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NON-ABELIAN COHOMOLOGY WITH COEFFICIENTS IN
CROSSED BIMODULES

H. INASSARIDZE

Abstract. When the coefficients are crossed bimodules, Guin’s non-
abelian cohomology [2], [3] is extended in dimensions 1 and 2, and
a nine-term exact cohomology sequence is obtained.

We continue to study non-abelian cohomology of groups (see [1]) fol-
lowing Guin’s approach to non-abelian cohomology [2], [3]. The pointed
sets of cohomology Hn(G, (A,µ)), n = 1, 2, will be defined when the group
of coefficients (A,µ) is a crossed G-R-bimodule. The notion of a crossed
bimodule has been introduced in [1]. H1(G, (A, µ)) is equipped with a par-
tial product and coincides with Guin’s cohomology group [3] when crossed
G-modules are viewed as crossed G-G-bimodules. The pointed set of coho-
mology H2(G, (A,µ)) coincides with the second pointed set of cohomology
defined in [1] when the coefficients are crossed modules. A coefficient short
exact sequence of crossed G-R-bimodules gives rise to a nine-term exact co-
homology sequence and we recover the exact cohomology sequence obtained
in [1] when the coefficients are crossed modules. By analogy with the case
n = 2 the definition of a pointed set of cohomology Hn(G, (A,µ)) of a group
G with coefficients in a crossed G-R-bimodule (A, µ) is given for all n ≥ 1.

The notation and diagrams of [1] will be used.
Recall the definitions of a crossed G-R-bimodule and the group

Der(G, (A,µ)) of derivations from G to (A,µ).
Let G,R and A be groups. (A,µ) is a crossed G-R-bimodule if:
1) (A,µ) is a crossed R-module,
2) G acts on R and A,
3) the homomorphism µ : A −→ R is a homomorphism of G-groups,
4) (gr)a = grg−1

a for g ∈ G, r ∈ R, a ∈ A.
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The group Der(G, (A,µ)) is defined as follows. It consists of pairs (α, r)
where α is a crossed homomorphism from G to A and r is an element of
R such that µα(x) = r xr−1 for all x ∈ G. A product in Der(G, (A,µ)) is
given by (α, r)(β, s) = (α∗β, rs) where (α∗β)(x) = xβ(x)α(x), x ∈ G. For
any a ∈ A and (α, r) ∈ Der(G, (A,µ)) the following equality holds:

α(x) xra = rxaα(x) for all x ∈ G .

Definition 1. Let (A,µ) be a crossed G-R-bimodule. It will be said that
a crossed homomorphism α : G −→ A satisfies condition (j) (resp. condition
(j′)) if for c ∈ H0(G,R) (resp. if for c ∈ H0(G,R) such that there is b ∈ A
with µ(b) = c) there exists a ∈ A such that cα(x) = a−1 α(x) xa for x ∈ G
and µ(a) = 1. It will be said that an element (α, r) of Der(G, (A, µ)) satisfies
condition (j) (resp. condition (j′)) if α satisfies this condition.

It is obvious that any element of the form (α, 1) satisfies condition (j′). If
(A,µ) is a crossed G-R-bimodule induced by a surjective homomorphism f :
G −→ R, then every element (α, r) ∈ Der(G, (A,µ)) such that α(ker f) = 1
satisfies condition (j). In effect, for c ∈ Z(R) = H0(G,R) we have zxdx =
xd, x ∈ G, with f(d) = c and zx ∈ ker f . Thus, α(zx) zxα(dx) = α(xd),
whence α(d) cα(x) = α(x) xα(d) and µα(d) = r f(d) r−1 f(d)−1 = 1.

Note that if (α, r) ∼ (α′, r′) (see below) and (α, r) satisfies condition (j)
then (α′, r′) satisfies condition (j) too when H0(G,R) ⊂ Z(R). In effect, we
have α′(x) = b−1α(x) xb, r′ = µ(b)−1r t and cα(x) = a−1α(x) xa, µ(a) = 1,
where c, t ∈ H0(G,R) ⊂ Z(R). Thus

cα′(x) = cb−1 cα(x) cxb = cb−1 a−1α(x) xa cxb =

= cb−1a−1α(x) x(a cb) = cb−1a−1b α′(x) xb−1 x(a cb) =

= cb−1ba−1α′(x) x(ab−1 cb)

with µ(a b−1 cb)−1 = (µ(a)µ(b−1)µ(cb))−1 = µ(cb−1) µ(b) = c µ(b)−1c−1

µ(b) = 1.
It is clear that if f : (A,µ) −→ (B, λ) is a homomorphism of crossed G-

R-bimodules and (α, r) ∈ Der(G, (A,µ)) satisfies condition (j), then (fα, r)
satisfies condition (j).

