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THE CONTACT PROBLEM FOR AN ELASTIC
ORTHOTROPIC PLATE SUPPORTED BY PERIODICALLY

LOCATED BARS OF EQUAL RESISTANCE

L. GOGOLAURI

Abstract. The contact problem of the plane theory of elasticity is
studied for an elastic orthotropic half-plane supported by periodi-
cally located (infinitely many) stringers of equal resistance. Using
the methods of the theory of a complex variable, the problem is re-
duced to the Keldysh–Sedov type problem for a circle. The solution
of the problem is constructed.

Let an elastic orthotropic plate occupying a lower half-plane of a complex
plane z = x + iy be supported by periodically located elastic absolutely
flexible (infinitely many) bars of equal resistance. Longitudinal forces p and
q are applied to the bar ends. The bars are to be free assumed from other
external loads. The problem consists in finding the cross-sectional areas
S(x) of the bars and the contact the tangential stresses τxy(x, 0) provided
that the longitudinal stresses σ(0)

x (x) in the bars are constant and equal to
a.

Similar problems for isotropic elastic domains have been investigated in
[1–4]. In the case of an anisotropic half-plane this problem has been studied
by the author in [5]. Periodic problems dealing with springers of constant
rigidity can be found in [6–7].

Without restriction of generality, the length of the stringer bases is as-
sumed to be equal to unity. Denote the distance between the stringers by
2l. The stringers are located symmetrically with respect to the ordinate
axis. In such a case the stringers will be located as follows: [(2k + 1)l +
k; (2k + 1)l + k + 1], k = 0,±1,±2, . . . .
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From the equilibrium condition of stringer elements on the reinforced
sections we obtain

S(x)σ(0)
x (x)− h

∫ x

(2k+1)l+k
τxy(s)ds− q = 0, x ∈ Lk, (1)

where h is the bar thickness and Lk denotes a segment [(2k + 1)l + k; (2k +
1)l + k + 1].

Taking into account the fact that the bars are absolutely flexible and
their resistance under bending is a negligibly small value, we may assume
that σy = σ(0)

y = 0 for −∞ < x < ∞. As far as the stringers are located
periodically, we may consider the problem on a half-strip −∞ < y < 0,
0 < x < 2l + 1.

On the boundary we have the following conditions:

S(x)σ(0)
x (x)− h

∫ x

l
τxy(s)ds− q = 0, x ∈ (l; l + 1); (2)

σy(x) = 0, x ∈ (0; 2l + 1),

τxy = 0, x ∈ (0; l) ∪ (l + 1; 2l + 1),

σ(0)
x (x) = a, x ∈ (l; l + 1);

(3)

τxy(0; y)− τxy(2l + 1; y) = σy(0, y)− σy(2l + 1; y) = σx(0; y)−
−σx(2l + 1; y) = u(0; y)− u(2l + 1; y) = v(0; y)− v(2l + 1; y) = 0. (4)

According to Hooke’s law, we have respectively for the bar and for the
plate:

du0(x)
dx

=
σ(0)

x (x)
E0

;
du(x, 0)

dx
=

σx(x, 0)
E1

,

where E0 is the modulus of elasticity of the bar; a11 = 1/E1 is the elastic
constant of the plate.

The conditions of full contact between the elastic bar and the plate

du0(x)
dx

=
du(x, 0)

dx
, τ (0)

xy (x) = τxy(x)

result in the equality σ(0)
x (x) = E0

E1
σx(x, 0). Now the boundary conditions

(2) and (3) can be written as

E0

E1
σx(x, 0) = a, x ∈ (l; l + 1),

σy = 0, x ∈ (0; 2l + 1), τxy = 0, x ∈ (0; l) ∪ (l + 1; 2l + 1),

aS(x)− h
∫ x

l
τxy(s)ds = q, x ∈ (l; l + 1).

