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SINGULAR NONLINEAR (n− 1, 1) CONJUGATE
BOUNDARY VALUE PROBLEMS

PAUL W. ELOE AND JOHNNY HENDERSON

Abstract. Solutions are obtained for the boundary value problem,
y(n) + f(x, y) = 0, y(i)(0) = y(1) = 0, 0 ≤ i ≤ n − 2, where f(x, y)
is singular at y = 0. An application is made of a fixed point theorem
for operators that are decreasing with respect to a cone.

§ 1. Introduction

In this paper, we establish the existence of solutions for the (n − 1, 1)
conjugate boundary value problem,

y(n) + f(x, y) = 0, 0 < x < 1, (1)

y(i)(0) = 0, 0 ≤ i ≤ n− 2,

y(1) = 0,
(2)

where f(x, y) has a singularity at y = 0. Our assumptions throughout are:
(A) f(x, y) : (0, 1)× (0,∞) → (0,∞) is continuous,
(B) f(x, y) is decreasing in y, for each fixed x,

(C)

1
∫

0

f(x, y)dx < ∞, for each fixed y,

(D) lim
y→0+

f(x, y) = ∞ uniformly on compact subsets of (0, 1), and

(E) lim
y→∞

f(x, y) = 0 uniformly on compact subsets of (0, 1).

We note that, if y is a solution of (1), (2), then (A) implies y(x) > 0 on
(0, 1).

Singular nonlinear two-point boundary value problems appear frequently
in applications, and usually, only positive solutions are meaningful. This
is especially true for the case n = 2, with Taliaferro [1] treating the gen-
eral problem, Callegari and Nachman [2] considering existence questions
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in boundary layer theory, and Luning and Perry [3] obtaining constructive
results for generalized Emden–Fowler problems. Results have also been ob-
tained for singular boundary value problems arising in reaction-diffusion
theory and in non-Newtonian fluid theory [4]. A number of papers have
been devoted to singular boundary value problems in which topological
transversality methods were applied; see, for example, [5]–[10].

The results and methods of this work are outgrowths of papers on second-
order singular boundary value problems by Gatica, Hernandez, and Walt-
man [11] and Gatica, Oliker, and Waltman [12] which in turn received ex-
tensive embellishment by Eloe and Henderson [13] and Henderson and Yin
[14], [15]. In attempting to improve some of these generalizations, the re-
cent paper by Wang [16] did contain some flaws; however, that paper was
corrected in a subsequent work by Agarwal and Wong [17].

We obtain solutions of (1), (2) by arguments involving positivity proper-
ties, an iteration, and a fixed point theorem due to [12] for mappings that
are decreasing with respect to a cone in a Banach space. We remark that,
for n = 2, positive solutions of (1), (2) are concave. This concavity was
exploited in [12], and later in the generalizations [14]–[18], in defining an
appropriate subset of a cone on which a positive operator was defined to
which the fixed point theorem was applied. The crucial property in defining
this subset in [12] made use of an inequality that provides lower bounds on
positive concave functions as a function of their maximum. Namely, this
inequality may be stated as:

If y ∈ C(2)[0, 1] is such that y(x) ≥ 0, 0 ≤ x ≤ 1, and y′′(x) ≤ 0,
0 ≤ x ≤ 1, then

y(x) ≥ 1
4

max
0≤s≤1

|y(s)|, 1
4
≤ x ≤ 3

4
. (3)

Although (3) can be developed using concavity, it can also be obtained
directly with the classical maximum principle. This observation was ex-
ploited by Eloe and Henderson [18], and a generalization of (3) was given
for positive functions satisfying the boundary conditions (2).

In Section 2, we provide preliminary definitions and some properties of
cones in a Banach space. We also state the fixed point theorem from [12]
for mappings that are decreasing with respect to a cone. In that section,
we state the generalization of (3) as it extends to solutions of (1), (2). An
analogous inequality is also stated for a related Green’s function.

In Section 3, we apply the generalization of (3) in defining a subset of
a cone on which we define an operator which is decreasing with respect to
the cone. A sequence of perturbations of f is constructed, with each term
of the sequence lacking the singularity of f . In terms of this sequence, we
define a sequence of decreasing operators to which the fixed point theorem
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yields a sequence of iterates. This sequence of iterates is shown to converge
to a positive solution of (1), (2).

§ 2. Some Preliminaries and a Fixed Point Theorem

In this section, we first give definitions and some properties of cones in
a Banach space [19]. After that, we state a fixed point theorem due to [12]
for operators that are decreasing with respect to a cone. We then state a
theorem from [18] generalizing (3) followed by an analogous inequality for
a Green’s function.