Let (A,µ) be a crossed G-R-bimodule. In the group Der(G, (A,µ)) we
introduce a relation ∼ defined as follows:

(α, r) ∼ (β, s) ⇐⇒

{

∃ a ∈ A : β(x) = a−1α(x) xa,
s = µ(a)−1r mod H0(G,R)

.

Later we shall need the following assertion:
If (A,µ) is a precrossed G-R-bimodule the equality

rxa = xra (1)
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holds for any x ∈ G, a ∈ A, r ∈ H0(G,R).
In effect,we have

rxa = xx−1rxa = x(x−1
r)a = xra.

Proposition 2. The relation ∼ is an equivalence. Assume H0(G,R) is a
normal subgroup of R; then the group Der(G, (A,µ)) induces on
Der(G, (A,µ))/ ∼ a partial product defined by

[(α, 1)][(β, s)] = [(α ∗ β, s)]

if [(β, s)] contains an element satisfying condition (j′), and by

[(α, r)][(β, s)] = [(α ∗ β, rs)]

if [(β, s)] contains an element satisfying condition (j).

Proof. If (α, r) ∼ (α′, r′), i.e., α′(x) = a−1α(x) xa, x ∈ G, and r′ =
µ(a)−1rz, z ∈ H0(G,R), then α(x) = aα(x) xa−1 and r = µ(a) r′z−1,
z−1 ∈ H0(G,R). Thus, (α′, r′) ∼ (α, r).

If (α, r) ∼ (α′, r′) and (α′, r′) ∼ (α′′, r′′) we have

α′(x) = a−1α(x) xa, r′ = µ(a)−1rz,

α′′(x) = b−1α′(x) xb, r′′ = µ(b)−1r′z′,

where z, z′ ∈ H0(G,R). This implies (α, r) ∼ (α′′, r′′) and the relation ∼ is
an equivalence.

It is clear that if (α, r) ∈ Der(G, (A,µ)) and c ∈ H0(G, R) then (α, r) ∼
(α, rc).

We have yet to show the correctness of the partial product.
Let (α, 1) ∼ (α′, 1), (β, s) ∼ (β′, s′) and (β, s) satisfy condition (j′). We

will prove that (α, 1)(β, s) ∼ (α′, 1)(β′, s′). One has

α′(x) = a−1α(x) xa, x ∈ G,

1 = µ(a)−1z, z ∈ H0(G,R),

and

β′(x) = b−1β(x) xb, x ∈ G,

s′ = µ(b)−1sz′, z′ ∈ H0(G,R).

Then β′(x)α′(x) = b−1β(x) xba−1α(x) xa=b−1β(x)a−1α(x) xa xb= b−1a−1

µ(a)β(x)α(x) xa xb=b−1a−1d−1β(x)α(x) x(dab) and s′=µ(b)−1µ(a)−1zsz′=
µ(b−1a−1d−1) sz′′z′ where β(x) = d−1β(x) xd, µ(d) = 1 and z′′ ∈ H0(G,R).
Therefore (α, 1)(β, s) ∼ (α′, 1)(β′, s′).

It is clear that the set of all elements of the form [(α, 1)] forms an abelian
group under this product.
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Finally, we will prove that if (α, r) ∼ (α′, r′), (β, s) ∼ (β′, s′) and (β, s)
satisfies condition (j) then (α, r)(β, s) ∼ (α′, r′)(β′, s′) and we check Guin’s
proof [3] in our case.

We first prove that

(α, r)(β, s) ∼ (α, rc)(β, s)

for c ∈ H0(G,R).
Using condition (j) and equality (1) of [3] one gets

rcβ(x)α(x) = r(a−1β(x) xa) α(x) = ra−1 rβ(x) rxaα(x) =

= ra−1 rβ(x)α(x) rxa.

Since µ(ra)−1 = (r µ(a) r−1)−1 = 1, one has rcs = µ (ra)−1rsc′ with
c′ ∈ H0(G,R). Therefore, (α, r)(β, s) ∼ (α, rc)(β, s).

