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SOLUTION OF THE BASIC BOUNDARY VALUE
PROBLEMS OF STATIONARY THERMOELASTIC
OSCILLATIONS FOR DOMAINS BOUNDED BY

SPHERICAL SURFACES

L. GIORGASHVILI

Abstract. The boundary value problems of stationary thermoelas-
tic oscillations are investigated for the entire space with a spherical
cavity, when the limit values of a displacement vector and tempera-
ture or of a stress vector and heat flow are given on the boundary.
Also, consideration is given to the boundary-contact problems when
a nonhomogeneous medium fills up the entire space and consists of
several homogeneous parts with spherical interface surfaces. Given
on an interface surface are differences of the limit values of displace-
ment and stress vectors, also of temperature and heat flow, while
given on a free boundary are the limit values of a displacement vec-
tor and temperature or of a stress vector and heat flow. Solutions of
the considered problems are represented as absolutely and uniformly
convergent series.

One of the main methods of solving the spatial problems of elasticity
is the Fourier method based on using various representations of solutions
of equilibrium equations through harmonic, biharmonic, or metaharmonic
functions.

When solving problems by the said method the main difficulty consists
in satisfying the boundary conditions. One of the approaches to overcoming
this difficulty developed in [1] and [2] is to construct eigenfunctions of vector
structure on the boundary.

In this paper, systems of homogeneous equations of stationary thermo-
elastic oscillations are solved in terms of four metaharmonic functions. Such
a representation of solutions enables one to satisfy the boundary conditions
quite easily.
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Some Auxiliary Formulas and Theorems. A system of homogeneous
equations of stationary thermoelastic oscillations has the form [3], [4]

µ∆u + (λ + µ) grad div u− γ gradu4 + ρσ2u = 0,

∆u4 +
iσ
κ u4 + iση div u = 0,

(1)

where ∆ is the Laplace operator, u = (u1, u2, u3) the elastic displacement
vector, u4 the temperature, ρ the medium density, σ the oscillation fre-
quency; λ, µ, η, κ, γ are the constants characterizing the physical properties
of the considered elastic body and satisfying the conditions

µ > 0, 3λ + 2µ > 0, γ/η > 0, κ > 0, λ + 2µ 6= γηκ.

The thermoelastic stress vector is written as [4]

P (∂x, n)U = T (∂x, n)u− γn(x)u4, (2)

where U = (u, u4), T (∂x, n)u is the stress vector of classical elasticity,

T (∂x, n)u = 2µ
∂u
∂n

+ λn div u + µ[n× rot u].

We introduce the notation [5]

Xmk(θ, ϕ) = erY
(m)
k (θ, ϕ), k ≥ 0,

Ymk(θ, ϕ)=
1

√

k(k + 1)

(

eθ
∂
∂θ

+
eϕ

sin θ
∂
∂ϕ

)

Y (m)
k (θ, ϕ), k≥1,

Zmk(θ, ϕ)=
1

√

k(k + 1)

( eθ

sin θ
∂
∂ϕ

−eϕ
∂
∂θ

)

Y (m)
k (θ, ϕ), k≥1,

(3)

where |m| ≤ k, er, and eθ, eϕ are the orthogonal unit vectors:

er = (cos ϕ sin θ, sin ϕ sin θ, cos θ),

eθ = (cos ϕ cos θ, sin ϕ cos θ,− sin θ),

eϕ = (− sin ϕ, cosϕ, 0),

Y (m)
k (θ, ϕ) =

√

2k + 1
4π

· (k −m)!
(k + m)!

P (m)
k (cos θ)eimϕ,

where P (m)
k (cos θ) is the adjoint Legendre function of first kind, kth degree,

and mth order.



STATIONARY THERMOELASTIC OSCILLATIONS 423

On the sphere r = const, vectors (3) form a complete orthonormal system
of vector-functions [5]. Let us show that the following formulas are valid:

[er ×Xmk(θ, ϕ)] = 0, [er × Ymk(θ, ϕ)] = −Zmk(θ, ϕ),

[er × Zmk(θ, ϕ)] = Ymk(θ, ϕ),
(4)

grad
(

Φ(r)Y (m)
k (θ, ϕ)

)

=
dΦ(r)

dr
Xmk(θ, ϕ) +

+

√

k(k + 1)
r

Φ(r)Ymk(θ, ϕ), (5)

rot[xΦ(r)Y (m)
k (θ, ϕ)] =

√

k(k + 1) Φ(r)Zmk(θ, ϕ), (6)

where Φ(r) is a function of r, x = (x1, x2, x3), (r, θ, ϕ) are the spherical
coordinates of the point x.

