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IMBEDDINGS BETWEEN WEIGHTED ORLICZ–LORENTZ
SPACES

M. KRBEC AND J. LANG

Abstract. We establish necessary and sufficient conditions for im-
beddings of weighted Orlicz–Lorentz spaces.

1. Introduction

The purpose of this paper is to present transparent and verifiable nec-
essary and sufficient conditions for imbeddings in a fairly general class of
weighted spaces which include important representatives of r. i. spaces as
Lorentz and Orlicz spaces.

Necessary and sufficient conditions for imbeddings of weighted spaces Lp

were found by Avantaggiati [1] and Kabaila [2]; the latter author also con-
sidered measures not necessarily absolutely continuous with respect to the
Lebesgue measure. The case of Orlicz spaces with certain mild conditions
imposed on the growth of Young functions involved was the subject of Kr-
bec and Pick’s paper [3]. Here we shall consider the natural amalgam of
Orlicz and Lorentz spaces, permitting one to arrive at integral conditions
involving the weights in question. The generality of the concept enables one
to give proofs actually simpler than those for Orlicz and/or Lorentz spaces.
Observe that abstract conditions in terms of dual spaces can be given in
Lorentz spaces (see Pick [4]).

Let us introduce the notation. Throughout the paper, Ω will be a mea-
surable subset of the Euclidean space RN , % and σ will stand for weights
in Ω which are measurable, locally integrable, and a.e. positive function in
Ω. A Young function F is an even continuous and non-negative function in
R1, increasing on (0,∞), such that lim

t→0+
F (t) = 0, lim

t→∞
F (t) = ∞, F (t) = 0

iff t = 0. A Young function F is said to satisfy the global ∆2-condition if
there is c > 0 such that F (2t) ≤ cF (t) for all t ∈ R1.
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The Young functions F0 and F1 are said to be equivalent (we write F0 ∼
F1) if there is a constant c > 0, such that

F1(c−1t) ≤ F0(t) ≤ F1(ct), t > 0.

If F is a Young function, then

comp F (t) = sup{|ts| − F (s); s ∈ R1}

is the complementary function with respect to F . If F is convex, then
comp F (t) is equivalent to any Young function M such that

c−1
M t ≤ M−1(t)F−1(t) ≤ cM t, t > 0,

where cM is a constant independent of t. In this case, the latter condition
is sometimes used as an (equivalent) definition of comp F .

Let F be a Young function and % a weight in Ω. The weighted Orlicz
space LF,% = LF,%(Ω) is the linear hull of the weighted Orlicz class

˜LF,% = ˜LF,%(Ω) =
{

f ;
∫

Ω

F (f(x))%(x) dx < ∞
}

.

The space LF,% is equipped with the Luxemburg functional

‖f‖F,% = inf
{

λ > 0;
∫

Ω

F (f(x)/λ) %(x) dx ≤ 1
}

.

Let f be a measurable function in Ω and m%(f, t) be the weighted distri-
bution function of f , i.e.,

m%(f, λ) =
∫

{x; |f(x)|>λ}

%(x) dx = %({x; |f(x)| > λ}),

and f∗% be the corresponding weighted nonincreasing rearrangement of f ,

f∗% (t) = inf{λ; m%(f, λ) ≤ t}.

Further, let 1 ≤ q, r < ∞. Then

Lq,r,% = Lq,r,%(Ω) =
{

f ; ‖f‖q,r,% =
(
∞
∫

0

[t1/qf∗% (t)]r
dt
t

)1/r

< ∞
}

is the weighted Lorentz space. As usual, for r = ∞, we put

Lq,∞,% = Lq,∞,%(Ω) =
{

f ; ‖f‖q,∞,% = sup
t>0

t1/qf∗% (t) < ∞
}

and let us call the latter space the weak weighted Lorentz (weighted Marcin-
kiewicz) space.
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Let us recall at least some of the basic references concerning the theory
of Lorentz and Orlicz spaces such as the well-known monographs of Butzer
and Berens [5], Nakano [6], Krasnosel’skii and Rutitskii [7], Musielak [8],
and Ren and Rao [9].