Further,we have

α′(x) = b−1α(x) xb, r′ = µ(b)−1rz,

and β′(x) = d−1β(x) xd, s′ = µ(d)−1st with z, t ∈ H0(G,R).
Put

(α, rz)(β, s) = (γ, rzs),

where γ(x) = rzβ(x)α(x), x ∈ G, and (α′, r′)(β′, s′) = (γ′, r′s′), where
γ′(x) = r′β′(x)α′(x), x ∈ G.

We will show that

(α, rz)(β, s) ∼ (α′, r′)(β′, s′).

Using (1) and equality (1) of [1] one has

γ′(x) = r′(d−1β(x) xd) b−1α(x) xb =

= µ(b)−1r·zd−1 µ(b)−1rz
β(x) µ(b)−1rzxd b−1α(x) xb =

= b−1 r·zd−1 rz
β(x) r·x(zd) α(x) xb = b−1 r·zd−1 r·z

β(x)α(x) xrzd xb,

and µ(r·zd b)−1 = µ(b)−1rz µ(d)−1z−1r−1 = r′s′t−1s−1z−1r−1, r′s′ =
µ(r·zd b)−1rzst with t ∈ H0(G,R).

Therefore (α, rz)(β, s) ∼ (α′, r′)(β′, s′), whence (α, r)(β, s) ∼ (α′, r′)
(β′, s′).

Definition 3. Let (A,µ) be a crossed G-R-bimodule. One denotes by
H1(G, (A, µ)) the quotient set Der(G, (A, µ))/ ∼ equipped with the afore-
mentioned partial product and it will be called the first set of cohomology of
G with coefficients in the crossed G-R-bimodule (A,µ).
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If (A,µ) is a crossed G-module viewed as a crossed G-G-bimodule then
H0(G,G) = Z(G) and for (α, g) ∈ DerG(G,A) = Der(G, (A,µ)) and c ∈
Z(G) the equality α(cx) = α(xc), x ∈ G, implies

α(c) cα(x) = α(x) xα(c),

whence cα(x) = α(c)−1α(x) xα(c) and µ(α(c)) = gcg−1c−1 = 1. Therefore
every element of DerG(G,A) satisfies condition (j). It follows that if (A,µ)
is a crossed G-module we recover the group H1(G,A) defined by Guin [3].

It is clear that the map H1(G,A) −→ H1(G, (A, 1)) given by [α] 7−→
[(α, 1)] is an isomorphism where (A, 1) is a crossed G-R-bimodule.

Proposition 4. Let (A,µ) be a crossed G-R-bimodule and assume
H0(G,R) is a normal subgroup of R. If (α, r) and (β, s) satisfy condition
(j) then (α, r)(β, s) and (α, r)−1 satisfy condition (j).

Proof. Let c ∈ H0(G, R). Then cα(x) = b−1α(x) xb and µ(b) = 1. Since
H0(G,R) is a normal subgroup of R, there is c′ ∈ H0(G,R) such that cr =
rc′. For c′ we have c′β(x) = d−1β(x) xd and µ(d) = 1. Put (α, r)(β, s) =
(γ, rs). Then

cγ(x) = crβ(x) cα(x) = rd−1 rβ(x) rxd b−1α(x) xb =

= rd−1b−1 rβ(x)α(x) x(b rd)

with µ(b rd) = µ(b) r µ(d) r−1 = 1. Thus, (γ, rs) satisfies condition (j). Put
(α, r)−1 = (α, r−1) where α(x) = r−1

α(x)−1, x ∈ G. If c ∈ H0(G,R) one
has

cα(x) = cr−1
α(x)−1 = r−1c′α(x)−1 = r−1

(xa−1α(x)−1a),

where cr−1 = r−1c′, c′ ∈ H0(G,R) and c′α(x) = a−1α(x)−1 xa, µ(a) = 1.
Hence

cα(x) = r−1xa−1 r−1
α(x)−1 r−1

a = r−1
α(x)−1 xr−1

a−1 r−1
a =

= r−1
a r−1

α(x)−1 x(r−1
a−1)

with µ(r−1
a−1) = r−1µ(a−1) r = 1.

Therefore, (α, r−1) satisfies condition (j).

Corollary 5. The subset of H1(G, (A,µ)) of all equivalence classes con-
taining an element with condition (j) forms a group if H0(G,R) is a normal
subgroup of R.

