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ON THE REPRESENTATION OF NUMBERS BY
POSITIVE DIAGONAL QUADRATIC FORMS WITH FIVE

VARIABLES OF LEVEL 16

D. KHOSROSHVILI

Abstract. A general formula is derived for the number of represen-
tations r(n; f) of a natural number n by diagonal quadratic forms f
with five variables of level 16. For f belonging to one-class series,
r(n; f) coincides with the sum of a singular series, while in the case
of a many-class series an additional term is required, for which the
generalized theta-function introduced by T. V. Vepkhvadze [4] is used.

1. Let f = f(x) = f(x1, x2, . . . , xs) = 1
2X ′AX = 1

2

∑

j,k=1 ajkxjxk
be an integral positive quadratic form. Here and in what follows X is a
column-vector, and X ′ is a row-vector with components x1, x2, . . . , xs. Let
further r(n; f) denote the number of representations of a natural number n
by the form f .

For our discussion we shall need the following results.
As is well known, for each quadratic form f we have the corresponding

series

ϑ(τ, f) = 1 +
∞
∑

n=1

r(n, f)Qn, (1)

θ(τ, f) = 1 +
∞
∑

n=1

ρ(n, f)Qn, (2)

where Q = e2πiτ (Imτ > 0) and ρ(n, f) is a singular series. In the cases
considered here the sum of the singular series can be calculated by means
of the following two lemmas.
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Lemma 1 (see [1]). Let 2 - s, ∆ = 2s∆0, n∆0 = 2α+γv1v2 = r2ω,
2α‖n, 2γ‖∆0, pl‖∆0, pω‖n, v1 =

∏

p|n
p-2∆0

pω = r2
1ω1, v1 =

∏

p|∆0n
p|∆0,p>2

pω+l =

r2
2ω2, (ω, ω1 and ω2 are square-free integers).

Then

ρ(n, f) =
22− s

2 π1− s
2 (s− 1)!

Γ( s
2 )∆

1
2
0 B s−1

2

n
s
2−1r2−s

1 χ(2)Πp|∆0
p>2

χ(p)×

×Πp|2∆0(1− p1−s)−1L
(s− 1

2
, (−1)

s−1
2 ω

)

Π p|r2
r2>2

(

1−
( (−1)

s−1
2 ω

p

)

p
1−s
2

)

×

×
∑

d|r1

ds−2Πp|d

(

1−
( (−1)

s−1
2 ω

p

)

p
1−s
2

)

, (3)

where B s−1
2

are Bernoulli’s numbers, ( ·p ) is Jacobi’s symbol, and the values
of χ(2) are given in [2] (p. 66, formulas (28)–(33)).

For the case s = 5 the values of L(·, ·) are given in

Lemma 2 (see, e. g., [3]).

L(2; 1) =
π2

8
, L(2; 2) =

2
1
2 π2

16
,

L(2; ω) = − π

ω
3
2

∑

1≤h≤ω
2

h
(h

ω

)

, if ω ≡ 1 (mod 4), ω > 1;

L(2; ω) =
π2

2ω
3
2

{

2
∑

1≤h≤ω
4

h
(h

ω

)

+
∑

ω
4 <h≤ω

2

(ω − 2h)
(h

ω

)

}

,

if ω ≡ 3 (mod 4);

L(2; ω) =
π2

4ω
3
2

{

ω
∑

1≤h≤ ω
16

( h
1
2ω

)

+
∑

ω
16 <h≤ 3ω

16

(ω − 16h)
( h

1
2ω

)

−

− 2ω
∑

3ω
16 <h≤ω

4

( h
1
2ω

)

}

, if ω ≡ 2 (mod 8), ω > 2;

L(2; ω) =
π2

4ω
3
2

{

16
∑

1≤h≤ ω
16

( h
1
2ω

)

+ω
∑

ω
16 <h≤ 3ω

16

( h
1
2ω

)

+4ω
∑

3ω
16 <h≤ω

4

( h
1
2ω

)

−

− 16ω
∑

3ω
16 <h≤ω

4

h
( h

1
2ω

)