If in formulas (3) we set

[er × er] = 0, [er × eθ] = eϕ, [er × eϕ] = −eθ,

then we will obtain formula (4).
We rewrite the operator grad in terms of spherical coordinates

grad = er
∂
∂r

+
1
r

(

eθ
∂
∂θ

+
eϕ

sin θ
∂
∂ϕ

)

,

and obtain

grad[Φ(r)Y (m)
k (θ, ϕ)] =

(

erY
(m)
k (θ, ϕ)

) dΦ(r)
dr

+

+
1
r

Φ(r)
(

eθ
∂
∂θ

+
eϕ

sin θ
∂
∂ϕ

)

Y (m)
k (θ, ϕ) =

=
dΦ(r)

dr
Xmk(θ, ϕ) +

√

k(k + 1)
r

Φ(r)Ymk(θ, ϕ),

which proves equality (5). The proof of formula (6) follows from (4), (5)
and from the identity

rot
[

xΦ(r)Y (m)
k (θ, ϕ)

]

= −
[

x× grad
(

Φ(r)Y (m)
k (θ, ϕ)

)]

.

In what follows it will be convenient for us to represent the Fourier series
of the vector-function f(θ, ϕ) by system (3) as

f(θ, ϕ) = α00X00(θ, ϕ) +
∞
∑

k=1

k
∑

m=−k

{

αmkXmk(θ, ϕ) +

+
√

k(k + 1) [βmkYmk(θ, ϕ) + γmkZmk(θ, ϕ)]
}

, (7)
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where αmk, βmk, γmk are the Fourier coefficients:

αmk =

2π
∫

0

dϕ

π
∫

0

f(θ, ϕ) ·Xmk(θ, ϕ) sin θ dθ, k ≥ 0,

βmk =
1

√

k(k + 1)

2π
∫

0

dϕ

π
∫

0

f(θ, ϕ) · Y mk(θ, ϕ) sin θ dθ, k ≥ 1,

γmk =
1

√

k(k + 1)

2π
∫

0

dϕ

π
∫

0

f(θ, ϕ) · Zmk(θ, ϕ) sin θ dθ, k ≥ 1,

(8)

Xmk, Y mk, Zmk are the vectors complex-conjugated to xmk, ymk, zmk,
respectively.

If in formulas (8) we take into account that on the sphere of unit radius

[Ymk(θ, ϕ)]j =
1

k(k + 1)
DjY

(m)
k (θ, ϕ),

[Zmk(θ, ϕ)]j =
1

k(k + 1)
∂

∂sj
Y (m)

k (θ, ϕ),

where

∂
∂sj

=
( eθ

sin θ
∂
∂ϕ

− eϕ
∂
∂θ

)

j
,

Dj =
(

eθ
∂
∂θ

+
eϕ

sin θ
∂
∂ϕ

)

j
, j = 1, 2, 3,

then we will obtain

αmk =

2π
∫

0

dϕ

π
∫

0

(f · er)Y
(m)
k (θ, ϕ) sin θ dθ, k ≥ 0,

βmk =
1

√

k(k + 1)

2π
∫

0

dϕ

π
∫

0

[

2(f · er)−
3

∑

j=1

Djfj

]

Y (m)
k (θ, ϕ) sin θ dθ,

γmk =
1

√

k(k + 1)

2π
∫

0

dϕ

π
∫

0

3
∑

j=1

∂fj

∂sj
Y (m)

k (θ, ϕ) sin θ dθ.

(9)

Let

F (θ, ϕ) =
∞
∑

k=0

k
∑

m=−k

amkY (m)
k (θ, ϕ)



STATIONARY THERMOELASTIC OSCILLATIONS 425

be a Fourier series with respect to the orthonormalized system of spherical
functions Y (m)

k , where

amk =

2π
∫

0

dϕ

π
∫

0

F (θ, ϕ)Y (m)
k (θ, ϕ) sin θ dθ.

The following theorem is true [6].

Theorem 1. If F (y) ∈ C(l)(S), then Fourier coefficients admit the esti-
mates

amk = O(k−l).

This theorem and formula (9) imply

Theorem 2. If f(y) ∈ C(l)(S), then the Fourier coefficients αmk, βmk,
γmk admit the estimates

αmk = O(k−l), βmk = O(k−l−1), γmk = O(k−l−1).

Theorem 3. The vectors Xmk(θ, ϕ), Ymk(θ, ϕ), and Zmk(θ, ϕ) satisfy
the estimates

|Xmk(θ, ϕ)| ≤
√

2k + 1
4π

,

|Ymk(θ, ϕ)| <
√

2k(k + 1)
2k + 1

,

|Zmk(θ, ϕ)| <
√

2k(k + 1)
2k + 1

.

(10)

Proof. Using the recurrent relations of Legendre polynomials, the vector
Ymk(θ, ϕ) can be represented as

Ymk(θ, ϕ) =
1

2
√

k(k + 1)(2k + 1)
×

×
{

− e1

[ k + 1√
2k − 1

√

(k + m)(k + m− 1) Y (m−1)
k−1 (θ, ϕ) +

+
k√

2k + 3

√

(k −m + 1)(k −m + 2) Y (m−1)
k+1 (θ, ϕ)

]

+

+ e2

[ k + 1√
2k − 1

√

(k −m)(k −m− 1)Y (m−1)
k−1 (θ, ϕ) +

+
k√

2k + 3

√

(k + m + 1)(k + m + 2) Y (m+1)
k+1 (θ, ϕ)