Let B be a Banach space, and K a closed, nonempty subset of B. K is a
cone provided (i) αu+βv ∈ K, for all u, v ∈ K and all α, β ≥ 0, and (ii) u,
−u ∈ K imply u = 0. Given a cone K, a partial order, ≤, is induced on B
by x ≤ y, for x, y ∈ B iff y − x ∈ K. (For clarity, we may sometimes write
x ≤ y(wrtK).) If x, y ∈ B with x ≤ y, let 〈x, y〉 denote the closed order
interval between x and y given by, 〈x, y〉 = {z ∈ B | x ≤ z ≤ y}. A cone K
is normal in B provided there exists δ > 0 such that ‖e1 + e2‖ ≥ δ, for all
e1, e2 ∈ K, with ‖e1‖ = ‖e2‖ = 1.

Remark 1. If K is a normal cone in B, then closed order intervals are
norm bounded.

The following fixed point theorem can be found in [12].

Theorem 1. Let B be a Banach space, K a normal cone in B, E ⊆ K
such that, if x, y ∈ E with x ≤ y, then 〈x, y〉 ⊆ E, and let T : E → K
be a continuous mapping that is decreasing with respect to K, and which is
compact on any closed order interval contained in E. Suppose there exists
x0 ∈ E such that T 2x0 = T (Tx0) is defined, and furthermore, Tx0, T 2x0

are orders comparable to x0. If, either

(I) Tx0 ≤ x0 and T 2x0 ≤ x0, or x0 ≤ Tx0 and x0 ≤ T 2x0, or
(II) The complete sequence of iterates {Tnx0}∞n=0 is defined, and there

exists y0 ∈ E such that Ty0 ∈ E and y0 ≤ Tnx0, for all n ≥ 0,

then T has a fixed point in E.

In extending (3), Eloe and Henderson [13] first established the following.

Theorem 2. Let n ≥ 2 and h ∈ C(n)[a, b] be such that h(n)(x) ≤ 0,
a ≤ x ≤ b, and

h(i)(a) ≥ 0, 0 ≤ i ≤ n− 2, (4)

h(b) ≥ 0. (5)

Then h(x) ≥ 0, a ≤ x ≤ b. Moreover, if h(n)(x) < 0 on any compact
subinterval of [a, b], or if either (4) or (5) is strict inequality, then h(x) > 0,
a < x < b.
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We now state the extension of (3) which will play a fundamental role in
our future arguments.

Theorem 3. Let y ∈ C(n)[0, 1] be such that y(n)(x) < 0, 0 < x < 1, and
y(i)(0) = y(1) = 0, 0 ≤ i ≤ n− 2. Then y(x) > 0 on (0, 1), and there exists
a unique x0 ∈ (0, 1) such that |y|∞ = sup

0≤x≤1
|y(x)| = y(x0). Moreover, y(x)

is increasing on [0, x0], y(x) is concave on [x0, 1], and

y(x) ≥ |y|∞
4n−1 ,

1
4
≤ x ≤ 3

4
. (6)

For the final result to be stated in this section, let G(x, s) denote the
Green’s function for the boundary value problem,

−y(n) = 0, 0 ≤ x ≤ 1, (7)

satisfying (2). It is well known [20] that

G(x, s) > 0 on (0, 1)× (0, 1), (8)

and

∂n−1

∂xn−1 G(0, s) > 0 >
∂
∂x

G(1, s), 0 < s < 1. (9)

Also, for the remainder of the paper for 0 < s < 1, let τ(s) ∈ [0, 1] be
defined by

G(τ(s), s) = sup
0≤x≤1

G(x, s). (10)

The following analogue of (6) for G(x, s) was also obtained in [18].

Theorem 4. Let G(x, s) denote the Green’s function for (7), (2). Then,
for 0 < s < 1,

G(x, s) ≥ 1
4n−1 G(τ(s), s),

1
4
≤ x ≤ 3

4
. (11)

§ 3. Solutions of (1), (2)

In this section, we apply Theorem 1 to a sequence of operators that are
decreasing with respect to a cone. The obtained fixed points provided a
sequence of iterates which converges to a solution of (1), (2). Positivity of
solutions and Theorems 2–4 are fundamental in this construction.