}

, if ω ≡ 6 (mod 8).
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In [4] Vepkhvadze constructed generalized theta-functions with charac-
teristic and spherical functions

ϑgh(τ ; Pν , f) =
∑

X≡g (mod N)

(−1)
h′A(X−g)

N2 Pν(X)e
πiτX′AX

N2 . (4)

Here g and h are special vectors with respect to the matrix A of form f ,
i.e.,

Ag ≡ 0 (mod N), Ah ≡ 0 (mod N),

where N is a level of the form f , i.e., the smallest integer for which NA−1

is a symmetric integral matrix with even diagonal elements; Pν = Pν(x) =
Pν(x1, . . . , xs) is a spherical function of ν-th order with respect to f .

The properties of functions (4) are investigated in [4], where these func-
tions are used to derive a formula for the number of representations of a
quadratic form with seven variables.

In this paper we use the method of [4] to obtain formulas for the number
of representations of natural numbers by all positive diagonal quadratic
forms with five variables of level 16.

Lemma 3 (see, e.g., [4], Lemma 4). Let k be an arbitrary integral
vector, and l a special vector with respect to the matrix A of the form f .
Then the equalities

ϑg+Nk,h(τ ;Pν , f)=(−1)
h′Ak

N ϑgh(τ ; Pν , f), ϑg,h+2l(τ ;Pν , f)=ϑgh(τ ;Pν , f)

are valid.

For M =
(

α β
γ δ

)

∈ Γ0(N) denote

v(M) =
(

i
1
2 η(γ)(sgn δ−1))s+2ν

(sgn δ)ν(

i(
|δ|−1

2 )2)s+2ν
(2∆(sgn δ)β

|δ|

)(−1
|δ|

)

,(5)

η(γ) = 1 for γ ≥ 0, η(γ) = −1 for γ < 0. By v0(M) we denote v(M) in the
case ν = 0.

Lemma 4 (see, e.g., [4], Theorem 2). Let f = f(x) be an integral
positive quadratic form with an odd number of variables s, ∆ the determi-
nant of the matrix A of the form f , and N the level of the form f . Then
function (1) is an integral modular form of type

(

− s
2 , N, v0(M)

)

.

Lemma 5 (see, e.g., [4], Theorem 2). Let fk = fk(x) (k = 1, . . . , j)
be integral positive quadratic forms with the number of variables s, P (k)

ν =
P (k)

ν (x) (k = 1, 2, . . . , j) the corresponding spherical functions, Ak a matrix
of the form fk(x), ∆k the determinant of the matrix Ak, and Nk the level
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of the form fk. Let further g(k) and h(k) be vectors with even components,
and Bk arbitrary complex numbers. Then the function

Φ(τ) =
j

∑

k=1

Bkϑg(k)h(k)(τ ; P (k)
ν , fk)

is an integral modular form of the type
(

− ( s
2 + ν), N, v(M)

)

, where v(M)
are determined by formula (5), if and only if the conditions

Nk|N, N2
k |fk(g(k)), 4Nk

∣

∣

N
Nk

fk(h(k)) (6)

are fulfilled, and for all α and δ satisfying the condition αδ ≡ 1 (mod N)
we have

j
∑

k=1

Bkϑαg(k),−h(k)(τ ;P (k)
ν , fk)(sgn δ)ν

( (−1)
s−1
2 ∆k

|δ|

)

=

=
( (−1)

s−1
2 +ν∆
|δ|

)
j

∑

k=1

Bkϑg(k)h(k)(τ ; P (k)
ν , fk). (7)

Lemma 6 (see, e.g., [5], Theorem 4). If all the conditions of Lemma
5 are fulfilled and ν > 0, then the function Φ(τ) is a cusp form of the type
(

− ( s
2 + ν), N, v(M)

)

.

Lemma 7 (see, e.g., [4], Theorem 1). Let F be an integral modular
form of the type (−Γ, N, v(M)), where v(M) are determined by formula
(5). Then the function F is identically zero if in its expansion into powers
Q = e2πiτ the coefficients of Qn are zero for all

n ≤ r
12

N
∏

p|N

(

1 +
1
p

)

.