Next, we define Orlicz–Lorentz spaces. Because of the nonhomogeneity
of Young functions one can do this in several different ways, the Lp and
Lp,q spaces being always included as a special case. We shall follow the
definition used in the recent papers, e.g., in Montgomery-Smith [10]: Let
F and G be Young functions and % a weight in Ω. For a function h even on
R1 and positive on (0,∞) put

˜h(t) =











1/h(1/t), t > 0,
1/h(−1/t), t < 0,
h(0), t = 0.

We define the weighted Orlicz–Lorentz space LF,G,% as the set of all mea-
surable f ’s on Ω for which the Orlicz–Lorentz functional

‖f‖F,G,% = ‖f∗% ◦ ˜F ◦ ˜G−1‖G =

= inf
{

λ > 0;

∞
∫

0

G

(

f∗% ( ˜F ( ˜G−1(t)))
λ

)

dt ≤ 1
}

(1.1)

is finite.
The weak weighted Orlicz (Orlicz–Marcinkiewicz) space LF,∞,% is the set

of all measurable f ’s on Ω such that their Orlicz–Marcinkiewicz functional

‖f‖F,∞,% = sup
t>0

˜F−1(t)f∗% (t) (1.2)

is finite.
We shall write LF1,G1,% ↪→ LF0,G0,σ if ‖f‖F0,G0,σ ≤ const ‖f‖F1,G1,% for

all f ∈ LF1,G1,%.
We shall say that G 4 G1 (on Ω and with respect to %) if LF,G1,% ↪→

LF,G,% for every Young function F .

Remark 1.1. It is clear that for P and Q equal to power functions we get
a weighted Lorentz space. Also, LF,F,% = LF,%.

Observe that for P (t) = tp, Q(t) = tq, and % ≡ 1 the functional in (1.1)
becomes

‖f‖P,Q,1 =
(
∞
∫

0

[f∗(tp/q)]q dt
)1/q

which is equivalent to the usual quasinorm in Lp,q and it is actually the
expression giving a hint how to reasonably define the LF,G,% spaces.



120 M. KRBEC AND J. LANG

Remark 1.2. The quantities in (1.1) and (1.2) are not generally norms.
Nevertheless, they are quasinorms in the many relevant cases we are inter-
ested in.

First, we shall show that if F−1 ∈ ∆2, then ‖ . ‖F,∞,% is a quasinorm.
Indeed, then ˜F−1 = ˜F−1 ∈ ∆2, too, and

‖f + g‖F,∞,% = sup
t>0

˜F−1(t)(f + g)∗%(t) ≤

≤ c sup
t>0

˜F−1(t/2)
[

f∗% (t/2) + g∗%(t/2)
]

≤

≤ c (‖f‖F,∞,% + ‖g‖F,∞,%).

Conversely, if ‖ . ‖F,∞,% is a quasinorm, then F−1 ∈ ∆2 at least near
infinity. This can be shown as follows: Let M, N ⊂ Ω be disjoint and such
that %(M) = %(N). Then

‖χM + χN‖F,∞,% = ‖χM∪N‖F,∞,% ≤ c [‖χM‖F,∞,% + ‖χN‖F,∞,%] .

According to the formula for the Orlicz–Lorentz functional of ‖χA‖F,∞,%
(Lemma 2.1), we have

1
F−1 (1/2%(M))

≤ 2c
F−1 (1/%(M))

.

Putting t = 1/2%(M) we get F−1(2t) ≤ 2cF−1(t). If %(Ω) = ∞, this gives
directly the ∆2-condition for F−1. If %(Ω) < ∞, then F−1 satisfies the
∆2-condition for large t’s.

Now let us consider ‖ . ‖F,G,%. We shall not pursue the sufficient condition
in detail as it is not the subject of this paper; nevertheless, let us point out
one important case when ‖ . ‖F,G,% is a quasinorm: Suppose that F−1 ∈ ∆2.
If G ∈ ∆2, then G is c-subadditive, i.e.,

G(t1 + t2) ≤ c[G(t1) + G(t2)], t1, t2 > 0, (1.3)

for some c > 0 and there are c1 > 1 and c2 > 0 such that c1G(t1) ≤ G(c2t2)
for all t ∈ R1. In particular, the Orlicz spaces generated by G and αG with
α > 0 are the same with equivalent Luxemburg functionals.

