GEORGIAN MATHEMATICAL JOURNAL: Vol. 5, No. 5, 1998, 475-482

COVERINGS AND RING-GROUPOIDS

OSMAN MUCUK

ABSTRACT. We prove that the set of homotopy classes of the paths in
a topological ring is a ring object (called ring groupoid). Using this
concept we show that the ring structure of a topological ring lifts to
a simply connected covering space.

INTRODUCTION

Let X be a connected topological space, X a connected and simply con-
nected topological space, and let p: X — X be a covering map. We call
such a covering simply connected. It is well known that if X is a topolog-
ical group, e is the identity element of X, and ¢ € X such that p(€) = e,
then X becomes a topological group such that p: X > Xisa morphism of
topological groups. In that case we say that the group structure of X lifts
to X. This can be proved by the lifting property of the maps on covering
spaces (see, for example, [1]).

In the non-connected case the situation is completely different and was
studied by R. L. Taylor [2] for the first time. Taylor obtained an obstruction
class kx from the topological space X and proved that the vanishing of kx
is a necessary and sufficient condition for the lifting of the group structure
of X to X as described above. In [3] this result was generalized in terms
of group-groupoids, i.e., group objects in the category of groupoids, and
crossed modules, and then written in a revised version in [4].

In this paper we give a similar result: Let X and X be connected topolog-
ical spaces and p: X — X a simply connected covering. If X is a topological
ring with identity element e, and € € X such that p(¢) = e, then the ring
structure of X lifts to X That is, X becomes a topological ring with iden-
tity € € X such that p: X > Xisa morphism of topological rings. For this
the following helps us:

In [5] Brown and Spencer defined the notion of a group-groupoid. They
also proved that if X is a topological group, then the fundamental groupoid
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w1 X, which is the set of all rel end points homotopy classes of paths in the
topological space X, becomes a group-groupoid.

We introduce here the notion of a ring-groupoid, which is a ring object
in the category of groupoids.

On the other hand, in [6] it was proved by Brown that if X is a semilo-
cally simply connected topological space, i.e., each component has a simply
connected covering, then the category TCov/X of topological coverings of
X is equivalent to the category GpdCov/m X of groupoid coverings of the
fundamental groupoid m X.

In addition to this, in [3] it was proved that if X is a topological group
whose underlying space is semilocally simply connected, then the category
TGCov/X of topological group coverings of X is equivalent to the category
GpGpdCov /71X of group-groupoid coverings of 71 X.

Here we prove that if X is a topological ring, whose underlying space
is semilocally simply connected, then the category TRCov/X of topological
ring coverings of X is equivalent to the category RGpdCov/m X of ring-
groupoid coverings of m X.

1. RING-GROUPOIDS

A groupoid G is a small category in which each morphism is an isomor-
phism. Thus G has a set of morphisms, which we call elements of G, a set
Og¢ of objects together with functions «, 5: G — Og, €: Og — G such that
ae = e = 1. The functions «, § are called initial and final maps respec-
tively. If a,b € G and Ba = ab, then the product or composite ba exists
such that a(ba) = a(a) and B(ba) = B(b). Further, this composite is asso-
ciative, for x € O¢ the element ex denoted by 1, acts as the identity, and
each element a has an inverse a~! such that a(a™!) = Ba, B(a™!) = a(a),
ala=eaa, aa”" = €eBa

In a groupoid G, for z,y € Og we write G(z,y) for the set of all mor-
phisms with initial point z and final point y. We say G is transitive if
for all z,y € Og, G(z,y) is not empty. For x € Og we denote the star
{a € G: aa =z } of x by G*. The object group at z is G(z) = G(z, z). Let
G be a groupoid. The transitive component of x € Og denoted by C(G), is
the full subgroupoid of G on those objects y € Og such that G(z,y) is not
empty.

A morphism of groupoids G and G is a functor, i.e., it consists of a pair
of functions f: G — G, O?: Oy — Og preserving all the structure.

