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SINGULAR NONLINEAR (n—1,1) CONJUGATE
BOUNDARY VALUE PROBLEMS

PAUL W. ELOE AND JOHNNY HENDERSON

ABSTRACT. Solutions are obtained for the boundary value problem,
Y™ + f(z,y) = 0, y(0) = y(1) =0, 0 < i < n— 2, where f(z,y)
is singular at y = 0. An application is made of a fixed point theorem
for operators that are decreasing with respect to a cone.

8 1. INTRODUCTION

In this paper, we establish the existence of solutions for the (n — 1,1)
conjugate boundary value problem,

y™ + f(x,y) = 0,0 <z <1, (1)
yD(0)=0, 0<i<n-—2, @
y(1) =0,
where f(z,y) has a singularity at y = 0. Our assumptions throughout are:
(A) f(z,y):(0,1) x (0,00) — (0,00) is continuous,

(B)
(©)

x,y) is decreasing in y, for each fixed z,

f(z,y)dz < oo, for each fixed y,

=

(D) lirgl+ f(z,y) = oo uniformly on compact subsets of (0, 1), and
yH

(E) lim f(z,y) = 0 uniformly on compact subsets of (0, 1).
Y—00

We note that, if y is a solution of (1), (2), then (A) implies y(x) > 0 on
(0,1).

Singular nonlinear two-point boundary value problems appear frequently
in applications, and usually, only positive solutions are meaningful. This
is especially true for the case n = 2, with Taliaferro [1] treating the gen-
eral problem, Callegari and Nachman [2] considering existence questions
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in boundary layer theory, and Luning and Perry [3] obtaining constructive
results for generalized Emden—Fowler problems. Results have also been ob-
tained for singular boundary value problems arising in reaction-diffusion
theory and in non-Newtonian fluid theory [4]. A number of papers have
been devoted to singular boundary value problems in which topological
transversality methods were applied; see, for example, [5]-[10].

The results and methods of this work are outgrowths of papers on second-
order singular boundary value problems by Gatica, Hernandez, and Walt-
man [11] and Gatica, Oliker, and Waltman [12] which in turn received ex-
tensive embellishment by Eloe and Henderson [13] and Henderson and Yin
[14], [15]. In attempting to improve some of these generalizations, the re-
cent paper by Wang [16] did contain some flaws; however, that paper was
corrected in a subsequent work by Agarwal and Wong [17].

We obtain solutions of (1), (2) by arguments involving positivity proper-
ties, an iteration, and a fixed point theorem due to [12] for mappings that
are decreasing with respect to a cone in a Banach space. We remark that,
for n = 2, positive solutions of (1), (2) are concave. This concavity was
exploited in [12], and later in the generalizations [14]-[18], in defining an
appropriate subset of a cone on which a positive operator was defined to
which the fixed point theorem was applied. The crucial property in defining
this subset in [12] made use of an inequality that provides lower bounds on
positive concave functions as a function of their maximum. Namely, this
inequality may be stated as:

If y € 0(2)[0, 1] 4s such that y(z) > 0,0 < z < 1, and y"(x) < 0,
0<xz<1, then

3
<zr<?Z.
Sz (3)

Although (3) can be developed using concavity, it can also be obtained
directly with the classical maximum principle. This observation was ex-
ploited by Eloe and Henderson [18], and a generalization of (3) was given
for positive functions satisfying the boundary conditions (2).

In Section 2, we provide preliminary definitions and some properties of
cones in a Banach space. We also state the fixed point theorem from [12]
for mappings that are decreasing with respect to a cone. In that section,
we state the generalization of (3) as it extends to solutions of (1), (2). An
analogous inequality is also stated for a related Green’s function.

In Section 3, we apply the generalization of (3) in defining a subset of
a cone on which we define an operator which is decreasing with respect to
the cone. A sequence of perturbations of f is constructed, with each term
of the sequence lacking the singularity of f. In terms of this sequence, we
define a sequence of decreasing operators to which the fixed point theorem
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yields a sequence of iterates. This sequence of iterates is shown to converge
to a positive solution of (1), (2).

§ 2. SOME PRELIMINARIES AND A FIXED POINT THEOREM

In this section, we first give definitions and some properties of cones in
a Banach space [19]. After that, we state a fixed point theorem due to [12]
for operators that are decreasing with respect to a cone. We then state a
theorem from [18] generalizing (3) followed by an analogous inequality for
a Green’s function.