Proposition 6. Let (A,µ) be a crossed G-R-bimodule such that H0(G,R)
is a normal subgroup of R. If there is a map η : H0(G,R) −→ Z(G) such
that Im η acts trivially on R and η(r)a = ra, a ∈ A, then H1(G, (A,µ)) is
a group.
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Proof. We have to show that every element (α, r) ∈ Der(G, (A,µ)) satisfies
condition (j). If c ∈ H0(G,R) take η(c) = d ∈ Z(G). Then α(dx) = α(xd)
and α(d) dα(x) = α(x) xα(d). Thus cα(x) = α(d)−1α(x) xα(d) and µα(d) =
r dr−1 = rr−1 = 1.

Corollary 7. Let (A,µ) be either a crossed G-R-bimodule such that
H0(G,R) is a normal subgroup of R trivially acting on A or induced by
a surjective homomorphism f : G −→ R such that f(Z(G)) = Z(R). Then
H1(G, (A, µ)) is a group.

Proof. In the first case take η as the trivial map. In the second case take a
map η : Z(R) −→ Z(G) such that fη = 1Z(R).

If f : (A,µ) −→ (B, λ) is a homomorphism of crossed G-R-bimodules
then f induces a natural map

f1 : H1(G, (A,µ)) −→ H1(G, (B, λ))

which is a homomorphism in the following sense:
if xy is defined for x, y ∈ H1(G, (A,µ)) then f1(x)f1(y) is defined and

f1(xy) = f1(x)f1(y).
The above defined action of G on Der(G, (A,µ)) induces an action of G

on H1(G, (A,µ)) given by
g[(α, r)] = [g(α, r)], g ∈ G.

We have to show that if (α, r) ∼ (α′, r′) then g(α, r) ∼ g(α′, r′). In effect,
since

α′(x) = a−1α(x) xa, x ∈ G,

this implies
α′(g−1

x) = a−1α(g−1
x) g−1xga, x ∈ G.

Thus
gα′(g−1

x) = ga−1 gα(g−1
x) xga, x ∈ G.

We also have r′ = µ(a)−1rz, z ∈ H0(G, R), whence gr′ = gµ(a−1) gr gz =
µ(ga)−1 gr gz. Therefore g(α, r) ∼ g(α′, r′).

In what follows if f is a map from a group G to a group G′ then f−1 :
G −→ G′ denotes a map given by f−1(x) = f(x)−1.

Let (A,µ) be a crossed G-R-bimodule. The definition of H2(G, (A,µ))
is similar to the case of (A,µ) being a crossed G-module (see [1]).

Consider diagram (4) of [1] and the group Der(M, (A,µ)) where (A,µ)
is viewed as a crossed M -R-bimodule induced by τ l0 and a crossed F -R-
bimodule induced by τ . Let ˜Z1(M, (A,µ)) be the subset of Der(M, (A,µ))
consisting of elements of the form (α, 1).

Define, on ˜Z1(M, (A,µ)), relation

(α′, 1) ∼ (α, 1) ⇐⇒ (β, h) ∈ Der(F, (A,µ))
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such that
(α′, 1) = (βl0, h)(α, 1)(βl1, h)−1

in the group Der(M, (A,µ)).

Definition 8. Let (A,µ) be a crossed G-R-bimodule. The relation ∼
is an equivalence. Denote by H2(G,(A,µ)) the quotient set ˜Z1(M,(A,µ))
/ ∼. It will be called the second set of cohomology of G with coefficients in
the crossed G-R-bimodule (A, µ).

It can be proved (as for a crossed G-module (A,µ) (see Proposition 8 [1]))
that ˜Z1(M, (A, µ)) / ∼ is independent of diagram (4) of [1] and is unique
up to bijection.

Let (A,µ) be a crossed G-R-bimodule. Then there is a canonical map

ϑ′ : H2(G, ker µ) −→ H2(G, (A,µ))

defined by the composite

[E] ϑ−1

7−→ [α] 7−→ [(α, 1)].

This map is surjective and was defined when (A, µ) is a crossed G-module
[3].

Proposition 9. Let (A,µ) be a crossed G-R-bimodule. There is an ac-
tion of G on H2(G, (A,µ)) such that Z(G) acts trivially. If R acts on G and
satisfies the compatibility condition (3) of [1] then there is also an action of
R on H2(G, (A,µ)).