]

+

+ 2e3

[ k + 1√
2k − 1

√

k2 −m2 Y (m)
k−1 (θ, ϕ)−
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− k√
2k + 3

√

(k + 1)2 −m2 Y (m)
k+1 (θ, ϕ)

]

}

, (11)

where e1 = (1, i, 0), e2 = (1,−i, 0), e3 = (0, 0, 1).
According to [7] we have

|Y (m)
k (θ, ϕ)| ≤

√

2k + 1
4π

. (12)

By virtue of the latter inequality formulas (3) and (11) yield

|Xmk(θ, ϕ)| = |er · Y (m)
k (θ, ϕ)| = |Y (m)

k (θ, ϕ)| ≤
√

2k + 1
4π

,

|Ymk(θ, ϕ)| <
√

2k(k + 1)
2k + 1

,

|Zmk(θ, ϕ)| = |er × Ymk(θ, ϕ)| = |Ymk(θ, ϕ)| <
√

2k(k + 1)
2k + 1

.

Definition 4. A solution U = (u, u4) of system (1) will be called regular
in the domain Ω if U ∈ C2(Ω) ∩ C1(Ω).

The following theorem is true [4].

Theorem 5. A regular solution of equation (1) admits a representation
of the form

u(x) = u(1)(x) + u(2)(x) + u(3)(x),

u4(x) = u(1)
4 (x) + u(2)

4 (x),
(13)

where

(∆ + λ2
j )u

(j)(x) = 0, j = 1, 2, 3, (∆ + λ2
j )u

(j)
4 (x) = 0, j = 1, 2,

rot u(j)(x) = 0, j = 1, 2, div u(3)(x) = 0, λ2
3 =

ρσ2

µ
,

λ2
1 + λ2

2 =
ρσ2

λ + 2µ
+

iσ
κ +

iσγη
λ + 2µ

, λ2
1 · λ2

2 =
iσ
κ · ρσ2

λ + 2µ
.

(14)

For γ 6= 0 values λ2
1, λ2

2 are complex numbers. Choose values λ1 and
λ2 so that their imaginary parts are positive, i.e., λj = αj + iβj , βj > 0,
j = 1, 2.
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Definition 6. A solution U = (u, u4) of system (1) will be said to satisfy
the thermoelastic radiation condition at infinity if

u(j)(x) = o(r−1),
∂u(j)

∂xk
= O(r−2),

u(j)
4 (x) = o(r−1),

∂u(j)
4

∂xk
= O(r−2), j = 1, 2, k = 1, 2, 3,

u(3)(x) = O(r−1),
∂u(3)

∂r
− iλ3u(3) = o(r−1), r = |x|.

(15)

Denote by Ω0 a ball bounded by the spherical surface S with center at
the origin and radius R. A complement to the set Ω0 = Ω0 ∪ S will be
denoted by Ω1 = E3 \ Ω0.

Theorem 7. A regular solution of equation (1) admits, in the domain
Ωj, j = 0, 1, a representation of the form

u(x) = grad[Φ1(x) + Φ2(x)] + rot rot(xΦ3) + rot(xΦ4),

u4(x) = c[(k2
1 − λ2

1)Φ1(x) + (k2
1 − λ2

2)Φ2(x)],
(16)

where

(∆ + λ2
j )Φj(x) = 0, j = 1, 2, (∆ + λ2

3)Φj(x) = 0, j = 3, 4,

c = (λ + 2µ)/γ, k2
1 = ρσ2/(λ + 2µ).

(17)

Proof. The vectors u(j)(x), j = 1, 2, 3, satisfying equations (14) admit the
following representations [5]:

u(j)(x) = grad Φj(x), j = 1, 2,

u(3)(x) = rot rot(xΦ3) + rot(xΦ4),
(18)

where Φj(x), j = 1, 2, 3, 4, are the scalar functions satisfying equations (17).
If the values of the vector u(j)(x), j = 1, 2, 3, from (18) are substituted

into (13), we will have

u(x) = grad[Φ1(x) + Φ2(x)] + rot rot(xΦ3) + rot(xΦ4). (19)

System (1) implies

u4(x) =
[ (λ + 2µ)κi

γσ
(∆ + k2

1)− κη
]

div u. (20)

The substitution of the values of the vector u(x) from (19) into (20) gives

u4(x) = c[(k2
1 − λ2

1)Φ1(x) + (k2
1 − λ2

2)Φ2(x)],
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which proves that representation (16) is valid. One can immediately prove
that the vector (u, u4) represented by formula (16) is a solution of system
(1).

Formulation of the Problems. The following problems will be con-
sidered: find, in Ω1, a regular vector U = (u, u4) satisfying system (1), the
radiation conditions at infinity, and one of the following boundary condi-
tions:

Problem (I)−.
{

u(z)
}−

= f(z),
{

u4(z)
}−

= f4(z), z ∈ S;

Problem (II)−.
{

P (∂z, n)U(z)
}−

= f(z),
{∂u4(z)

∂n(z)

}−
= f4(z), z ∈ S,

where n(z) is the external normal unit vector with respect to Ω0 at the point
z ∈ S. Note that n(x) ≡ er; f(z) = (f1(z), f2(z), f3(z)), fj(z), j = 1, 2, 3, 4,
are the given functions.