Covering morphisms and universal covering groupoids of a groupoid are
defined in [6] as follows:

Let f: G — Ghbea morphism of groupoids. Then f is called a covering
morphism if for each T € Og, the restriction G* — G’ of f is bijective.
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A covering morphism f: G — G of transitive groupoids is called universal
if G' covers every covering of G| i.e., if for every covering morphisma: A — G
there is a unique morphism of groupoids a’: G — A such that aa’ = f (and
hence o' is also a covering morphism). This is equivalent to saying that for
T,y € 05 the set CNT'(E, y) has one element at most.

We now give

Definition 1.1. A ring-groupoid G is a groupoid endowed with a ring
structure such that the following maps are the morphisms of groupoids:

(i) m: G x G — G, (a,b) — a+ b, group multiplication,

(ii) u: G — G,a +— —a, group inverse map,

(iii) e: () — G, where (%) is a singleton,

(iv) n: G x G — G, (a,b) — ab, ring multiplication.

So by (iii) if e is the identity element of Og then 1. is that of G.

In a ring-groupoid G for a,b € G the groupoid composite is denoted by
boa when a(b) = ((a), the group multiplication by a + b, and the ring
multiplication by ab.

Let G and G be two ring-groupoids. A morphism f: G — G from G to
G is a morphism of underlying groupoids preserving the ring structure. A
morphism f: G — G of ring-groupoids is called a covering (resp. a universal
covering) if it is a covering morphism (resp. a universal covering) on the
underlying groupoids.

Proposition 1.2. In a ring-groupoid G, we have
(i) (coa)+ (dob) =(c+d)o(a+b) and
(ii) (coa)(dob) = (cd) o (ab).

Proof. Since m is a morphism of groupoids,

(coa)+ (dob) =mlcoa,dobd] =m](c,d)o (a,b)] =
= m(e,d) om(a,b) = (¢c+d)o (a+Db).

Similarly, since n is a morphism of groupoids we have

(coa)(dob) =nl[coa,dob] =n[(c,d) o (a,b)]
=n(c,d) on(a,b) = (cd)o (ab). O

We know from [5] that if X is a topological group, then the fundamental
groupoid 7 X is a group-groupoid. We will now give a similar result.

Proposition 1.3. If X is a topological ring, then the fundamental group-
0id m X is a ring-groupoid.
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Proof. Let X be a topological ring with the structure maps
m: X xX—X, (a,b)—a+b,
n: X xX—X, (ab)— ab
and the inverse map
u: X — X, ar— —a.

Then these maps give the following induced maps:

mm: mX xmX —mX, ([a],[b]) — [b+d]
mn: mX xmX —-mX, ([a],[b]) — [ba]
mu: mX XxmX - mX, [a+— [—a] = —]a].

It is known from [5] that m X is a group groupoid. So to prove that 73 X
is a ring-groupoid we have to show the distributive law: since for a,b € G
a(b+ ¢) = ab + ac we have

[a] (8] + [e]) = [al([b+ ¢]) = [a(b + ¢)] = [ab + ad] = [ab] + [ac] I

Proposition 1.4. Let G be a ring-groupoid, e the identity of Og. Then
the transitive component C(G). of e is a ring-groupoid.

Proof. In [3] it was proved that C(G). is a group-groupoid. Further it can
be checked easily that the ring structure on G makes C(G), a ring. O

Proposition 1.5. Let G be a ring-groupoid and e the identity of O¢.
Then the star G° = {a € G: a(a) = e} of e becomes a ring.

The proof is left to the reader.

2. COVERINGS

Let X be a topological space. Then we have a category denoted by
TCov/X whose obJects are covering maps p: X —> Xanda morphism from
p: X—>Xt0q Y—>Xlsamapf XY (hence f is a covering map)
such that p = ¢f. Further for X we have a groupoid called a fundamental
groupoid (see [6], Ch. 9) and have a category denoted by GpdCov/m X
whose objects are the groupoid coverings p: G — m1 X of 1y X and a mor-
phism from p: G - mX to q: H — mX is a morphism f: G — H of
groupoids (hence f is a covering morphism) such that p = qf.