2. Positive diagonal quadratic forms with five variables of level 16 are
written as

fs1,s2 =
s1

∑

j=1

x2
j + 2

s2
∑

j=s1+1

x2
j + 4

5
∑

j=s2+1

x2
j ,

where 1 ≤ s1 ≤ s2 ≤ 4.

Theorem 1. Let f1 = 4x2
1 + 4x2

2 + 2x2
3, P1 = x3, g′ = (4, 4, 8), h′ =

(2, 2, 4). Then the identity

ϑ(τ ; fs1,s2) = θ(τ ; fs1,s2) + Φ(τ ; fs1,s2), (8)
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holds, where

Φ(τ ; f1,2) =
1
16

ϑgh(τ ; P1, f1),

Φ(τ ; f2,3) = Φ(τ ; f3,4) =
1
4
ϑgh(τ ;P1, f1),

Φ(τ ; fs1,s2) = 0 in other cases.

Proof. By Lemma 4 the function ϑ(τ ; fs1,s2) belongs to the space of
integral modular forms of the type

(

− 5
2 , 16, v0(M)

)

, where the system of
multiplicators v0(M) is calculated by formula (5). Therefore by Siegel’s
theorem the function θ(τ ; fs1,s2) also belongs to this space.

It is easy to verify that the function Φ(τ ; fs1,s2) satisfies conditions (6)
of Lemma 5.

If αδ ≡ 1 (mod 16), then αδ ≡ 1 (mod 4), i.e., either α ≡ 1 (mod 4)
and δ ≡ 1 (mod 4) or α ≡ −1 (mod 4) and δ ≡ −1 (mod 4).

In our case condition (7) of Lemma 5 is written as

ϑαg,−h(τ ; P1, f1)(sgn δ)
(−28

|δ|

)

=
(210

|δ|

)

ϑgh(τ ; P1, f1) (9)

and we must check it.
1. Let α ≡ 1 (mod 4) and δ ≡ 1 (mod 4). It is easy to verify that

(sgn δ)
(−28

|δ|

)

=
(210

|δ|

)

and since αg = Nk1 +g with as an integral vector k1, together with Lemma
3 this implies the validity of (9).

2. We now set α ≡ −1 (mod 4) and δ ≡ −1 (mod 4). Since

(sgn δ)
(−28

|δ|

)

= −
(210

|δ|

)

and αg = Nk2 − g, where k2 is an integral vector, and, as is easy to verify,
ϑ−g,h(τ ; P1, f1) = −ϑg,h(τ ;P1, f1), Lemma 3 implies (9). From (9) it follows
that the function ϑgh(τ ;P1, f1) satisfies conditions (7) of Lemma 5 as well.
Hence, by Lemmas 5 and 6, the function ϑgh(τ ; P1, f1) is a cusp form of the
type

(

− 5
2 , 16, v0(M)

)

.
Therefore due to Lemma 7 the function

ψ(τ ; fs1,s2) = ϑ(τ ; fs1,s2)− θ(τ ; fs1,s2)− Φ(τ ; fs1,s2) (10)

will be identically zero if in its expansion into powers of Q = e2πiτ all
coefficients of Qn for n ≤ 5 are zero.
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Let n = 2αm (2 - m, α ≥ 0), 210−s1−s2n = r2ω, m = r2
1ω1, ω and ω1 be

square-free integers. Then by formulas (2) and (3) we have

θ(τ ; fs1,s2) = 1 +
∞
∑

n=1

ρ(n; fs1,s2)Q
n,

where

ρ(n; fs1,s2) =
2

3α+s1+s2
2 +2ω

3
2
1

π2

∑

d|r1

d3
∏

p|d

(

1−
(ω
p

)

p−2
)

L(2; ω)χ(2). (11)

The values of L(2, ω) are given by Lemma 2. Introduce the notation
χs1,s2(2) for the values of χ(2) corresponding to the quadratic form fs1,s2 .
Using formulas (28)–(33) from [3], we obtain