Problem A. Find in Ωj , j = 0, 1, a regular vector U (j)(x) =
(u(j)(x), u(j)

4 (x)) satisfying the equation

µj∆u(j) + (λj + µj) grad div u(j) − γj grad u(j)
4 + ρjσ2

j u(j) = 0,

∆u(j)
4 +

iσj

κj
u(j)

4 + iσjηj div u(j) = 0, j = 0, 1,
(21)

for j = 0, 1, the radiation conditions at infinity for j = 1, and, on the
boundary S, the contact conditions

{

u(0)(z)
}+ −

{

u(1)(z)
}−

= f (0)(z),
{

u(0)
4 (z)

}+ −
{

u(1)
4 (z)

}−
= f (0)

4 (z),
{

P (0)(∂z, n)U (0)(z)
}+ −

{

P (1)(∂z, n)U (1)(z)
}−

= f (1)(z),

γ0

σ0η0

{∂u(0)
4 (z)

∂n(z)

}+
− γ1

σ1η1

{∂u(1)
4 (z)

∂n(z)

}−
= f (1)

4 (z),

(22)

where f (j)(z) = (f (j)
1 , f (j)

2 , f (j)
3 ), j = 0, 1, f (j)

l (z), l = 1, 2, 3, 4, are the given
functions.

Solution of Problems (I)−, (II)−. A solution of these problems is
sought for in form (16), where the functions Φj(x), j = 1, 2, 3, 4, are written
as

Φj(x) =
∞
∑

k=0

k
∑

m=−k

hk(λjr)Y
(m)
k (θ, ϕ)A(j)

mk, j = 1, 2, (23)

Φj(x) =
∞
∑

k=0

k
∑

m=−k

hk(λ3r)Y
(m)
k (θ, ϕ)A(j)

mk, j = 3, 4, (24)
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where A(j)
mk, j = 1, 2, 3, 4, are the unknown constants,

hk(λjr) =

√

R
r

H(1)
k+1/2(λjr)

H(1)
k+1/2(λjR)

, j = 1, 2, 3, (25)

H(1)
k+1/2(x) is Hankel’s function of first kind.
We will impose on the function Φj(x), j = 3, 4, the condition

∫

S′

[

Φj(z)
]−

dzS = 0, j = 3, 4, (26)

where S′ is the spherical surface with center at the origin and radius R′

(R < R′ < +∞).
If the values of Φj(x), j = 3, 4, from (24) are substituted into (26), we

will have A(j)
00 = 0, j = 3, 4.

By putting the expression of the vector U = (u, u4) from (16) into (2) we
obtain

P (∂x, n)U(x) = 2µ
∂u
∂r

+ µer
[

(2λ2
1 − λ2

3)Φ1(x) + (2λ2
2 − λ2

3)Φ2(x)
]

−

− ρσ2r
(

er
∂
∂r

− grad
)

Φ3(x) +

+ µ
[

er × grad
(

r
∂
∂r

+ 1
)

Φ4(x)
]

. (27)

If the values of the function Φj(x), j = 1, 2, 3, 4, from (23), (24) are substi-
tuted into (16), (27), we will have by virtue of (5) and (6)

u(x) = u00(r)X00(θ, ϕ)
∞
∑

k=1

k
∑

m=−k

{

umk(r)Xmk(θ, ϕ) +

+
√

k(k + 1)
[

vmk(r)Ymk(θ, ϕ) + wmk(r)Zmk(θ, ϕ)
]}

,

u4(x) =
∞
∑

k=0

k
∑

m=−k

ηmk(r)Y (m)
k (θ, ϕ),

(28)

P (∂x, n)U(x) = a00(r)X00(θ, ϕ)
∞
∑

k=1

k
∑

m=−k

{

amk(r)Xmk(θ, ϕ) +

+
√

k(k + 1)
[

bmk(r)Ymk(θ, ϕ)+cmk(r)Zmk(θ, ϕ)
]}

,

∂u4(x)
∂n(x)

=
∞
∑

k=0

k
∑

m=−k

η′mk(r)Y (m)
k (θ, ϕ),

(29)
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where

umk(r) =
2

∑

j=1

d
dr

hk(λjr)A
(j)
mk +

k(k + 1)
r

hk(λ3r)A
(3)
mk,

vmk(r) =
2

∑

j=1

1
r

hk(λjr)A
(j)
mk +

( d
dr

+
1
r

)

hk(λ3r)A
(3)
mk,

wmk(r) = hk(λ3r)A
(4)
mk,

amk(r) = 2µ
2

∑

j=1

[ d2

dr2 + λ2
j −

1
2

λ2
3

]

hk(λjr)A
(j)
mk +

+ 2µk(k + 1)
d
dr

[1
r

hk(λ3r)
]

A(3)
mk,

bmk(r) = 2µ
2

∑

j=1

d
dr

[1
r

hk(λjr)
]

A(j)
mk −

− 2µ
[1
r

d
dr

+
1
2

λ2
3 −

k(k + 1)− 1
r2

]

hk(λ3r)A
(3)
mk,

cmk(r) = µ
( d

dr
− 1

r

)

hk(λjr)A
(j)
mk,

ηmk(r) = c
2

∑

j=1

(k2
1 − λ2

j )hk(λjr)A
(j)
mk.