To that end, let the Banach space B = C[0, 1], with norm ‖y‖ = |y|∞,
and let

K = {y ∈ B | y(x) ≥ 0 on [0, 1]}.
K is a normal cone in B.
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To obtain a solution of (1), (2), we seek a fixed point of the integral
operator,

Tϕ(x) =

1
∫

0

G(x, s)f(s, ϕ(s))ds,

where G(x, s) is the Green’s function for (7), (2). Due to the singularity of
f given by (D), T is not defined on all of the cone K.

Next, define g : [0, 1] → [0, 1] by

g(x) =

{

(2x)n−1, 0 ≤ x ≤ 1
2 ,

2(1− x), 1
2 ≤ x ≤ 1,

and for each θ > 0, define gθ(x) = θg(x). Then for the remainder of this
work, assume the condition:

(F) For each θ > 0, 0 <
∫ 1
0 f(x, gθ(x))dx < ∞.

We remark, for each θ > 0, that gθ ∈ K, gθ(x) > 0 on (0, 1), and g(i)
θ (0) =

g(1) = 0, 0 ≤ i ≤ n− 2.
Our first result of this section is a consequence of Theorem 3 and its

proof in [18].

Theorem 5. Let y ∈ C(n)[0, 1] be such that y(n)(x) < 0 on (0, 1) and
y(i)(0) = y(1) = 0, 0 ≤ i ≤ n − 2. Then, there exists a θ > 0 such that
gθ(x) ≤ y(x) on [0, 1].

Proof. Let y be as stated above and let x0 ∈ (0, 1) be the unique point from
Theorem 3 such that y(x0) = |y|∞. Define the piecewise polynomial

p(x) =

{ |y|∞
xn−1
0

xn−1, 0 ≤ x ≤ x0,
|y|∞
x0−1 (x− 1), x0 ≤ x ≤ 1.

The proof of Theorem 3 in [18] yields that y(x) ≥ p(x) on [0, 1]. If we choose
θ = p( 1

2 ), then
p(x) ≥ p(1

2 )g(x) = gθ(x) on [0, 1],

and so, y(x) ≥ gθ(x) on [0, 1].

In view of Theorem 5, let D ⊆ K be defined by

D = {ϕ ∈ B | there exists θ(ϕ) > 0 such that gθ(x) ≤ ϕ(x) on [0, 1]},

(i.e., D = {ϕ ∈ B | there exists θ(ϕ) > 0 such that gθ ≤ ϕ(wrtK)}).
Then, define T : D → K by

Tϕ(x) =

1
∫

0

G(x, s)f(s, ϕ(s))ds, 0 ≤ x ≤ 1, ϕ ∈ D.
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Note that, from conditions (A)–(F) and properties of G(x, s) in (8)–(9), if
ϕ ∈ D, then (Tϕ)(n) < 0 on (0, 1), and Tϕ satisfies the boundary conditions
(2). Application of Theorem 5 yields that Tϕ ∈ D so that T : D → D.
Moreover, if ϕ is a solution of (1), (2), then by Theorem 5 again, ϕ ∈ D.
As a consequence, ϕ ∈ D is a solution of (1), (2) if, and only if, Tϕ = ϕ.

Our next result establishes a priori bounds on solutions of (1), (2) which
belong to D.

Theorem 6. Assume that conditions (A)–(F) are satisfied. Then, there
exists an R > 0 such that ‖ϕ‖ = |ϕ|∞ ≤ R, for all solutions, ϕ, of (1), (2)
that belong to D.

Proof. Assume to the contrary that the conclusion is false. This implies
there exists a sequence, {ϕ`}⊂D, of solutions of (1), (2) such that lim

`→∞
|ϕ`|=

∞. Without loss of generality, we may assume that, for each ` ≥ 1,

|ϕ`|∞ ≤ |ϕ`+1|∞. (12)

For each ` ≥ 1, let x` ∈ (0, 1) be the unique point from Theorem 3 such
that

0 < ϕ`(x`) = |ϕ`|∞,

and also

ϕ`(x) ≥ 1
4n−1 ϕ`(x`),

1
4
≤ x ≤ 3

4
.

By the monotonicity in (12), ϕ`(x`) ≥ ϕ1(x1), for all `, and so

ϕ`(x) ≥ 1
4n−1 ϕ1(x1),

1
4
≤ x ≤ 3

4
and ` ≥ 1. (13)

Let θ = 1
4n−1 ϕ1(x1). Then

gθ(x) ≤ 1
4n−1 ϕ1(x1) ≤ ϕ`(x),

1
4
≤ x ≤ 3

4
and ` ≥ 1.