Proof. The action of G on H2(G, (A,µ)) is defined exactly in the same
manner as for a crossed G-module (A,µ) (see Proposition 12 [1]). The
action of R is defined similarly. Namely, we have an action of R on MG
given by

r(|g1|ε · · · |gn|ε , |g′1|
ε · · · |g′m|

ε) = (|rg1|ε · · · |rgn|ε , |rg′1|
ε · · · |rg′m|

ε)

and one gets an action of R on Der(MG, (A,µ)) defined by
r(α, s) = (α̃,r s),

where α̃(m) = rα(r−1
m), r ∈ R, m ∈ MG. Define r[(α, 1)] = [r(α, 1)],

r ∈ R. If (α, 1) ∼ (α′, 1) it is easy to see that r(α, 1) ∼ r(α′, 1).

Let (A,µ) be a crossed G-R-bimodule. Using (1) it can easily be shown
that there is an action of H0(G,R) on H2(G, ker µ) given by

r[α] = [rα], r ∈ H0(G,R),

where α : MG −→ kerµ is a crossed homomorphism under the action of G
on A (see diagram (5) of [1]) such that α(∆) = 1.
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If this action of H0(G, R) is trivial and Der(FG,(A,µ))=IDer(FG,(A,µ))
then the map

ϑ′ : H2(G, ker µ) −→ H2(G, (A, µ))

is a bijection.
Let

1 −→ (A, 1)
ϕ−→ (B, µ)

ψ−→ (C, λ) −→ 1 (2)

be an exact sequence of crossed G-R-bimodules. If the action of H0(G,R)
on H2(G,A) is trivial then there is an action of H1(G, (C, λ)) on H2(G,A)
given by

[(α,r)][γ] = [rγ].

We have to show that rγ is a crossed homomorphism and the correctness
of the action.

Consider the diagram

MG

l0
−→−→
l1

FG
τG−→ G

↓ α

A
ϕ−→ B

ψ−→ C

(3)

There is a crossed homomorphism β : FG −→ B such that ψβ = ατG. Take
the product

(βl0, r)(ϕγ, 1)(βl0, r)−1 = (γ̃, 1)

in the group Der(MG , (B,µ)). Then γ̃(x) = β(x)−1 rϕγ(x) β(x) = rϕγ(x),
x ∈ M . Therefore rγ : MG −→ A is a crossed homomorphism such that
rγ(∆) = 1.

If (α′, r′) ∈ [(α, r)] ∈ H1(G, (C, λ)), i.e., (α, r) ∼ (α′, r′), then

α′(x) = c−1α(x) xc and r′ = λ(c)−1rt,

where t ∈ H0(G,R). It follows that

ϕ(r′γ(x)) = r′ϕγ(x) = λ(c)−1rtϕγ(x) = µ(b)−1rtϕγ(x) =

= b−1 r·tϕγ(x) b = r·tϕγ(x) = ϕ(r·tγ(x)), x ∈ MG,

where ψ(b) = c.
Hence we have

[r
′
γ] = [rtγ] = [rγ]

proving the correctness of the action.
Using diagram (3) for the exact sequence (2) one defines a connecting

map
δ1 : H1(G, (C, λ)) −→ H2(G,A)

as follows.
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For [(α, r)] ∈ H1(G, (C, λ)) take a crossed homomorphism β : FG −→ B
such that ψβ = α τG. Thus there is a crossed homomorphism γ : MG −→ A
such that

ϕγ = (βl1)−1βl0.

It is clear that γ(∆) = 1. Define

δ1([(α, r)]) = [γ].

We must prove the correctness of δ1. If β′ : FG −→ B with ψβ′ = ατ ,
then ψβ′ = ψβ. Thus there is a crossed homomorphism σ : FG −→ A such
that β′ = βϕσ. Then we have

ϕγ′ = (β′l1)−1 β′l0 = (βϕσ)l1−1 (βϕσ)l0 = ϕσl−1
1 βl−1

1 βl0 ϕσl0 =

= βl−1
1 βl0ϕσl−1

1 ϕσl0 = ϕ(γσl−1
1 σl0).

Hence [γ′] = [γ].
If (α, r) ∼ (α′, r′) then

α′(y) = c−1α(y) yc, c ∈ C, y ∈ M,

r′ = λ(c)−1rt, t ∈ H0(G,R).