(5)
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As is known, the stress components are calculated by the formulas [8]

σx = 2 Re
[

µ2
1Φ1(z1) + µ2

2Φ2(z2)
]

,

σy = 2Re
[

Φ1(z1) + Φ2(z2)
]

,

τxy = −2 Re
[

µ1Φ1(z1) + µ2Φ2(z2)
]

,

(6)

where zk = xk + µky, k = 1, 2, and µk are the roots of the characteristic
equation corresponding to the generalized biharmonic equation.

Due to the periodicity of the boundary conditions, the functions Φ1(z)
and Φ2(z) are also periodic in the half-plane y < 0 with period 2l + 1, that
is,

Φ1(iβ1y) = Φ1(2l + 1 + iβ1y), Φ2(iβ2y) = Φ2(2l + 1 + iβ2y). (7)

Since the body is orthotropic and the axes of elastic symmetry are parallel
to the coordinate axes, µ1 = iβ1, µ2 = iβ2 (we assume β1 > β2 > 0), using
formulas (6) the boundary conditions take the form

Re
[

β2
1Φ1(x) + β2

2Φ2(x)
]

= −E1a
2E0

, x ∈ (l; l + 1), (8)

Re
[

Φ1(x) + Φ2(x)
]

= 0, x ∈ (0; 2l + 1), (9)

Im
[

β1Φ1(x) + β2Φ2(x)
]

= 0, x ∈ (0; l) ∪ (l + 1; 2l + 1), (10)

aS(x)− h
∫ x

l
τxy(s)ds = q, x ∈ (l; l + 1).

Let us prove the validity of the following proposition.

Theorem. If the boundary conditions (8), (9), and (10) are fulfilled,
then the stress components are expressed in terms of one analytic function.

Proof. The function Φ1(x) + Φ2(x) is a boundary value of the function
Im z < 0 which is holomorphic in the half-plane Φ1(z) + Φ2(z) and periodic
with period 2l +1, that is, Φ1(x+2l +1)+Φ2(x+2l +1) = Φ1(x)+Φ2(x),
bounded in the half-strip 0 ≤ x ≤ 2l + 1, y < 0, continuously extendible to
the boundary 0 ≤ x ≤ 2l + 1, with the exclusion maybe of the points x = l,
x = l + 1. In the vicinity of these points the function under consideration
satisfies the condition

|Φ1(z) + Φ2(z)| < c
|z − (l + k)|δ

, k = 0; 1, 0 ≤ δ < 1. (11)

Since the function Φ1(z)+Φ2(z) takes imaginary values on the real axis,
on the basis of the Riemann-Schwarz symmetry principle it is analytically
extendible on the whole strip 0 < x < 2l + 1, −∞ < y < ∞, with the ex-
clusion maybe of the above-mentioned points in whose vicinity the estimate
(11) holds.
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It follows from the above that these points are removable. Since the
function Φ1(z) + Φ2(z) is periodic, it is bounded on the whole plane.

According to Liouville’s theorem, we can conclude that the function
Φ1(z) + Φ2(z) is constant. If we use the conditions (9) and (10), then
we can say that the function Φ1(z) + Φ2(z) equals zero on the whole plane.

Φ1(z) = −Φ2(z) for Im z ≤ 0. (12)

Applying the above-obtained equality, the boundary conditions (8) and
(10) can be written as

(β2
1 − β2

2)Re Φ1(x) = −aE1

2E0
, x ∈ (l; l + 1),

ImΦ1(x) = 0, x ∈ (0; l) ∪ (l + 1; 2l + 1).
(13)

Thus the problem under consideration is reduced to the problem of find-
ing an analytic in the half-strip 0 < x < 2l + 1, y < 0 function Φ(z) with
the boundary conditions (13).

The function

z = (2l + 1)
(

1− 1
2πi

ln ζ
)

(14)

maps the half-strip 0 < Re z < 2l + 1, Im z < 0 onto a circle |ζ| < 1 cut
along the segment (0; 1); besides, the point x = 2l +1 transfers to the point
ζ = 1, the segment (0; 2l + 1) maps onto the circumference |ζ| = 1, the
half-line x = 0, y < 0 transfers to the lower end of the cut, and the half-line
x = 2l + 1, y < 0 to the upper end of the cut.