(30)

Assume that the vector-function f(z) can be expanded into series (7),
while the function f4(z) can be expanded with respect to the system of
spherical functions Y (m)

k (θ, ϕ):

f4(z) =
∞
∑

k=0

k
∑

m=−k

δmkY (m)
k (θ, ϕ), (31)

where δmk are the Fourier coefficients.
Using the boundary conditions of Problems (I)−, (II)− and formulas (28),

(29), (7), (31), for the constants A(j)
mk, j = 1, 2, 3, 4, we obtain the following

systems of algebraic equations:

umk(R) = αmk, ηmk(R) = δmk, k ≥ 0,
vmk(R) = βmk, wmk(R) = γmk, k ≥ 1,

(32)

for Problem (I)−;

amk(R) = αmk, η′mk(R) = δmk, k ≥ 0,

bmk(R) = βmk, cmk(R) = γmk, k ≥ 1,
(33)
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for Problem (II)−.

Theorem 8. Problems (I)− and (II)− have one solution at most.

Proof. It is enough to show that a regular solution of the homogeneous
boundary value Problems (I)−0 and (II)−0 , satisfying conditions (15), is iden-
tically zero. Let U = (u, u4) be a regular solution of Problem (I)−0 and
(II)−0 , satisfying the thermoelastic radiation condition at infinity. We write
the Green formula of system (1) in the domain which is bounded by the
concentric spheres S and S(0, r), r > R [2]:

2γ
iση

∫

Ωr

| grad u4|2dx=−
∫

S

{

u·PU−u·PU+
γ

iση

(

u4
∂u4

∂n
+u4

∂u4

∂n

)}−
dS+

+
∫

S(0,r)

[

u · PU − u · PU +
γ

iση

(

u4
∂u4

∂n
+ u4

∂u4

∂n

)]

dS. (34)

Taking into account the boundary conditions of the homogeneous Problems
(I)−0 and (II)−0 in (34), we obtain

2γ
iση

∫

Ωr

| gradu4|2dx =

=
∫

S(0,r)

[

u · PU − u · PU +
γ

iση

(

u4
∂u4

∂n
+ u4

∂u4

∂n

)]

dS. (35)

Since the imaginary parts of the constants λ1 and λ2 are positive, Hankel’s
function H(1)

k+1/2(λjr) and its complex conjugates H
(1)
k+1/2(λjr), j = 1, 2,

decrease exponentially at infinity. By substituting the values u, PU , u4,
∂u4
∂n , from (28), (29) into (35) and using the formulas [7]

H(1)
k+1/2(λ3r)

d
dr

H(2)
k+1/2(λ3r)−H(2)

k+1/2(λ3r)
d
dr

H(1)
k+1/2(λ3r)=

4
πir

,

H(l)
k+1/2(λ3r) = O(r−1/2), l = 1, 2,

(36)

we have
2γ
iση

lim
r→∞

∫

Ωr

| grad u4|2dx +

+
4µR
πi

∞
∑

k=1

k
∑

m=−k

k(k + 1)

|H(1)
k+1/2(λ3R)|2

[

λ2
3|A

(3)
mk|

2 + |A(4)
mk|

2] = 0.

Hence it follows that

gradu4(x) = 0, x ∈ Ω−, A(j)
mk = 0, j = 3, 4. (37)
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Taking into account the behavior of u4(x) at infinity and expansion (24),
from equality (37) we obtain

u4(x) ≡ 0, Φj(x) ≡ 0, j = 3, 4, x ∈ Ω1. (38)

(16) and (38) imply

(k2
1 − λ2

1)Φ1(x) + (k2
1 − λ2

2)Φ2(x) ≡ 0, x ∈ Ω1. (39)

Applying the operator ∆ + λ2
j , j = 1, 2, to both parts of equalities (16) and

(38), we have

λ2
j (λ

2
j − k2

1)Φj(x) ≡ 0, j = 1, 2, x ∈ Ω1.

Therefore Φj(x) ≡ 0, j = 1, 2, x ∈ Ω1, and by virtue of equalities (16) and
(39) we finally obtain U = (u, u4) ≡ 0.

Remark. A different proof of this theorem is given in [2].

Lemma 9. Formulas (16), (18), (26) establish one-to-one correspon-
dence between the regular solution U = (u, u4) of equations (1) and the
system of functions {Φj(x), j = 1, 2, 3, 4}.

Proof. To prove Lemma 9 it is enough to show that the triviality of the
vector U(x) implies the triviality of the functions Φj(x), j = 1, 2, 3, 4, and
vice versa.