Let B be a Banach space, and K a closed, nonempty subset of B. K is a
cone provided (i) au+ pv € K, for all u, v € K and all a, § > 0, and (ii) u,
—u € K imply v = 0. Given a cone K, a partial order, <, is induced on B
by © <y, for z, y € Biff y — 2 € K. (For clarity, we may sometimes write
z < ylwrtK).) If z, y € B with « < y, let (x,y) denote the closed order
interval between x and y given by, (z,y) = {z € B|z <z <y}. A cone K
is normal in B provided there exists § > 0 such that ||e; + ez > J, for all
e1, ea € K, with ||e1]] = |le2|| = 1.

Remark 1. If K is a normal cone in B, then closed order intervals are
norm bounded.
The following fixed point theorem can be found in [12].

Theorem 1. Let B be a Banach space, K a normal cone in B, E C K
such that, if x, y € E with x < y, then {(z,y) C E, andlet T : E - K
be a continuous mapping that is decreasing with respect to K, and which is
compact on any closed order interval contained in E. Suppose there exists
2o € E such that T?xog = T(Txg) is defined, and furthermore, Txo, Tz
are orders comparable to xqy. If, either

(I) Tzo < o and T?xg < 19, or 19 < Txg and xo < T?xg, or
(II) The complete sequence of iterates {T"xo}52, is defined, and there
exists yo € E such that Tyg € E and yo < T"xg, for alln >0,

then T has a fixed point in E.
In extending (3), Eloe and Henderson [13] first established the following.

Theorem 2. Let n > 2 and h € C™][a,b] be such that h™(z) < 0,
a<zx<b, and

A(a) >0, 0<i<n-—2, (4)

h(b) = 0. (5)
Then h(z) > 0, a < x < b. Moreover, if h™(x) < 0 on any compact
subinterval of [a, b], or if either (4) or (5) is strict inequality, then h(z) > 0,
a<x<b.
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We now state the extension of (3) which will play a fundamental role in
our future arguments.

Theorem 3. Let y € C™][0,1] be such that y™ (z) < 0,0 <z < 1, and
yD(0)=y(1)=0,0<i<n-—2. Theny(x) >0 on (0,1), and there exists

a unique xg € (0,1) such that |yleo = sup |y(z)| = y(xo). Moreover, y(zx)
0<z<1
is increasing on [0, zo), y(x) is concave on [xg, 1], and

S Yleo

yo) 2 2=, . (6)

For the final result to be stated in this section, let G(x,s) denote the
Green’s function for the boundary value problem,

<z<

RNy
e w

—y™W =0, 0<z<1, (7)
satisfying (2). It is well known [20] that

G(z,s) >0 on (0,1) x(0,1), (8)
and
I 00> ais), 0<s<1 )
Ozt ’ Oz T '

Also, for the remainder of the paper for 0 < s < 1, let 7(s) € [0,1] be
defined by
G(7(s),s) = sup G(z,s). (10)

0<z<1
The following analogue of (6) for G(z, s) was also obtained in [18].

Theorem 4. Let G(x,s) denote the Green’s function for (7), (2). Then,
for0<s<1,

1

G(z,s) > Y= G(71(s),s), <z<

(11)

>~
o

§ 3. SoruTioNs oF (1), (2)

In this section, we apply Theorem 1 to a sequence of operators that are
decreasing with respect to a cone. The obtained fixed points provided a
sequence of iterates which converges to a solution of (1), (2). Positivity of
solutions and Theorems 2—4 are fundamental in this construction.

To that end, let the Banach space B = C[0, 1], with norm ||y|| = |¥|oo,
and let

K={yeB|y(x)>0 on [0,1]}.

K is a normal cone in B.
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To obtain a solution of (1), (2), we seek a fixed point of the integral
operator,

To(z) = / Gl 5) 1 (s o(s))ds,
0

where G(z, s) is the Green’s function for (7), (2). Due to the singularity of
f given by (D), T is not defined on all of the cone K.
Next, define g : [0,1] — [0,1] by

2z)7 1L, nggl,
R SN S

and for each 6 > 0, define gg(z) = Og(x). Then for the remainder of this
work, assume the condition:

(F) For each 6 > 0, 0 < fol f(z,g0(x))dz < o0.
We remark, for each 6 > 0, that go € K, go(z) > 0 on (0,1), and géi)(O) =
g(1)=0,0<i<n-—2.

Our first result of this section is a consequence of Theorem 3 and its
proof in [18].

Theorem 5. Let y € C™[0,1] be such that y™ (x) < 0 on (0,1) and
y@(0) = y(1) =0, 0 < i < n—2. Then, there exists a > 0 such that
90(x) < y(z) on [0,1].