Take β′ : FG −→ B such that

β′(x) = b−1β(x) xb

with ψ(b) = c where ψβ = ατ . Then (β′l−1
1 β′l0)(y) = β′(x2)−1β′(x1)

where y = (x1, x2) ∈ MG. Hence ϕγ′(y) = (β′l−1
1 β′l0)(y) = (b−1β(x2)

x2b)−1b−1β(x1) x1b = x2b−1β(x2)−1β(x1) x1b = β(x2)−1β(x1) = ϕγ(y).
Whence γ′ = γ.

For any exact sequence (2) of crossed G-R-bimodules there is also an
action of Der(F0, (C, λ)) on H3(G,A) defined as follows:

(α,r)[f ] = [rf ],

where f : F2 −→ A is a crossed homomorphism with
3
∏

i=0
(fl2i τ3)ε = 1 where

ε = (−1)i (see diagram (7) of [1]) and (α, r) ∈ Der(F0, (C, λ)). The correct-
ness of this action is proved similarly to the case of a short exact sequence
of crossed G-modules (see [1]).

If either the aforementioned action of Der(F0, (C, λ)) on H3(G, A) is triv-
ial or Der(F0, (C, λ)) = IDer(F0, (C, λ)) and H0(G,R) acts trivially on
H2(G, kerλ), then a connecting map

δ2 : H2(G, (C, λ)) −→ H3(G,A)

is defined by

δ2([(α, 1)]) = [γ], (α, 1) ∈ ˜Der(M0, (C, λ)),
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where ϕγ = βτ2 with β =
2
∏

i=0
(βl1i )

ε, ε = (−1)i, and ψβ = ατ1 (see diagram

(7) of [1]). The correctness of δ2 is proved similarly to the case of crossed
G-modules [1], and if (2) is an exact sequence of crossed G-modules we
recover the above-defined connecting map δ2 : H2(G,C) −→ H3(G, A).

Theorem 10. Let (2) be an exact sequence of crossed G-R-bimodules.
Then there is an exact sequence

1 −→ H0(G,A)
ϕ0

−→ H0(G,B)
ψ0

−→ H0(G,C) δ0

−→
δ0

−→ H1(G,A)
ϕ1

−→ H1(G, (B,µ))
ψ1

−→ H1(G, (C, λ)) δ1

−→ H2(G,A)
ϕ2

−→
ϕ2

−→ H2(G, (B, µ))
ψ2

−→ H2(G, (C, λ)),

where ϕ0, ψ0, δ0, ϕ1 are homomorphisms. If H0(G,R) is a normal subgroup
of R, then ψ1 and δ1 are also homomorphisms. If in addition H0(G,R) acts
trivially on H2(G, A), then δ1 is a crossed homomorphism under the action
of H1(G, (C, λ)) on H2(G,A) induced by the action of R on A. Moreover,
if either the action of Der(F0, (C, λ)) on H3(G,A) is trivial (in particular if
R acts trivially on A) or Der(F0, (C, λ)) = IDer(F0, (C, λ)) and H0(G,R)
acts trivially on H2(G, kerλ) then the sequence

H2(G, (B,µ))
ψ2

−→ H2(G, (C, λ)) δ2

−→ H3(G,A)

is exact.

Proof. The exactness of the sequence

1 −→ H0(G,A)
ϕ0

−→ H0(G,B)
ψ0

−→ H0(G, C) δ0

−→ H1(G, A)

is known [4].
If c ∈ H0(G,C) then δ0(c) = [α] with α(x) = ϕ−1(b−1 xb), x ∈ G and

ψ(b) = c. It follows that (α0, 1) ∼ (ϕα, 1) where α0 is the trivial map, since

ϕα(x) = b−1α0
xb, x ∈ G,

and µ(b) ∈ H0(G,R) because µ(b) = λψ(b) = λ(c) and xλ(c) = λ(xc) =
λ(c), x ∈ G. Therefore Im δ0 ⊂ ker ϕ1.

Let [α] ∈ H1(G,A) such that (α0, 1) ∼ (ϕα, 1). Then ϕα(x) = b−1 xb,
x ∈ G and µ(b) ∈ H0(G,R). We have ψ(b−1 xb) = ψϕα(x) = 1. Thus
ψ(b) = ψ(xb) = xψ(b), whence ψ(b) ∈ H0(G,C). It is clear that δ0(ψ(b)) =
[α]. Therefore ker ϕ1 ⊂ Im δ0.

