS +T(t;e0p), (23)
i1 S
where

Tt 25p) :/S [f(t,x(ﬁ(t)),...735(75(15))7'17(91(15)) + 5u(01(2), ..
a0, (1) + e0u(0,(t)), u(t + s1) + edu(t + s1),...,u(t + sx)) +

+€5U(t+$k Zflj AJZ T] _EquJ
xdu(f f€quu+7 (t 51,---,5k)5u(t+5j)}ds~

By means of the Cauchy formula the solution of the system (23) can be
represented in the form

S 0 .
Au(t) ={Y (000000 + > [ V(€0 (5(6) x

j=177(0)

<O+ [ V(D[ R ©ul6; ) +

k
+;/Sfuuﬂ (& 81, -, 8K)0u(€ + Sj)ds] dﬁ} +
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t
+/ Y (&0)T(6)dE = edx(t;e0u) + R(t;edu).
0
Now we shall estimate R. We have

T+0d¢
IR(t:201)] < Y] / [Tt e6p0)|dt <

<|IY|l /T+ 0 / /1 ‘dif (t,2(m1(t) + EAz(T1 (1)), . ..

7s(t)) + EAz(75(1)), u(61(2)) + e€&bu(b1 (1)), - ..
..,ﬂ(o (t)) + e&ou(0,(t)), u(t + s1) + e€oul(t + s1), -

Lt + sg) + e&ou(t + sk ngc t)Ax(r;(t)) —

(qu] £)du(? +quuﬂ (t 51, s)dult + 55) )| de] dS }at,

where

Az(t) ==z(t) —z(t), [YV]= max [YV(§1)].
£,t€[0,T+00]

Differentiating the integrand with respect to £ and grouping correspond-
ing terms we get

|R(ts2012)| < 204 (=0p) + || Ao (e0p)
with

Azl = max [Az(t)],
0<t<T+4do

(et =l "y s {Z

L T(Ts () + EAx(14(1)), u(61(8)) + €£du(01()), . .., u(0,(t)) +
+e&ou(0,(t)), u(t + s1) + e€dult + s1), ..., u(t + sg) + eou(t + si)) —

k
SOOIEDY
+£A$(Ts(t))a 17(01(15)) + gfau(gl (t»a s 7ﬂ(9u(t)) + 5£6u(0v(t))7 'E(t + 51) +
FeEOu(t+ 81),. . TU(E+ 5) + E0ult + k) — Fun, (1) H df} ds}dt,

Fu, (6 F(11 () + EAZ(T1 (1)), . .

Funis (B E(TL(0) + EAT(T1(8)), .. F(7s(8)) +
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=i [ [ s

+HEAZ(T1(1)), -+, T(7s(t)) + EAZ(Ts(2)), u(01(t)) + e§6u(01(t)), - - -
,u(f,(t )) +e&6u(0, (1)), u(t + s1) + e&u(t + s1), . ..

LUt + 51,) + e€ult + s1)) — fu, (t)‘dg] dS}dt.

fo, (6 Z(11(2)) +

It is not difficult to see that the convergence lim._,g o;(edp) = 0,1 =1,2,
is uniform for op € V;.

Now,
[Az]| < elldz(dp)|| + | R(edp)|| <
< e(I82(3) + o1 (3p)) + o2(edp)l| Al
Here
l6e(6u)l = max [5a(t:om)l, |R(eou)| = max |R(teom).
0<t<T+éo 0<t<T+éo
Hence

< (I52(00) | + o1 (3))
1 —oa(edp)
where the value a(edp) is bounded when ¢ — 0 uniformly for ou € V;.

Thus

Az < = ca(edp),

[R(eop)]l/e < 01(e0p) + a(edp)oa(edp),
whence follows (21). O

Let Dy be a set of points ¢ = (T, xg, ¢, u) € I X O1 x G x Q; defined by
the following condition: the system
/ftm )l (0) .

cu(B, (), u(t + s1), ..., ult + si))dS,
x(t) =(t), telrn 0)7 z(0) = o,
has the solution z(t) = x(¢; () which is defined on [0, T7].
Thus the mapping
L:Dy— R'™ (24)

is given on Dy by the formula L(¢) = (T, zo,z(T")). It follows from Lemma
1 that the set Dy is open in the topology induced from the space E; =
R' X R" X Ep X Lo
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Lemma 3. The mapping (24) is differentiable at the point Z =
(Ta fﬂa @7 a) Namely:
dL~((5C) = ((5T, 5%0, (5371),
_ N _(25)
where 0z = f(T)6T + dx(T;6p), 6¢ = (0T,0pn) € E¢ —C.
Proof. Let V.= {6¢ = (6T,0p)| |6T| < ¢, dp € Vi}. With small enough
€ > 0 we have edT" < §g for each ¢ € V. Therefore, using the representation

(19) and the fact that t = T is the Lebesgue point of the function f(t), we
have

&(T + edT;e6p) = T(T + €0T) + e6a(T + e0T; 6p) +
%—&-E(ST _

+R(T +&8T;e0p) = 2(T) + /~ F(t)dt + edx(T; 6p) +
T

+e(6a(T + edT;6u) — 62(T; 0p)) + R(T + 6T 6p) =
= Z(T) + edx1 + 01(£0¢),

where lim._.¢ 01(¢6¢) /e = 0 uniformly for 6¢ € V.
Therefore
L(C +€8¢) — L(C) = (T + 8T, %o + edag, (T + £6T)) —
—(T, %0, (T)) = (6T, 69, 621) - € + 0(£0¢) = dL(8¢)e + o(£80),

where 0(e6¢) = (0,0,01(e6¢)). O

2.2. Deduction of the maximum principle. Consider the linear topological
space F, = R! x E¢ of the points z = (o, ().
Let D be a subset of this space,

D ={z|z=(0,¢)lc € R', (€ Dy}.