χ2,3(2)=



























1, for α = 0 or α = 2;
2−

3α
2 −

1
2

7

(

13·2 3α
2−

1
2 +2−7

(2
m

)

)

, for 2 - α, m ≡ 1 (mod 4);

2−
3α
2 +1

2

7

(

13·2 3α
2 −

3
2 +15

)

, for 2 - α, m ≡ 3 (mod 4);
2−

3α
2 +2

7

(

13 · 2 3α
2 −3 + 15

)

, for 2 | α, α > 2.

(12)

After calculating the values of ρ(n; f2,3) for all n ≤ 5, by (2), (11) and
(12) we have

θ(τ ; f2,3) = 1 + 2Q + 6Q2 + 12Q3 + 16Q4 + 28Q5 + . . . .

Formula (1) implies

ϑ(τ ; f2,3) = 1 + 4Q + 6Q2 + 8Q3 + 16Q4 + 24Q5 + . . . .

By (4) we obtain

1
8
ϑgh(τ ; P1, f1) =

∞
∑

n=1

(
∑

4n=x2
1+x2

2+2x2
3

x1≡1 (mod 4)
x2≡1 (mod 4)

2-x3

(−1)
x1−1

4 + x2−1
4 + x3−1

2 x3Qn
)

=

= 2Q− 4Q3 − 4Q5 + . . . . (13)

Now it is not difficult to verify that all coefficients of Qn in the expansion
into powers of Q of the function ψ(τ ; f2,3) determined by (10) are zero for
all n ≤ 5. Thus identity (8) is proved for the case, where s1 = 2 and s2 = 3.

For other values of s1 and s2, the theorem is proved similarly. We give
here a list of suitable values of χ(2) calculated by means of formulas (28)–
(33) from [2]:
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χ1,1(2) =



























































0, for α = 1 or α = 0,
m ≡ 3 (mod 4);

2, for α = 0, m ≡ 1 (mod 4);
2−

3α
2 +1

7

(

5·2 3α
2 +2−7

( 2
m

))

, for 2|α, α > 1, m ≡ 1 (mod 4);

2−
3α
2 +2

7
(

5 · 2 3α
2 −1 + 15

)

, for 2|α, α > 1, m ≡ 3 (mod 4);

2−
3α
2 + 7

2

7
(

5 · 2 3α
2 −

5
2 + 15

)

, for 2 - α, α > 1;

χ1,2(2) =



















































1, for α = 0 or α = 1,
m ≡ 3 (mod 4) or α = 2;

2−
3α
2 +1

2

7

(

3·23α
2 +1

2 +2−7
(2
m

))

, for 2 - α, m ≡ 1 (mod 4);

2−
3α
2 + 3

2

7
(

3 · 2 3α
2 −

1
2 + 15

)

, for 2 - α, α>1, m≡3 (mod 4);

2−
3α
2 +3

7
(

3 · 2 3α
2 −2 + 15

)

, for 2 | α, α > 2;

χ1,3(2) =











































1, for α = 0 or α = 1;
2−

3α
2

7

(

5 · 2 3α
2 +2−7

( 2
m

))

, for 2 | α, α>1, m≡3 (mod 4);

2−
3α
2 +1

7
(

5·2 3α
2 −1+15

)

, for 2 | α, α>1, m≡3 (mod 4);

2−
3α
2 + 5

2

7
(

5 · 2 3α
2 −

5
2 + 15

)

, for 2 - α, α > 1;

χ1,4(2) = χ2,3(2) (see (12));

χ2,2(2) =











































1, for 2 | α, α ≥ 0, m ≡ 3 (mod 4);
2−

3α
2

7

(

5·2 3α
2 +2−7

(2
m

))

, for 2 | α, α≥0, m≡1 (mod 4);

2−
3α
2 +1

7
(

5 · 2 3α
2 −1 + 15

)

, for 2 | α, α≥0, m≡3 (mod 4);