Clearly, ψ1ϕ1 is the trivial map. Let [(α, r)] ∈ H1(G, (B, µ)) such that
(α0, 1) ∼ (ϕα, 1). Then ψα(x) = c−1 xc, c ∈ C, and r = λ(c)−1t, t ∈
H0(G,R). Let ψ(b) = c. Then µ(b) = λ(c) and r = µ(b)−1t. Take α̃(x) =
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b α(x) xb−1, x ∈ G. Since ψα̃(x) = 1, x ∈ G, one has ϕ−1α̃ : G −→ A and
(α, r) ∼ (α̃, 1). Therefore ϕ1([ϕ−1α̃]) = [(α, r)].

Let [(α, r)] ∈ H1(G, (B,µ)). Then ψ1([(α, r)]) = [(ψα, r)]. Consider
diagram (5) of [1] and take α τG : FG −→ B. Then ϕγ = (ατGl1)−1ατGl0
and δ1ψ1([(α, r)]) = [γ]. But γ = α0 is the trivial map, since ατGl0 = ατGl1.
Therefore Im ψ1 ⊂ ker δ1.

Let [(α, r)] ∈ H1(G, (C, λ)) such that δ1([(α, r)]) = 1. If β : FG −→ B is
a crossed homomorphism such that ψβ = ατG then δ1([(α, r)]) = [γ], where
ϕγ = (βl1)−1βl0 . Thus there is a crossed homomorphism η: FG −→ A such
that γ = (ηl1)−1ηl0. Hence we have

(βl1)−1βl0 = (ϕηl1)−1ϕηl0, (ϕη−1 β)l0 = (ϕη−1 β)l1.

Thus there is a crossed homomorphism α : G −→ B such that (ϕη)−1β =
ατG. We have µβ(x) = λψβ(x) = λατG(x) = r τG(x)r−1, whence (β, r) ∈
Der(FG, (B, µ)) and (α, r)∈Der(G, (B,µ)). Evidently, ψ1([(α, r)])=[(α, r)].

The rest of the proof repeats with minor modifications the proof of the
exactness of the cohomology sequence for a coefficient short exact sequence
of crossed G-modules (see Theorems 13 and 15 of [1]).

It is clear that when (2) is an exact sequence of crossed G-modules,
Theorem 10 implies Theorems 13 and 15 of [1].

By analogy with the case n = 1 we propose the following definition of the
pointed set of cohomology Hn+1(G, (A,µ)) of a group G with coefficients
in a crossed G-R-bimodule (A,µ) (in particular, in crossed G-modules) for
all n ≥ 1.

Let (A,µ) be a crossed G-R-bimodule. Consider diagram (7) of [1] and
the group Der(Fn, (A,µ)), n ≥ 1, where (A, µ) is viewed as a crossed Fn-
R-bimodule induced by τ0∂1

0∂2
0 · · · ∂n−1

0 ∂n
0 with ∂i

0 = li−1
0 τi, i = 1, . . . , n.

Denote by ˜Z1(Fn, (A,µ)) the subset of Der(Fn, (A,µ)) consisting of all ele-
ments of the form (α, 1) satisfying the condition

n+1
∏

j=0

(α∂n+1
j )ε = 1, ε = (−1)i.

Note that since µα(x)=1, x ∈ Fn, we have α(Fn) ⊂ Z(A). In ˜Z1(Fn, (A,µ))
we introduce a relation ∼ as follows: (α′, 1) ∼ (α, 1) if there is an element
(β, h) ∈ Der(Fn−1, (A,µ)) such that

α′(x) = hα(x)
n

∏

i=0

(β∂n
i (x))ε, x ∈ Fn, (4)
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where ε = (−1)i. Since the homomorphism τ0∂1
in

∂2
in−1

· · · ∂n−1
i2 ∂n

i1 does not
depend on the sequence (i1, i2, . . . , in−1, in), we have

β∂n
j (x)(β∂n

l (x))−1 = (β∂n
l (x))−1β∂n

j (x) ∈ kerµ, x ∈ Fn,

for j even and l odd. It follows that the product
n
∏

i=0
(β∂n

i (x))ε in (4) does

not depend on the order of the factors. Note that if n is even then β(Fn) ⊂
ker µ ⊂ Z(A).