Recalling the standard estimate

(f + g)∗%(τ) ≤ f∗% (τ/2) + g∗%(τ/2),

we get

‖f + g‖F,G,% ≤

∥

∥

∥

∥

∥

f∗%

(

˜F ◦ ˜G−1(t)
2

)

+ g∗%

(

˜F ◦ ˜G−1(t)
2

)

∥

∥

∥

∥

∥

G

= ‖f∗% (˜2F ◦ ˜G−1(t)) + g∗%(˜2F ◦ ˜G−1(t))‖G. (1.4)



IMBEDDINGS BETWEEN WEIGHTED ORLICZ–LORENTZ SPACES 121

Assuming that F−1 ∈ ∆2 there is α ∈ (0, 1) such that

˜2F (τ) ≥ ˜F (ατ), τ > 0.

Hence

f∗% (˜2F ◦ ˜G−1(t)) ≤ f∗% ( ˜F (α ˜G−1(t))), t > 0. (1.5)

Further we claim that there is β > 0 such that

˜G(ατ) ≥ β ˜G(τ) = β̃−1G(τ).

Indeed, the last inequality is nothing but the ∆2-condition for G in terms
of ˜G. Therefore, putting τ = ˜G−1(t), we get

˜G(α ˜G−1(t)) ≥ βt.

Substituting this into (1.5) we have

f∗% (˜2F ◦ ˜G−1(t)) ≤ f∗% ( ˜F ◦ ˜G−1(βt)).

Returning to (1.4) we see that

‖f + g‖F,G,% ≤ ‖f∗% ( ˜F ◦ ˜G−1(βt) + g∗%( ˜G ◦ ˜G−1(βt)‖G,

and, by virtue of (1.3), we get

‖f + g‖F,G,% ≤ ‖f∗% ( ˜F ◦ ˜G−1(βt))‖2cG + ‖g∗%( ˜F ◦ ˜G−1(βt))‖2cG =

= ‖f∗% ( ˜F ◦ ˜G−1(t))‖2cβ−1G + ‖g∗%( ˜F ◦ ˜G−1(t))‖2cβ−1G.

As G ∈ ∆2 the functions G and 2cβ−1G generate equivalent Luxemburg
functionals.

In the sequel (see the proof of Lemma 2.2) we shall still need a simple
condition for the equivalence of the Luxemburg functionals in the Orlicz
spaces LG and LαG where α is an arbitrary positive constant. It is clear
that the condition

max(α, α−1)G(t) ≤ G(βt), t > 0,

for some β ≥ 1 independent of t, is sufficient. Following the above consid-
erations, we see that G ∈ ∆2 is enough for this.

Various sufficient conditions for ‖ . ‖F,G,% to be a quasinorm can also be
found when more is imposed on the functions F and G.



122 M. KRBEC AND J. LANG

2. Weighted Imbeddings

In this section we prove the imbedding theorems for weighted strong and
weak Lorentz–Orlicz spaces under fairly general conditions on the growth
of the Young functions involved. Let us point out a rather surprising fact,
namely, that from the point of view of weighted imbeddings there is no
essential difference between LP,G and LP,∞ spaces (see conditions (ii), (iii),
and (iv) of the concluding theorem in this section).

We start with the necessary condition.

Lemma 2.1. Let any of the following condition be satisfied for each mea-
surable f in Ω:

‖f‖F0,G0,σ ≤ K‖f‖F1,G1,%, (2.1)

‖f‖F0,∞,σ ≤ K‖f‖F1,∞,%, (2.2)

‖f‖F0,∞,σ ≤ K‖f‖F1,G1,%. (2.3)

Then

˜F0
−1

(σ(A)) ≤ K˜F1
−1

(%(A)) (2.4)

for every measurable A ⊂ Ω.