Proof. Let y be as stated above and let 2y € (0,1) be the unique point from
Theorem 3 such that y(z¢) = |y|eo. Define the piecewise polynomial

e gn=1 0 < 2 <,
p(z) =

To
&(m—l), o <z <1.

zo—1
The proof of Theorem 3 in [18] yields that y(z) > p(z) on [0, 1]. If we choose
0 =p(3), then

p(z) = p(3)9(x) = go(x) on [0,1],
and so, y(z) > gg(x) on [0,1]. O

In view of Theorem 5, let D C K be defined by
D = {p € B| there exists 8(p) > 0 such that gs(x) < ¢(x) on [0, 1]},

(i.e., D = {p € B | there exists 6(¢) > 0 such that g9 < @(wrtK)}).
Then, define T : D — K by

1
To(z) = /G(w,s)f(s,gp(s))ds, 0<z<1, ¢ebD.
0
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Note that, from conditions (A)—(F) and properties of G(z, s) in (8)—(9), if
¢ € D, then (Tp)™ < 0on (0,1), and Ty satisfies the boundary conditions
(2). Application of Theorem 5 yields that T € D so that T : D — D.
Moreover, if ¢ is a solution of (1), (2), then by Theorem 5 again, ¢ € D.
As a consequence, ¢ € D is a solution of (1), (2) if, and only if, T'p = ¢.

Our next result establishes a priori bounds on solutions of (1), (2) which
belong to D.

Theorem 6. Assume that conditions (A)—(F) are satisfied. Then, there
exists an R > 0 such that ||p]| = |¢lee < R, for all solutions, ¢, of (1), (2)
that belong to D.

Proof. Assume to the contrary that the conclusion is false. This implies
there exists a sequence, {¢¢} C D, of solutions of (1), (2) such that Elim lpe|=
—00

oco. Without loss of generality, we may assume that, for each ¢ > 1,

lpeloo < l@e+1oo- (12)

For each ¢ > 1, let x; € (0,1) be the unique point from Theorem 3 such
that

0 < we(xe) = |e|oo,
and also

<z<

| =
= w

1
we(r) > F@Z(WL

By the monotonicity in (12), pe(ze) > @1(x1), for all £, and so

1 1 3
pea) 2 (@), g <<y and £21. (13)
Let 0 = 4,,%1901(:1:1). Then
1 1 3
go(x) < P w1(z1) < (), 1 <z< 1 and £> 1.

—

Next, if we apply Theorem 2 to ¢y(x) — go(z) on [0, i], for each ¢ > 1, then
@e(z) > go(x) on [0,1]. Also, Theorem 3 implies that ¢¢(z) increases on
[0, 2¢] and is concave on [z, 1], together implying ¢,(z) > go(z) on [2,1].
We conclude

go(z) < e(z), 0<z<1 and ¢>1.

Now, set

0 < M =sup{G(z,s) | (z,s) € [0,1] x [0,1]}.
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Then, assumptions (B) and (F) yield, for 0 < x <1 and all ¢ > 1,

ou(x) = Toy(e /G £(s5,0e(s))ds =
0

< M [ f(s,gos))ds = N
/

for some 0 < N < co. In particular,
|oeloo < N, forall €2>1,
which contradicts limy_, o |p¢]|oo = 00. The proof is complete. [

Remark 2. With R as in Theorem 6, ¢ < R(wrtK), for all solutions
p €D of (1), (2).

Our next step in obtaining solutions of (1), (2) is to construct a sequence
of nonsingular perturbations of f. For each ¢ > 1, define v, : [0, 1] — [0, c0)

by
= / G(z,s)f(s,0)ds.
0

By conditions (A)—(E), for £ > 1,
0 < theq1(x) < the(x) on (0,1),
and

th ¥e(xz) = 0 uniformly on [0,1]. (14)

Now define a sequence of functions f; : (0,1) x [0,00) — (0,00), £ > 1, by

fe(z,y) = f(z, max{y, Ye(z)}).

Then, for each ¢ > 1, f; is continuous and satisfies (B). Furthermore, for
{>1,

fe(w,y) < f(z,y) on (0,1) x (0,00), and
fe(z,y) < f(x, ¢e(x)) on (0,1) x (0, 00).

Theorem 7. Assume that conditions (A)—(F) are satisfied. Then the
boundary value problem (1), (2) has a solution y € D.