Similarly to the case n = 1 it can be shown that the relation ∼ is an
equivalence, the quotient set ˜Z1(Fn, (A, µ))/ ∼ is independent of diagram
(7) of [1] (for instance, we can take the free cotriple resolution of the group
G), and there is a surjective map

ϑ′n : Hn+1(G, kerµ) −→ ˜Z1(Fn, (A,µ))/ ∼, n ≥ 1,

given by [α] 7−→ [(α, 1)] which is bijective if (A, µ) is a crossed G-G-bimodule
and either µ is the trivial map or n is even.

Definition 11. Let (A,µ) be a crossed G-R-bimodule. Define

Hn+1(G, (A,µ)) = ˜Z1(Fn, (A, µ))/ ∼, n ≥ 1.

It is clear that for n = 1 we recover the second set of cohomology of G
with coefficients in (A,µ).

Remark 1. Using the above-defined cohomology with coefficients in
crossed bimodules it is possible to define a cohomology Hn(G,A), n ≤ 2, of
a group G with coefficients in a G-group A.

Consider the quotient group A = A/Z(A) and define an action of A on
A and an action of G on A as follows:

[a′]a = a′a, a, a′ ∈ A,
g[a] = [ga], g ∈ G, a ∈ A.

Let µA : A −→ A be the canonical homomorphism. Then (A,µA) is a
crossed G-A-bimodule and we define

Hn(G,A) = Hn(G, (A, µA)), n ≤ 2.

For n = 1 this cohomology differs from the pointed set of cohomology
defined in [4]. If

1 −→ A
ϕ−→ B

ψ−→ C −→ 1
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is a central extension of G-groups then ψ induces an isomorphism ϑ :
B/Z(B) ≈−→ C/ψ(Z(B)) and one gets a short exact sequence of crossed
G-B-bimodules

1 −→ (A, 1)
ϕ−→ (B,µB)

ψ−→ (C, µC) −→ 1,

where µC is the composite of the canonical map τ : C −→ C/ψ(Z(B))
and the isomorphism ϑ−1. Since B acts trivially on A, from Theorem 10
immediately follows the exact cohomology sequence

1 −→ H0(G,A)
ϕ0

−→ H0(G,B)
ψ0

−→ H0(G,C) δ0

−→ H1(G, A)
ϕ1

−→
ϕ1

−→ H1(G,B)
ψ1

−→ H1(G, (C, µC)) δ1

−→ H2(G,A)
ϕ2

−→ H2(G,B)
ψ2

−→
ψ2

−→ H2(G, (C, µC)) δ2

−→ H3(G,A).

Remark 2. As for the case n = 2 (see Remark of [1]) it is possible to
give an alternative more non-abelian definition of the third cohomology
H

3
(G, (A,µ)) of G with coefficients in a crossed G-R-bimodule (A,µ). To

this end consider the commutative diagram

M1
G

ϕ0
−→−→
ϕ1

QG
ηG−→ MG

q1 ↓↓ q0 l1 ↓↓ l0
F 2(G)

F (τG)−→ F (G)
↓ τF (G) ↓ τG

F (G) τG−→ G

,

where F (G) = FG, F 2(G) = F (F (G)), τG and τF (G) are canonical surjec-
tions, ηG is induced by F (τG), and (MG, l0, l1), (QG, q0, q1), (M1

G, ϕ0, ϕ1) are
the simplicial kernels of τG, τF (G) and ηG, respectively. It is clear that (A,µ)
is a crossed QG-G-bimodule induced by τGl0ηG. Let ˜Der(QG, (A, µ)) be the
subgroup of Der(QG, (A,µ)) consisting of elements (β, g) such that β(∆Q) =
1, where ∆Q = {(x, x), x ∈ F 2(G)}. Consider the set ˜Z1(M1

G, (A,µ)) of all
crossed homomorphisms α : M1

G −→ A with α(∆)=1 where ∆={(y, y), y∈
QG} and M1

G acts on A via τGl0ηGϕ0. Introduce, in ˜Z1(M1
G, (A,µ)), a

relation of equivalence as follows:

α′ ∼ α if ∃(β, g) ∈ ˜Der(QG, (A, µ))

such that α′(x) = βϕ1(x)−1α(x) βϕ0(x), x ∈ M1
G. Define H3(G, (A,µ)) =

˜Z1(M1
G, (A,µ))/ ∼. Then H3(G, (A,µ)) is a covariant functor from the

category of crossed G-R-bimodules to the category of pointed sets. It can
be proved that H3(G, (A, 1)) is isomorphic to the classical third cohomology
group H3(G,A) if A is a G-module.
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