Proof. The necessary condition (2.4) follows directly after putting f = χA

in (2.1)–(2.3) and calculating the corresponding norms.
As to ‖f‖F1,G1,%, we have

‖χA‖F1,G1,% = inf
{

µ > 0;

G̃1F̃1
−1

(%(A))
∫

0

G1(1/µ) dt ≤ 1
}

=

= inf
{

µ > 0; ˜G1(˜F1
−1

(%(A)))G1(1/µ) ≤ 1
}

=

= inf
{

µ > 0;
1

G1(1/(˜F1
−1

(%(A))))
≤ 1

G1(1/µ)

}

=

= ˜F1
−1

(%(A)).

Further,

‖χA‖F1,∞,% = sup
t>0

˜F1
−1

(t)(χA)∗%(t) =

= sup
t>0

˜F1
−1

(t) inf
{

λ > 0; %({χA(x) > λ}) ≤ t
}

=

= ˜F1
−1

(%(A))

and we are done.
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Lemma 2.2. Let K > 1 be such that

˜F0
−1

(σ(A)) ≤ K˜F1
−1

(%(A)) for every measurable A ⊂ Ω. (2.5)

Assume that G satisfies the ∆2-condition. Then there is K1 > 0 such that

‖f‖F0,G,σ ≤ K1‖f‖F1,G,% for every f ∈ LF1,G,%.

Proof. According to the definition of the Lorentz–Orlicz functional and (2.5)
we have

‖f‖F1,G,% =inf
{

µ>0;

∞
∫

0

G
(

1
µ

[

inf{λ>0; m%(f, λ)≤ ˜F ◦ ˜G−1(t)}
]

)

dt≤1
}

and

f∗σ(˜F1 ◦ ˜G−1(t)) ≥ inf
{

λ > 0; K−1
˜F0
−1

(mσ(f, λ)) ≤ ˜G−1(t)
}

.

As G ∈ ∆2 there is K0 > 1 such that

K ˜G−1(t) ≤ ˜G−1(K0t)

(cf. Remark 1.3) and therefore, after a simple change of variables, we get

‖f‖F1,G,% ≥

≥ inf
{

µ > 0;

∞
∫

0

G
(

1
µ

[

inf{λ > 0; mσ(f, λ) ≤ ˜F0(K ˜G−1(t))}
]

)

dt ≤ 1
}

≥

≥ inf{µ > 0;

∞
∫

0

G
(

1
µ

[

inf
{

λ > 0;mσ(f, λ) ≤ ˜F0( ˜G−1(t))}
])

dt
K0

≤ 1
}

.

It is K−1
0 G ∼ G so that these functions generate the same Orlicz spaces.

Hence
K1‖f‖F1,G,% ≥ ‖f‖F0,G,σ

with a suitable K1 > 0.

Next we shall consider weak Orlicz spaces.

Lemma 2.3. Let

˜F0
−1

(σ(A)) ≤ K˜F1
−1

(%(A)) (2.6)

for some K > 0 and every measurable A ⊂ Ω. Then

‖f‖F0,∞,σ ≤ K‖f‖F1,∞,%.
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Proof. By virtue of (2.6) we get

sup
t>0

˜F0
−1

(t)f∗σ(t) = sup
t>0

˜F0
−1

(t) inf{λ > 0; mσ(f, λ) ≤ t} ≤

≤ sup
t>0

˜F0
−1

(t) inf{λ > 0; ˜F0(K˜F1
−1

(m%(f, λ))) ≤ t} =

= sup
t>0

t inf{λ > 0; K˜F1
−1

(m%(f, λ)) ≤ t} =

= K sup
t>0

˜F1
−1

(t) inf{λ > 0; m%(f, λ) ≤ t} =

= K‖f‖F1,∞,%.

The following lemma links Orlicz–Lorentz and weak Orlicz spaces.

Lemma 2.4. Let F and G be arbitrary Young functions. Then

LF,G,% ↪→ LF,∞,%. (2.7)

Proof. By the definition of the Orlicz–Lorentz functional,

‖f‖F,∞,% = sup
t>0

˜F−1(t) inf{λ > 0; m%(f, λ) ≤ t} =

= sup
t>0

t inf{λ > 0; m%(f, λ) ≤ ˜F (t)} =

= sup
t>0

˜G−1(t) inf{λ > 0; m%(f, λ) ≤ ˜F ◦ ˜G−1(t)}.