The set D is open (the more so, finitely open) (see [2,3]). Define on D
the mapping P : D — R'*! by the formula

P(Z) = Q(L(C)) + (0’07' .- 70) = (qo(L(C))v' .- ,ql(L(C))) + (O’,O,. .- ’0)

The differential of the mapping P at the point 5 = (O,f, Zo, P, u) has the
form
_0Q 0Q 9Q
dP(6z) = —Z5T + —=6 -6
Z( z)=0+ 5 + R To + 0, 1,
o= (60,0,...,0), 6z€ E, —Z.
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Using the expressions (20) and (25), we obtain

+Z gfl / 1 T) f, (7 (£))3 (£) S0 (£)dt +

8171/ Y (t;T) qu )ou(Q;(t)) +

+Z/fuuﬂ,(t;sl,...,Sk)éu(t—i—sj)dS}dt.
j=1"%

In the space E, let us define a filter by the following elements:
W= (RLN Vo) x Vi x V5 x (GN Vo) x (N V),

where V4, V=, V;O, V;;, V>~ are arbitrary convex neighborhoods of the points

0€ R, T e (0,Ty), %o € O1, ¢ €G, 0 € Qy, correspondingly, RL =0, 00).

The filter ® is convex (the more so, quasi-convex, (see [2,3]). It is evident
that [®] = ®, where [®] is the filter whose elements are the convex hulls of
the elements of the filter ®. It follows from Lemma 1 that the mapping P
is continuous on @ (see [2,3]).

The optimality of the element Z is equivalent to its extremality and the
latter implies criticality of the mapping P on ®, which is proved by the
well-known method (see [2,3]).

Thus all the premises for the necessary criticality condition are fulfilled
[2,3].
Therefore there exist a nonzero vector m = (7, ...,m) and an element

We= (RyNVo) x Vi x Vo x (GNVE) x (N V5)
of the filter ® such that
7dP<(62) <0, YV §z € K(W> - 2), (26)

where K (W) is a cone stretched on the set W. It is easily seen that the
condition dz € K(W~— Z) is equivalent to the condition do € RY, 6T €
R'—T, dxy € R"— 1y, 6p € K(V~— ©)DGE—p, 0ue K(V~—u) > Ql—u

Using the expression for the dlﬁerentlal dP+(6z), assumlng that du = 0,
dp = 0, and taking into consideration that 5o € R , 0T, dxp may take
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arbitrary values, we obtain for w9 < 0

(370 -

(27)
m (52 + 22y (0; T)) —0.
Assuming that in (26) 6ty = 0, dzg = 0, du = 0, do = 0 we obtain
Zw 0 (0: D)z, (1) 35 ()00 (t)dt < 0, 59 € G~ 5. (28)
0
If we assume 0t; = 0, dzg = dp = 0, do = 0 we shall get
00 [T i~ =
o [, Y T[> Fu, ()5u(6;(1)) +
j=1
k ~
+/ quyﬂ(t;sl,...,sk)du(t—i—sj)dS}dt <0. (29)
S <
j=1
Let us introduce the notation
P(t) = w@Y(t T), telo,T). (30)
ﬁml
It is clear that v (¢) satisfies the system (6) and the condition
~ oQ
T)=nr—. 1
o(T) =n e (31)
We can now rewrite the condition (27) in the form
T = —%(0)

Equations (31) and (32) give the conditions of transversality (9). Taking
into account (30), we can rewrite inequalities (28), (29) in the form (7), (8).
Thus Theorem 1 is completely proved. [

3. Proof of Theorem 2. Let for ( = ($,1) € Ay the conditions (11),

(12) be fulfilled. Introducing the notation Az (t) = z(t;¢) — x(x; (), ¢ € Ay
and taking into account (10), (13), and (14), we obtain

0= 6(Th)Aa(to) = (0)Aa(0) = [ L0 A(0)

To . d
= [ h0800) + w0 Asto)] e ~
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To, S
/ {Zwo % (8)ga, (35t Zw 75 (1) A (3 (£)) 35 () A () +
ZA DA(73(1)) + B(O)[£(t,u() = F(8,7()] }t.

Further, performing elementary transformations, in view of (14) we get

s 7;(To)
0= 6(Ty)Aa(to) = (0)Aa(0) = 3 [ G, ()5 (0 A1 -

75 (To)
=3 [T v a0 ety +

SJ: 75 (To)
30 [ s 0) x A A +

To

[ e ue) — fae)]de= S / G, (1) Ay (1))t +

0 j=1 7;(0)

75 (0)

(5 () Ay (3 (1)) () At dt+Z / G, (£) At (1))t —

S

_Z/ o Ga; (75 ()7 () Az(t)dt + 1/)(15) [f(tu() — F(t7())]dt =

Jj=1 0

_Z/TOgTJ ) Az (7 ( ))dt+z/

j=1"Ti (0)

[0 45(35(8)) —
i, O] 5Bt + [ w) [t () — £ TN

0

Further,

+Zg% )Az(7;(t) dt+2/ — G, (v (1) +
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0504 (03,0 et0) = FO)e+ [ { = Ftu) +
PO u() — [~ 2GTO) + o0 fa)] b (63)

Due to the convexity of the function g, by virtue of the inequalities (11),
(12), it follows from (33) that I({) — I({) <0for ( € As. O
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