We introduce the notation

Ψ(ζ) = Φ1

[

(2l + 1)
(

1− 1
2πi

ln ζ
)]

. (15)

The function Ψ(ζ) is holomorphic in the circle |ζ| < 1 cut along the
segment 0 < ζ < 1. From the periodicity of the function Φ1(z) we find
the equality Ψ+(ζ) = Ψ−(ζ), 0 < ζ < 1, where Ψ+(ζ) and Ψ−(ζ) denote
the boundary values of the function Ψ(ζ) on the upper and lower ends,
respectively.

From the above we conclude that the function Ψ(ζ) is holomorphic in
the circle |ζ| < 1. In this case the boundary conditions (13) take the form

Re[Ψ(ζ)] = − aE1

2E0(β2
1 − β2

2)
, ζ ∈ γ1, (16)

Im[Ψ(ζ)] = 0, ζ ∈ γ2, (17)

where γ1 denotes an arc of the circumference of unit radius which is the
mapping of the segment (l; l + 1), and γ2 denotes the remaining part of the
circumference onto which the segments (0; l) ∪ (l + 1; 2l + 1) are mapped.
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Moreover, to the points x = 0 and x = 2l + 1 there corresponds the point
ζ = 1, i.e., γ2 is a continuous arc.

If we introduce the notation

ψ(ζ) = Ψ(ζ) +
E1a

2E0(β2
1 − β2

2)
, (18)

then we obtain

Reψ(ζ) = 0 for ζ ∈ γ1, Im ψ(ζ) = 0 for ζ ∈ γ2, (19)

or

ψ(ζ) + ψ(ζ) = 0 for ζ ∈ γ1, ψ(ζ)− ψ(ζ) = 0 for ζ ∈ γ2. (20)

Introducing a piecewise holomorphic function

W (ζ) =







ψ(ζ) for |ζ| < 1,

ψ(ζ) for |ζ| > 1,
(21)

we obtain the problem
{

W+(σ) + W−(σ) = 0 for σ ∈ γ1,
W−(σ)−W−(σ) = 0 for σ ∈ γ2.

(22)

A general solution of problem (22) belonging to the class h0 and bounded
at infinity is given by the formula [9]

W (ζ) =
c0ζ + c0

√

(ζ − σ1)(ζ − σ2)
, (23)

where σ1 and σ2 are the ends of the arc γ1, σ1 = e
2πli
2l+1 , σ2 = e

2π(l+1)i
2l+1 .

By
√

(ζ − σ1)(ζ − σ2) we mean a function which is holomorphic on the
plane cut along γ1 and satisfies the condition

ζ
√

(ζ − σ1)(ζ − σ2)
→ 1 as ζ →∞.

Taking into account the equalities (21) and (23), from the equality (18)
we obtain

Ψ(ζ) =
c0ζ + c0

√

(ζ − σ1)(ζ − σ2)
−M, M =

E1a
2E0(β2

1 − β2
2)

. (24)

Getting back to the variable z which is connected with the variable ζ by
the relation (14), i.e., ζ = exp 2πi

(

1− z
2l+1

)

, and introducing the variables

ρ = e
2πy
2l+1 , θ = 2π

(

1− x
2l + 1

)

, (25)
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from formula (24) we find that

Ψ[ρeiθ] = Φ1(z) =
c0ρeiθ + c0

√

(ρeiθ − eiθ1)(ρeiθ − eiθ2)
−M, (26)

where θ1 = 2πl
2l+1 , θ2 = 2π(l+1)

2l+1 .
If now instead of y we substitute in the formula (26) the values β1y and

β2y, then applying equalities (25) we get

Φ1(z) =
c0ρ1eiθ + c0

√

(ρ1eiθ − eiθ1)(ρ1eiθ − eiθ2)
−M, θ1 < θ < θ2, (27)

where ρ1 = e
2πβ1y
2l+1 .