Let us express the functions Φj(x), j = 1, 2, 3, 4, in terms of the compo-
nents of the vector (u, u4). By formula (16) we have

Φj(x) =
(−1)j

k2
1(λ

2
1 − λ2

2)

[

(k2
1 − λ2

3−j) div u +
λ2

3−j

c
u4(x)

]

, j = 1, 2,

r
( ∂2

∂r2 +
2
r

∂
∂r

+ λ2
2

)

Φ3(x) = (er · u) +
1
k2
1

∂
∂r

div u− 1
ck2

1

∂ur

∂r
,

r
( ∂2

∂r2 +
2
r

∂
∂r

+ λ2
2

)

Φ4(x) = (er · rot u).

(40)

For u(x) = 0, u4(x) = 0 formulas (40) imply by virtue of condition (26)
that Φj(x), j = 1, 2, 3, 4. Indeed, if u(x) = 0, u4(x) = 0, then it follows
from (40) that Φj(x) = 0, j = 1, 2, and

( ∂2

∂r2 +
2
r

∂
∂r

+ λ2
2

)

Φj(x) = 0, j = 3, 4. (41)

Applying expansions (24) and equality (26) to this formula, we obtain

∞
∑

k=1

k
∑

m=−k

k(k + 1)
r2 hk(λ3r)Y

(m)
k (θ, ϕ)A(j)

mk = 0, j = 3, 4,
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which gives us A(j)
mk = 0, k ≥ 1, and therefore Φj(x) = 0, j = 3, 4.

If Φj(x) = 0, j = 1, 2, 3, 4, then (16) implies U(x) = 0.

By Theorem 8 and Lemma 9 we conclude that systems (32) and (33) have
unique solutions. If the solutions of systems (32) and (41) are put into (28)
and (29), respectively, then we shall obtain formal solutions of Problems
(I)− and (II)−.

To substantiate the method, first we have to show that series (28) and
(29) are convergent. For k →∞ the following relations are fulfilled [7]:

hk(λjr) ∼
(R

r

)k+1
,

d
dr

hk(λjr) ∼ −k
r

(R
r

)k+1
. (42)

Putting the solution of system (32) (or of (33)) into formulas (30) and
taking into account estimates (10) and (42), we find that series (28), (29)
are majorized by the series

M
∞
∑

k=k0

k5/2
(R

r

)k+1[
|αmk|+ |δmk|+ k(|βmk|+ |γmk|)

]

,

M = const > 0.

(43)

If x ∈ Ω1, then R < r and series (43) converges. For this series to converge
at the boundary, it is enough that the Fourier coefficients αmk, βmk, γmk,
δmk admit the estimates

αmk = O(k−4), δmk = O(k−4), βmk = O(k−5), γmk = O(k−5). (44)

Theorems 1, 2 imply that the Fourier coefficients admit estimates (44) if
the vector-function f(z) ∈ C4(S) and the function f4(z) ∈ C4(S).

Substituting the functions Φj(x), j = 1, 2, 3, 4, from (23), (24) into (18),
we obtain

u(j)(x) =
d
dr

h0(λjr)X00(θ, ϕ)
∞
∑

k=1

k
∑

m=−k

[ d
dr

hk(λjr)Xmk(θ, ϕ) +

+

√

k(k + 1)
r

hk(λjr)Ymk(θ, ϕ)
]

A(j)
mk, j = 1, 2,

u(3)(x) =
∞
∑

k=1

k
∑

m=−k

{

[k(k + 1)
r

hk(λ3r)Xmk(θ, ϕ) +

+
√

k(k + 1)
( d

dr
+

1
r

)

hk(λ3r)Ymk(θ, ϕ)
]

A(3)
mk +

+
√

k(k + 1) hk(λ3r)Zmk(θ, ϕ)A(4)
mk

}

.

(45)
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For r →∞ we have the relations [7]

H(1)
k+1/2(λjr) =

√

2
πλjr

ei(λjr− k+1
2 π)[1 + O(r−1], j = 1, 2, 3, (46)

∣

∣

∣

( d
dr
− iλ3

)H(1)
k+1/2(λ3r)
√

r

∣

∣

∣ ≤
M1

r2 , M1 = const > 0, (47)

where M1 does not depend on k.
Applying asymptotics (46) and (47) to formulas (45) and (28), by virtue

of estimates (44) and the fact that the imaginary parts of λj , j = 1, 2, are
positive, we conclude that the vectors u(j)(x), j = 1, 2, 3, and the function
u4(x) satisfy condition (15) at infinity.

Thus the vector U = (u, u4) defined by formula (28), where the unknown
constants A(j)

mk, j = 1, 2, 3, 4, are a solution of system (32) or (33), is a
regular solution of Problem (I)− or (II)−.