On the other hand, for every K > 0,

‖f‖F,G,% = inf
{

λ > 0;

K
∫

0

G
(

1
λ

f∗% ( ˜F ◦ ˜G−1(t))
)

dt ≤ 1
}

≥

≥ inf
{

λ > 0;

K
∫

0

G
(

1
λ

f∗% ( ˜F ( ˜G−1(K)))
)

dt ≤ 1
}

≥

≥ inf
{

λ > 0; KG
(

1
λ

f∗% ( ˜F ( ˜G−1(K)))
)

dt ≤ 1
}

=

= inf
{

λ > 0;
1
λ

f∗% ( ˜F ( ˜G−1(K))) ≤ G−1(1/K)
}

=

= inf
{

λ > 0;
1

G−1(1/K)
f∗% ( ˜F ( ˜G−1(K))) ≤ λ

}

=

= inf
{

λ > 0; ˜G−1(K)f∗% ( ˜F ( ˜G−1(K))) ≤ λ
}

=

= ˜G−1(K)f∗% ( ˜F ( ˜G−1(K))),

which gives (2.7).
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Now we are ready to formulate

Theorem 2.5. Let G1 ∈ ∆2. Then the following statements are equiva-
lent:

(i) LF1,G1,% ↪→ LF0,G1,σ,
(ii) LF1,G1,% ↪→ LF0,G0,σ provided G1 4 G0,
(iii) LF1,G1,% ↪→ LF0,∞,σ,
(iv) LF1,∞,% ↪→ LF0,∞,σ,

(v) ˜F0
−1

(σ(A)) ≤ K˜F1
−1

(%(A)) for some K > 0
and every measurable A ⊂ Ω.

Proof. The necessity of condition (v) follows from Lemma 2.1. The impli-
cation (v)⇒(i) was proved in Lemma 2.2. The definition of the ordering
G1 4 G0 gives directly (i)⇒(ii) and Lemma 2.4 implies (ii)⇒(iii). Further,
Lemma 2.3 gives (v)⇒(iv) and another application of Lemma 2.4 completes
the proof by showing that (iv)⇒(iii).

3. More about Weighted Imbeddings

The necessary and sufficient condition (v) for imbeddings (i)–(iv) from
Theorem 2.5 is of quite another sort than those previously known for imbed-
dings of weighted Lebesgue and/or Orlicz spaces. It was proved in [3] that,
under some additional assumptions, LP,% ↪→ LQ,σ iff σ%−1 ∈ LN,%, where
N is the complementary function to QP−1. A natural question is whether
the case studied here permits an analogous condition. Let us observe that
Theorem 2.5 solves the “nondiagonal” case; therefore one cannot expect
a characterization in terms of Lebesgue and Orlicz spaces as in [1] and [3],
respectively.

We shall show, however, that a nice condition equivalent to (v) of The-
orem 2.5 can be found in important cases. First of all observe that (v) is
equivalent to

˜F0
−1

(σ(A)) ≤ ˜F2
−1

(%(A)) (3.1)

where F2(t) = F1(Kt), and, consequently, equivalent to

1

˜F0(˜F2
−1

(%(A)))

∫

A

σ(x) dx ≤ 1 for every measurable A ⊂ Ω. (3.2)

Put H = F2 ◦ F−1
0 . Then ˜H−1 = ˜F0 ◦ ˜F2

−1
and we can rewrite (3.2) as

sup
A⊂Ω

1
˜H−1(%(A))

∫

A

σ(x) dx < ∞. (3.3)
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We shall show that if F2 ◦F−1
0 is a convex Young function satisfying the

∆2-condition, then (3.3) is nothing but a characterization of a certain weak
Orlicz space. Indeed, following two lemmas hold.

Lemma 3.1. Let H be a Young function and let f ∈ L1
loc be such that

sup
1

˜H−1(%(A))

∫

A

|f(x)|%(x) dx < ∞

where the sup is taken over all measurable A ⊂ Ω. Let J be a Young function
satisfying

H−1(t)J−1(t) ≥ c−1
0 t (3.4)

for some c0 > 0 and all t ≥ 0. Then

sup
t>0

˜J−1(t)f∗% (t) < ∞.