Next, if we apply Theorem 2 to ϕ`(x)− gθ(x) on [0, 1
4 ], for each ` ≥ 1, then

ϕ`(x) ≥ gθ(x) on [0, 1
4 ]. Also, Theorem 3 implies that ϕ`(x) increases on

[0, x`] and is concave on [x`, 1], together implying ϕ`(x) ≥ gθ(x) on [ 34 , 1].
We conclude

gθ(x) ≤ ϕ`(x), 0 ≤ x ≤ 1 and ` ≥ 1.

Now, set

0 < M = sup{G(x, s) | (x, s) ∈ [0, 1]× [0, 1]}.
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Then, assumptions (B) and (F) yield, for 0 ≤ x ≤ 1 and all ` ≥ 1,

ϕ`(x) = Tϕ`(x) =

1
∫

0

G(x, s)f(s, ϕ`(s))ds =

≤ M

1
∫

0

f(s, gθ(s))ds = N,

for some 0 < N < ∞. In particular,

|ϕ`|∞ ≤ N, for all ` ≥ 1,

which contradicts lim`→∞ |ϕ`|∞ = ∞. The proof is complete.

Remark 2. With R as in Theorem 6, ϕ ≤ R(wrtK), for all solutions
ϕ ∈ D of (1), (2).

Our next step in obtaining solutions of (1), (2) is to construct a sequence
of nonsingular perturbations of f . For each ` ≥ 1, define ψ` : [0, 1] → [0,∞)
by

ψ`(x) =

1
∫

0

G(x, s)f(s, `)ds.

By conditions (A)–(E), for ` ≥ 1,

0 < ψ`+1(x) ≤ ψ`(x) on (0, 1),

and

lim
`→∞

ψ`(x) = 0 uniformly on [0, 1]. (14)

Now define a sequence of functions f` : (0, 1)× [0,∞) → (0,∞), ` ≥ 1, by

f`(x, y) = f(x, max{y, ψ`(x)}).

Then, for each ` ≥ 1, f` is continuous and satisfies (B). Furthermore, for
` ≥ 1,

f`(x, y) ≤ f(x, y) on (0, 1)× (0,∞), and

f`(x, y) ≤ f(x, ψ`(x)) on (0, 1)× (0,∞).
(15)

Theorem 7. Assume that conditions (A)– (F) are satisfied. Then the
boundary value problem (1), (2) has a solution y ∈ D.
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Proof. We begin by defining a sequence of operators T` : K → K, ` ≥ 1, by

T`ϕ(x) =

1
∫

0

G(x, s)f`(s, ϕ(s))ds.

Note that, for ` ≥ 1 and ϕ ∈ K, (T`ϕ)(n)(x) < 0 on (0, 1), T`ϕ satis-
fies the boundary conditions (2), and T`ϕ(x) > 0 on (0, 1); in particu-
lar, T`ϕ ∈ D. Since each f` satisfies (B), it follows that, if ϕ1, ϕ2 ∈ K
with ϕ1 ≤ ϕ2(wrtK), then for ` ≥ 1, T`ϕ2 ≤ T`ϕ1(wrtK); that is, each
T` is decreasiing with respect to K. It is also clear that 0 ≤ T`(0) and
0 ≤ T 2

` (0)(wrtK), for each `.
Hence when we apply Theorem 1, for each `, there exists a ϕ` ∈ K such

that T`ϕ` = ϕ`. The above note implies, for ` ≥ 1, that ϕ(n)
` (x) < 0 on

(0, 1), ϕ` satisfies (2), and ϕ`(x) > 0 on (0, 1). In addition, inequality (15),
coupled with the positivity of G(x, s), yields T`ϕ ≤ Tψ`(wrtK), for each
ϕ ∈ K and ` ≥ 1. Thus,

ϕ` = T`ϕ` ≤ Tψ`(wrtK), ` ≥ 1. (16)

By essentially the same argument as in Theorem 6, in conjunction with
inequality (16), it can be shown that there exists an R > 0 such that, for
each ` ≥ 1,

ϕ` ≤ R(wrtK). (17)

Our next claim is that there exists a κ > 0 such that κ ≤ |ϕ`|∞, for all
`. We assume this claim to be false. Then, by passing to a subsequence
and relabeling, we assume with no loss of generality that lim`→∞ |ϕ`|∞ = 0.
This implies

lim
`→∞

ϕ`(x) = 0 uniformly on [0, 1]. (18)

Next set

0 < m = inf
{

G(x, s) | (x, s) ∈
[1
4
,
3
4

]

×
[1
4
,
3
4

]}

.