2−
3α
2 + 5

2

7
(

5 · 2 3α
2 −

5
2 +15

)

, for 2 - α, α > 1;
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χ2,4(2) =























































1, for α = 0 or α = 1;
2−

3α
2 −1

7

(

3·23α
2 +2+2−7

(2
m

))

, for 2 | α, α > 1,

m ≡ 1 (mod 4);
2−

3α
2

7
(

3 · 2 3α
2 +1 + 15

)

, for 2 | α, α > 1,

m ≡ 3 (mod 4);
2−

3α
2 + 3

2

7
(

5 · 2 3α
2 −

1
2 + 15

)

, for 2 - α, α > 1;

χ3,3(2) =































































3
2
, for α = 1 or α = 0, m ≡ 1 (mod 4);

1
2
, for α = 0, m ≡ 3 (mod 4);

2−
3α
2 −1

7
, for 2 | α, α > 1, m ≡ 1 (mod 4);

2−
3α
2

7
, for 2 | α, α > 1, m ≡ 3 (mod 4);

2−
3α
2 + 3

2

7
, for 2 - α, α > 1;

χ3,4(2) =































































1, for α = 0 or α = 1,
m ≡ 3 (mod 4) or α = 2;

2−
3α
2−

3
2

7

(

27·23α
2−

1
2 +2−7

(2
m

))

, for 2 - α, , m ≡ 1 (mod 4);

2−
3α
2 −

3
2

7
(

27·2 3α
2 −

1
2 +30

)

, for 2 - α, α > 1,

m ≡ 3 (mod 4);

2−
3α
2 +1

7
(

9 · 2 3α
2 −3 + 5

)

, for 2 | α, α > 2;

χ4,4(2) =











































1, for α = 0;
3 · 2− 3α

2 + 1
2

7
(

2
3α
2 −

1
2 + 5

)

, for 2 - α;

2−
3α
2 −2

7

(

3·2 3α
2 +2+2−7

(2
m

))

, for 2 | α, m ≡ 1 (mod 4);

3 · 2− 3α
2 −1

7
(

2
3α
2 +1 + 5

)

, for 2 | α, m ≡ 3 (mod 4).

Theorem 2. Let n = 2αm (α ≥ 0, 2 - m), m = r2
1ω1, 1 ≤ s1 ≤ s2 ≤ 4,
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210−s1−s2n = r2ω (ω and ω1 are square-free integers). Then

r(n; fs1,s2) =
2

3α+s1+s2
2 +1ω

3
2
1

π2

∑

d|r1

d3
∏

p|d

(

1−
(ω
p

)

p−2
)

L(2; ω)χ(2) +

+ νs1,s2(n), (14)

where

2ν1,2(n) = ν2,3(n) = ν3,4(n) = 2
∑

4n=x2
1+x2

2+2x2
3

2-x1, 2-x2, 2-x3
x1>0, x2>0, x3>0

( 2
x1x2

)(−1
x3

)

x3,

νs1,s2(n) = 0 in other cases.

Proof. By equating the coefficients of equal powers of Q in both parts of
identity (8) we obtain

r(n; fs1,s2) = ρ(n; fs1,s2) + νs2,s2(n), (15)

where νs1,s2(n) denotes the coefficients of Qn in the expansion of the func-
tion Φ(τ ; fs1,s2) into powers of Q.

When s1 = 2 and s2 = 3, by (13) we have

ν2,3(n) =
∑

4n=x2
1+x2

2+2x2
3

x1≡1 (mod 4)
x2≡1 (mod 4)

2-x3

(−1)
x1−1

4 + x2−1
4 + x3−1

2 x3

i.e.,

ν2,3(n) = 2
∑

4n=x2
1+x2

2+x2
3

2-x1,2-x2,2-x3
x1>0,x2>0,x3>0

( 2
x1x2

)(−1
x3

)

x3. (16)

From formulas (11), (15) and (16) it follows that the theorem is valid
when s1 = 2 and s2 = 3. The validity of equality (14) for other values of s1
and s2 is proved in a similar manner.
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