(15)
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Proof. We begin by defining a sequence of operators Ty : K — K, ¢ > 1, by
1
Tp(e) = [ Gla,)fs, ().
0

Note that, for £ > 1 and ¢ € K, (Typ)™(z) < 0 on (0,1), Typ satis-
fies the boundary conditions (2), and Typ(z) > 0 on (0,1); in particu-
lar, Ty € D. Since each f; satisfies (B), it follows that, if v1, @2 € K
with ¢1 < po(wrtK), then for £ > 1, Typs < Typ1(wrtK); that is, each
T, is decreasiing with respect to K. It is also clear that 0 < Ty(0) and
0 < T7(0)(wrtK), for each /.

Hence when we apply Theorem 1, for each ¢, there exists a ¢, € K such
that Trps = @e. The above note implies, for £ > 1, that W") () < 0 on
(0,1), @y satisfies (2), and ¢(x) > 0 on (0,1). In addition, inequality (15),
coupled with the positivity of G(z, s), yields Ty < Tee(wrtK), for each
@€ K and ¢ > 1. Thus,

0o = Tope < TPe(wrtK), £ > 1. (16)

By essentially the same argument as in Theorem 6, in conjunction with
inequality (16), it can be shown that there exists an R > 0 such that, for
each £ > 1,

v < R(wrtK). (17)

Our next claim is that there exists a k£ > 0 such that x < |¢¢|co, for all
£. We assume this claim to be false. Then, by passing to a subsequence
and relabeling, we assume with no loss of generality that lim;_ o |@¢]co = 0.
This implies

Zlim we(z) =0 uniformly on [0, 1]. (18)

Next set

0<m= inf{G(x,s) | (z,s) € E, Z} X E,z]}

By condition (D), there exists a § > 0 such that, for + < 2z < 2 and
0<y<é,
2
flay) > —.

The limit (18) implies there exists an £y > 1 such that, for £ > ¢,

)
0<<pz($)<§ for 0<zx<1.
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Also, from (14), there exists an ¢; > {o such that, for £ > ¢,

1 3
for - <zx<-.

0 < thy(x) < 15753

[NCRIS)

Thus, for £ > /1 and % <z< %,

Bl

/stﬁswanwzfcm@ﬁ@w@muz
0

Zm/ﬂMMHW@WMWMZm/ﬂ&;@ZL

But this contradicts the uniform limit (18). Hence, our claim is verified.
That is, there exists a x > 0 such that

k< |peleo <R forall £

Applying Theorem 3,

1

1 K
pe(x) = 4n—1|(p4|00 2 i1 <z < > 1.

»Moo

One can mimic part of the proof of Theorem 6 to show, if § = 7%, then
go(z) < we(x) on [0,1] for £>1.
y (17), we now have
9o < ¢ < R(wrtK) for £2>1;

that is, the sequence {¢,} belongs to the closed order interval {(gy, R) C D.
When restricted to this closed order interval, T' is a compact mapping, and
so, there is a subsequence of {T'¢,} which converges to some ¢* € K. We
relabel the subsequence as the original sequence so that zlirgo IT@e—*|| = 0.

The final part of the proof is to establish that Zlim ITpe — el = 0. To

this end, let § = be as above, and set

0 < M =sup{G(z,s) | (z,s) € [0,1] x [0,1]}.

Let € > 0 be given. By the integrabilty condition (F), there exists 0 < § < 1

such that
1

[/ Flsgutois + [ fls.an(sas| <

1-06
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Further, by (14), there exists an ¢y such that, for £ > ¢,

Ye(x) < gg(x) on [4,1— 4],
so that
Yo(z) < go(x) < () on  [0,1—4].
Observe also that, for § < s <1—4 and £ > ¢,

fe(s,00(5)) = f(5,00(5)).

Hence, for £ > fg and 0 <z < 1,

Toe(x) — po(x) = Tpe(w) — Type(w) =

5
- / G, 5)[f (5. 0e(5)) — fe(s 00(s)))ds +
0

—

+ G(ZE,S)[f(S,(pg(S)) _f€(87§0€(5))]d5'

17
So, for £ >y and 0 <z <1,

9

)
Teee) - pele)| < M[ [ s00(50) + s macton(s) el s +

+ [ 1506 +f(&maX{w(S),W(S)})}dS] <
%5

In particular,
lim [[Tpe — el = 0.
{—o0o
In turn, we have limy_, ||e — ¢*|| = 0, and thus
¢ € (g9, R) C D,
and
©* = lim T, = T(lim @) = Te",
{— 00 £— 00

which is sufficient for the conclusion of the theorem. O
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