Solution of Problem A. A solution of this problem will be sought for
in the form

u(j)(x) =grad[Φ(j)
1 (x) + Φ(j)

2 (x)] + rot rot(xΦ(j)
3 (x)) + rot(xΦ(j)

4 (x)),

u(j)
4 (x) =cj

[

(k2
1j−λ2

1j)Φ
(j)
1 (x)+(k2

ij−λ2
ij)Φ

(j)
2 (x)

]

, x∈Ωj , j =0, 1,
(48)

where

cj(λj + 2µj)/γj , k2
ij = ρjσ2

j /(λj + 2µj),

(∆ + λ2
lj)Φ

(j)
l (x) = 0, l = 1, 2,

(∆ + λ2
3j)Φ

(j)
l (x) = 0, l = 3, 4, j =0, 1.

The constants λlj , l = 1, 2, 3, j = 0, 1, have form (14), where j corre-
sponds to the domain Ωj .

The functions Φ(j)
l (x), l = 1, 2, 3, 4, j = 0, 1, will be sought for in the

form

Φ(0)
l (x) =

∞
∑

k=0

k
∑

m=−k

gk(λl0r)Y
(m)
k (θ, ϕ)B(l)

mk,

Φ(1)
l (x) =

∞
∑

k=0

k
∑

m=−k

hk(λl1r)Y
(m)
k (θ, ϕ)A(l)

mk, l = 1, 2, 3, 4,

(49)
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where A(l)
mk, B(l)

mk, l = 1, 2, 3, 4, are the unknown constants, and λ4j ≡ λ3j ,

gk(λl0r) =

√

R
r
Ik+1/2(λl0r)
Ik+1/2(λl0R)

, (50)

where Ik+1/2(x) is Bessel’s function, and hk(λl1r) has form (25), where λl

is replaced by λl1.
The following conditions are imposed on the functions Φ(j)

l (x), l = 3, 4,
j = 0, 1:

∫

S′

[

Φ(0)
l (z)

]+
dS = 0, l = 3, 4, (51)

∫

S′′

[

Φ(1)
l (z)

]−
dS = 0, l = 3, 4, (52)

where S′ and S′′ are the spheres with center at the origin and radii R′ and
R′′ (0 < R′ < R < R′′ < +∞), respectively.

If the functions Φ(j)
l (x) from (49) are inserted into (51) and (52), we will

obtain A(l)
00 = 0, B(j)

00 , l = 3, 4.
By substituting the function Φ(j)

l (x), l = 1, 2, 3, 4, j = 0, 1, from formula
(49) into (48) and (27) we obtain

u(j)(x) = u(j)
00 (r)X00(θ, ϕ)

∞
∑

k=1

k
∑

m=−k

{

u(j)
mk(r)Xmk(θ, ϕ) +

+
√

k(k + 1)
[

v(j)
mk(r)Ymk(θ, ϕ) + w(j)

mk(r)Zmk(θ, ϕ)
]}

,
(53)

u(j)
4 (x) =

∞
∑

k=0

k
∑

m=−k

η(j)
mk(r)Y (m)

k (θ, ϕ),

P (j)(∂x, n)U (j)(x) = a(j)
00 (r)X00(θ, ϕ)

∞
∑

k=1

k
∑

m=−k

{

a(j)
mk(r)Xmk(θ, ϕ) +

+
√

k(k + 1)
[

b(j)
mk(r)Ymk(θ, ϕ)+c(j)

mk(r)Zmk(θ, ϕ)
]}

, j =0, 1, (54)

where the expressions for u(1)
mk, v(1)

mk, . . . , η(1)
mk are given by formulas (30) if the

constants λ, µ, . . . , σ there are replaced by λ1, µ1, . . . , σ1, while the expres-
sions for u(0)

mk, . . . , η(0)
mk are obtained from (30) if the constants λ, µ, . . . , σ

there are replaced by λ0, µ0, . . . , σ0 and Hankel’s function by Bessel’s func-
tion.
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Let the functions f (j)
4 (z) and the vector-functions f (j)(z), j = 0, 1, be

expanded into the series

f∗j)(z) = α(j)
00 X00(θ, ϕ)

∞
∑

k=1

k
∑

m=−k

{

α(j)
mkXmk(θ, ϕ) +

+
√

k(k + 1)
[

β(j)
mkYmk(θ, ϕ) + γ(j)

mkZmk(θ, ϕ)
]}

,

f∗j)4 (z) =
∞
∑

k=0

k
∑

m=−k

δ(j)
mkY (m)

k (θ, ϕ), j = 0, 1.

(55)

Using the contact conditions (22) and formulas (53)–(55), we obtain the
following system of algebraic equations:

u(0)
mk(R)− u(1)

mk(R) = α(0)
mk, η(0)

mk(R)− η(1)
mk(R) = δ(0)

mk, k ≥ 0,

v(0)
mk(R)− v(1)

mk(R) = β(0)
mk, w(0)

mk(R)− w(1)
mk(R) = γ(0)

mk, k ≥ 1,

a(0)
mk(R)− a(1)

mk(R) = α(1)
mk,

γ
σ0η0

d
dR

η(0)
mk(R)−

− γ1

σ1η1

d
dR

η(1)
mk(R) = δ(1)

mk, k ≥ 0,

b(0)
mk(R)− b(1)

mk(R) = β(1)
mk, c(0)

mk(R)− c(1)
mk(R) = γ(0)

mk, k ≥ 1.