With regard for the condition Φ2(z) = −Φ1(z) for the function Φ2(z) we
obtain the formula

Φ2(z) = − c0ρ2eiθ + c0
√

(ρ2eiθ − eiθ1)(ρ2eiθ − eiθ2)
+ M, θ1 < θ < θ2, (28)

where ρ2 = e
2πβ2y
2l+1 .

To find a complex constant c0, we take advantage of the conditions σx(x−
i∞) = σy(x− i∞) = 0.

The external forces acting on the stringer are, in general, not in equilib-
rium (p − q 6= 0), that is, the principal vector of tangential stresses does
not equal to zero. Therefore, the tangential stresses do not tend to zero as
y → −∞, while σy and σx vanish as y → −∞.

Passing to the limit in the equalities (27) and (28), we obtain the following
relations:

Φ1(x− i∞) = −Φ2(x− i∞) = c0 −M. (29)

Using now formulas (6), we arrive at

Re
[

β2
1Φ1(x− i∞) + β2

2Φ2(x− i∞)
]

= 0,

Re
[

Φ1(x− i∞) + Φ2(x− i∞)
]

= 0.

The second condition, due to the equalities (29), is satisfied for any c0,
and from the first condition it follows that

Re c0 = M. (30)

We use the following equilibrium condition of the stringer:
∫ l+1

l
τxy(s)ds =

p− q
h

. (31)
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Applying the third equality from formulas (6), we obtain the following
expression for contact tangential stresses:

τxy(x) = −
2(β1 − β2)[Re c0 cos θ

2 − Im c0 sin θ
2 ]

√

sin θ−θ1
2 sin θ2−θ1

2

. (32)

Since θ2 − θ1 = 2π
2l+1 < 2π, the value under the radical sign is positive.

In order to determine a form of the stringer, we have to calculate the
integral

∫ x
l τxy(s)ds.

With the use of the condition θ1 + θ2 = 2π, after elementary transforma-
tions we find from the equality (32) that

τxy(x) =
2(β1 − β2)Re c0 cos θ

2
√

sin2 θ
2 − sin2 θ1

2

+
2(β1 − β2) Im c0 cos θ

2
√

cos2 θ1
2 − cos2 θ

2

.

Integrating the last equality, we obtain
∫ x

l
τxy(s)ds = 2(β1 − β2)Re c0

∫ x

l

cos πs
2l+1ds

√

sin2 πs
2l+1 − sin2 (l+1)π

2l+1

+

+2(β1 − β2) Im c0

∫ x

l

sin2 πs
2l+1ds

√

cos2 (l+1)π
2l+1 − cos2 πs

2l+1

=

= 2(β1 − β2)
2l + 1

π

[

Re c0 ln
sin πx

2l+1 +
√

sin2 πx
2l+1 − sin2 (l+1)π

2l+1

sin πl
2l+1

+

+ Im c0

(

arc sin
cos πx

2l+1

cos πl
2l+1

− π
2

)]

(33)

whence we have the formula
∫ l+1

l τxy(s)ds = 2(β2 − β1)(2l + 1) Im c0.
If the use is made of the equilibrium equation (31), then we get

Im c0 =
p− q

2h(β2 − β1)(2l + 1)
. (34)

Substituting the integral value defined by the equality (33) into the last of
the boundary conditions (formulas (5)) for an elastic half-plane, we obtain
for an unknown profile of the stinger the following relation:

aS(x)=q+2h(β1−β2)
2l + 1

π

[

Re c0 ln
sin πx

2l+1 +
√

sin2 πx
2l+1 − sin2 (l+1)π

2l+1

sin πl
2l+1

+

+Im c0

(

arc sin
cos πx

2l+1

cos πl
2l+1

− π
2

)]

.
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