By condition (D), there exists a δ > 0 such that, for 1
4 ≤ x ≤ 3

4 and
0 < y < δ,

f(x, y) >
2
m

.

The limit (18) implies there exists an `0 ≥ 1 such that, for ` ≥ `0,

0 < ϕ`(x) <
δ
2

for 0 ≤ x ≤ 1.
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Also, from (14), there exists an `1 ≥ `0 such that, for ` ≥ `1,

0 < ψ`(x) <
δ
2

for
1
4
≤ x ≤ 3

4
.

Thus, for ` ≥ `1 and 1
4 ≤ x ≤ 3

4 ,

ϕ`(x) =

1
∫

0

G(x, s)f`(s, ϕ`(s))ds ≥

3
4

∫

1
4

G(x, s)f`(s, ϕ`(s))ds ≥

≥ m

3
4

∫

1
4

f(s,max{ϕ`(s), ψ`(s)})ds ≥ m

3
4

∫

1
4

f(s,
δ
2
)ds ≥ 1.

But this contradicts the uniform limit (18). Hence, our claim is verified.
That is, there exists a κ > 0 such that

κ ≤ |ϕ`|∞ ≤ R for all `.

Applying Theorem 3,

ϕ`(x) ≥ 1
4n−1 |ϕ`|∞ ≥ κ

4n−1 ,
1
4
≤ x ≤ 3

4
, ` ≥ 1.

One can mimic part of the proof of Theorem 6 to show, if θ = κ
4n−1 , then

gθ(x) ≤ ϕ`(x) on [0, 1] for ` ≥ 1.

By (17), we now have

gθ ≤ ϕ` ≤ R(wrtK) for ` ≥ 1;

that is, the sequence {ϕ`} belongs to the closed order interval 〈gθ, R〉 ⊂ D.
When restricted to this closed order interval, T is a compact mapping, and
so, there is a subsequence of {Tϕ`} which converges to some ϕ∗ ∈ K. We
relabel the subsequence as the original sequence so that lim

`→∞
‖Tϕ`−ϕ∗‖ = 0.

The final part of the proof is to establish that lim
`→∞

‖Tϕ` − ϕ`‖ = 0. To

this end, let θ = κ
4n−1 be as above, and set

0 < M = sup{G(x, s) | (x, s) ∈ [0, 1]× [0, 1]}.

Let ε > 0 be given. By the integrabilty condition (F), there exists 0 < δ < 1
such that

2M
[

δ
∫

0

f(s, gθ(s))ds +

1
∫

1−δ

f(s, gθ(s))ds
]

< ε.
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Further, by (14), there exists an `0 such that, for ` ≥ `0,

ψ`(x) ≤ gθ(x) on [δ, 1− δ],

so that
ψ`(x) ≤ gθ(x) ≤ ϕ`(x) on [δ, 1− δ].

Observe also that, for δ ≤ s ≤ 1− δ and ` ≥ `0,

f`(s, ϕ`(s)) = f(s, ϕ`(s)).

Hence, for ` ≥ `0 and 0 ≤ x ≤ 1,

Tϕ`(x)− ϕ`(x) = Tϕ`(x)− T`ϕ`(x) =

=

δ
∫

0

G(x, s)[f(s, ϕ`(s))− f`(s, ϕ`(s))]ds +

+

1
∫

1−δ

G(x, s)[f(s, ϕ`(s))− f`(s, ϕ`(s))]ds.

So, for ` ≥ `0 and 0 ≤ x ≤ 1,

|Tϕ`(x)− ϕ`(x)| ≤ M
[

δ
∫

0

[f(s, ϕ`(s)) + f(s, max{ϕ`(s), ψ`(s)})]ds +

+

1
∫

1−δ

[f(s, ϕ`(s)) + f(s, max{ϕ`(s), ψ`(s)})]ds
]

≤

≤ 2M
[

δ
∫

0

f(s, ϕ`(s))ds +

1
∫

1−δ

f(s, ϕ`(s))ds
]

≤

≤ 2M
[

δ
∫

0

f(s, gθ(s))ds +

1
∫

1−δ

f(s, gθ(s))ds
]

< ε.

In particular,
lim

`→∞
‖Tϕ` − ϕ`‖ = 0.

In turn, we have lim`→∞ ‖ϕ` − ϕ∗‖ = 0, and thus

ϕ∗ ∈ 〈gθ, R〉 ⊂ D,

and
ϕ∗ = lim

`→∞
Tϕ` = T ( lim

`→∞
ϕ`) = Tϕ∗,

which is sufficient for the conclusion of the theorem.
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