(56)

Theorem 10. The homogeneous problem (A)0 has only a trivial solu-
tion.

Proof. We write Green’s formulas for system (21) in the domains Ω0 and
Ωr, where the latter is bounded by the concentric surfaces S and S(0, r),
r > R [4]:

2γ0

iσ0η0

∫

Ω0

∣

∣ grad u(0)
4 (x)

∣

∣

2
dx =

∫

S

{

u(0) · P (0)U (0) − u(0) · P (0)U (0) +

+
γ0

iσ0η0

(

u(0)
4

∂u(0)
4

∂n
+ u(0)

4
∂u(0)

4

∂n

)}+
dS, (57)

2γ1

iσ1η1

∫

Ωr

∣

∣ grad u(1)
4 (x)

∣

∣

2
dx = −

∫

S

{

u(1) · P (1)U (1) − u(1) · P (1)U (1) +

+
γ1

iσ1η1

(

u(1)
4

∂u(1)
4

∂n
+ u(1)

4
∂u(1)

4

∂n

)}+
dS +

∫

S(0,r)

{

u(1) · P (1)U (1) −

−u(1) · P (1)U (1) +
γ1

iσ1η1

(

u(1)
4

∂u(1)
4

∂n
+ u(1)

4
∂u(1)

4

∂n

)}+
dS. (58)
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Applying the homogeneous boundary condition of Problem (A)0 to (57) and
(59), we obtain

2γ0

iσ0η0

∫

Ω0

∣

∣ grad u(0)
4 (x)

∣

∣

2
dx +

2γ1

iσ1η1

∫

Ωr

∣

∣ gradu(0)
4 (x)

∣

∣

2
dx =

=
∫

S(0,r)

{

u(1) · P (1)U (1) − u(1) · P (1)U (1) +

+
γ1

iσ1η1

(

u(1)
4

∂u(1)
4

∂n
+ u(1)

4
∂u(1)

4

∂n

)}

dS. (59)

Substituting the expressions for u(1), P (1)U (1), u(1)
4 , and ∂u(1)

4
∂n from (53),

(54) into (59), and taking into account formula (36) and the fact that the
vectors Xmk, Ymk, Zmk are normalized, we have

2γ0

iσ0η0

∫

Ω0

∣

∣ grad u(0)
4 (x)

∣

∣

2
dx +

2γ1

iσ1η1

∫

Ωr

∣

∣ gradu(0)
4 (x)

∣

∣

2
dx +

+
4µR
πi

∞
∑

k=1

k
∑

m=−k

k(k + 1)
|Hk+1/2(λ3R)|2

[

λ2
31|A

(3)
mk|

2 + |A(4)
mk|

2] = o(1). (60)

Hence, passing to the limit as r →∞, we find

u(j)
4 (x) = const, j = 0, 1, A(l)

mk = 0, l = 3, 4, k ≥ 1.

Since u(j)
4 (x) is a metaharmonic function, we have u(j)

4 ≡ 0, x ∈ Ωj , j = 0, 1.
By the equality A(l)

mk = 0, l = 3, 4, it follows that Φ(1)
l (x) ≡ 0, x ∈ Ω1,

l = 3, 4. Using the equality u(1)
4 (x) ≡ 0, x ∈ Ω1, in representation (48), we

obtain Φ(1)
l ≡ 0, x ∈ Ω1, l = 1, 2. Thus we have shown that Φ(1)

l (x) ≡ 0,
x ∈ Ω1, l = 1, 2, 3, 4. By virtue of these equalities we conclude that

u(1)(x) ≡ 0, u(1)
4 ≡ 0, x ∈ Ω1. (61)

Using the contact conditions of Problem (A)0 and equalities (63), we find
{

u(0)(z)
}+

= 0,
{

u(0)
4 (z)

}+
= 0,

{

P (0)U (0)(z)
}+

= 0,
{∂u(0)

4

∂n

}+
= 0, z ∈ S.

(62)

A general representation of regular solutions of the homogeneous equation
(21) in the domain Ω0 has the form [4]

2U (0)(x) =
∫

S

{

Γ(0)(x− y, σ0)
[

R(0)U (0)]+ −
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−
[

˜R˜Γ(0)(y − x, σ0)
]′[

U (0)(y)
]+}

dyS, (63)

where Γ(0)(x − y, σ0) is the fundamental solution of system (21), ˜Γ(0)(x −
y, σ0) is the matrix of fundamental solutions of the adjoint homogeneous
system, RU = (PU, ∂u4

∂n ), ˜RU = (Tu− iσηu4, ∂u4
∂n ).

From (62) and (63) we finally obtain

u(0)(x) ≡ 0, u(0)
4 (x) ≡ 0, x ∈ Ω0.

By the uniqueness theorem and Lemma 9 we conclude that system (56)
has a unique solution. After putting this solution into (53) , we obtain a
formal solution of Problem A.

If f (j)(z) ∈ C4(S), f (j)
4 (z) ∈ C4(S), j = 0, 1, then the constructed formal

series (53) gives a regular solution of the problem posed.
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