Proof. We have

sup
t>0

˜J−1(t)f∗% (t) = sup
t>0

1
J−1(1/t)

f∗% (t) ≤ sup
t>0

c0H−1(1/t)
1/t

f∗% (t) =

= sup
t>0

c0tH−1(1/t)f∗% (t) ≤

≤ c0 sup
t>0

sup
B⊂Ω

%(B)=t

%(B)
˜H−1(%(B))

f∗% (%(B)) ≤

≤ c0 sup
B⊂Ω

%(B)
˜H−1(%(B))

f∗% (%(B)). (3.5)

Now we claim that for every B ⊂ Ω there is A ⊂ Ω such that %(A) = %(B)
and |f(x)| ≥ f∗% (%(A)) for all x ∈ A. Indeed, it suffices to choose

A = {x ∈ Ω; |f(x)| > λ} ∪ ({x ∈ Ω; |f(x)| = λ} ∩ ΩR)

where λ = f∗% (%(B)) and ΩR is a suitable ball centered at the origin. Then
(3.5) implies

sup
t>0

˜J−1(t)f∗% (t) ≤ c0 sup
A⊂Ω

1
˜H−1(%(A))

∫

A

|f(x)|%(x) dx.

Lemma 3.2. Let H be a convex Young function and let J be comple-
mentary to H. Assume that

sup
t>0

H ′(t)t
H(t)

= c1 < ∞,
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and sup
t>0

˜J−1(t)f∗% (t) = c2 < ∞. Then

sup
A⊂Ω

1
˜H−1(%(A))

∫

A

|f(x)|%(x) dx < ∞.

Proof. Let A ⊂ Ω be measurable and let f|A be the restriction of f to A.
Then

∫

A

|f(x)|%(x) dx =

%(A)
∫

0

(

f|A
)∗
% (λ) dλ ≤

%(A)
∫

0

f∗% (λ) dλ ≤

≤ c2

%(A)
∫

0

dλ
˜J−1(λ)

dλ = c2

%(A)
∫

0

J−1(1/λ) dλ =

= c1c2

%(A)
∫

0

J−1(1/λ)
dλ
c1
≤ cJc1c2

%(A)
∫

0

dλ
c1λH−1(1/λ)

≤

≤cJc1c2

%(A)
∫

0

1
λH−1(1/λ)

· 1
H ′(H−1(1/λ))λH−1(1/λ)

dλ =

= cJc1c2
1

H−1(1/%(A))
= cJc0c1 ˜H−1(%(A)),

where the last step follows by taking the derivative of 1/H(1/t).

Now we are in a position to reformulate Theorem 2.5.

Theorem 3.3. Let F0, F1, G0, and G1 be Young functions, G1 ∈ ∆2,
and let F1 ◦ F−1

0 be a convex Young function, F1 ◦ F−1
0 ∈ ∆2. Then condi-

tions (i)–(iv) from Theorem 2.5 are equivalent to σ/% ∈ LJ,∞,% where J is
complementary to F2 ◦ F−1

0 where F2(t) = F1(Kt).

It is also worthwhile pointing out the Lorentz space version of the pre-
ceding theorem.

Corollary 3.4. Let 1 ≤ p < q < ∞, 1 ≤ r ≤ s ≤ ∞. Then the following
statements are equivalent:

(i) Lq,r,% ↪→ Lp,r,σ,
(ii) Lq,r,% ↪→ Lp,s,σ,
(iii) Lq,r,% ↪→ Lp,∞,σ,
(iv) Lq,∞,% ↪→ Lp,∞,σ,
(v) σ/% ∈ Lq/(q−p),∞,%.
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The proof follows immediately by calculation of the complementary func-
tion to t 7→ |t|q/p, ∈ R1.

Observe that for r = s imbedding (ii) from Corollary 3.4 was shown to
be equivalent to σ(A)1/p ≤ const. %(A)1/q for every measurable A ⊂ Ω by
Carro and Soria [11]. They consider more general two-parameter Lorentz
spaces which naturally lead to the question about an analogous concept
using Orlicz norms instead.
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