We recall the following result from Brown [6].

Proposition 2.1. Let X be a semilocally simply connected topological
space. Then the category TCov/X of topological coverings of X is equiva-
lent to the category GpdCov/m X of covering groupoids of the fundamental
groupoid m X .
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Let X and X be topological groups. A map p: X — X is called a
covering morphism of topological groups if p is a morphism of groups and p
is a covering map on the underlying spaces. For a topological group X, we
have a category denoted by TGCov/X whose objects are topological group
coverings p: X > Xanda morphism from p: X — X to q: Y - Xisa map
f: X — Y such that p = qf. For a topological group X, the fundamental
groupoid m X is a group-groupoid and so we have a category denoted by
GpGpdCov/m1 X whose objects are group-groupoid coverings p: G — m X
of m; X and a morphism from p: G — mX to q: H—-mXisa morphism
fi+ G — H of group-groupoids such that p = qf.

Then the following result is given in [4].

Proposition 2.2. Let X be a topological group whose underlying space
is semilocally simply connected. Then the category TGCov/X of topologi-
cal group coverings of X is equivalent to the category GpGpdCov/m X of
covering groupoids of the group-groupoid m X .

In addition to these results, we here prove Proposition 2.3.

Let X and X be topological rings. A map p: X — X is called a covering
morphism of topological rings if p is a morphism of rings and p is a covering
map on the underlying spaces. So for a topological ring X, we have a
category denoted by TRCov/X, whose objects are topological ring coverings
p: )z — X and a morphism from p: X = X to q: Y - X is a map
f: X — Y such that p = ¢f. Similarly, for a topological ring X, we
have a category denoted by RGpdCov/m X whose objects are ring groupoid
coverings p: G — mX of 71X _and_a morphism from p: G — mX to
q: H — m X is a morphism f: G — H of ring-groupoids such that p = gf.

Let X be a topological ring whose underlying space is semilocally simply
connected. Then we prove the following result.

Proposition 2.3. The categories TRCov/X and RGpdCov/m X are
equivalent.

Proof. Define a functor
m1: TRCov/X—RGpdCov/m X

as follows: Let p: X — X bea covering morphism of topological rings. Then
the induced morphism mp: m X — m X is a covering morphism of group-
groupoids (see [3]), i.e., it is a morphism of group-groupoids and coverings
on the underlying groupoids. Further the morphism m;p preserves the ring
structure as follows:

(mip)[ab] = [p(ad)] = [p(a)p(b)] = [p(a)][p(b)] = (m1p)[a](m1p)[al.

So mip: m)? — m X becomes a covering morphism of ring-groupoids.
We now define a functor
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n: RGpdCov/m X — TRCov/X

as follows: If ¢: G — m1 X is a covering morphism of ring groupoids, then
we have a covering map p: X — X, where p = O, and X = 05' Further
p is a morphism of topological groups (see [3]). Further we will prove that
the ring multiplication

n: XxX—-X, (ab)—ab

is continuous.

By assuming that X is semilocally simply connected, we can choose a
cover U of simply connected subsets of X. Since the topology X is the
lifted topology (see [6], Ch. 9) the set consisting of all liftings of the sets in
U forms a basis for the topology on X. Let U be an open neighborhood of
€ and a lifting of U in U. Since the multiplication

n: X xX—X, (ab)— ab

is continuous, there is a neighborhood V of e in X such that n(V x V) C U.
Using the condition on X and choosing V' small enough we can assume that
V' is simply connected. Let V be the lifting of V. Then pn(V x V) =
n(V x V) C U and so we have i(V x V) C U. Hence

: XxX =X, (ab)— ab

becomes continuous. Since by Proposition 2.2 the category of topological
group coverings is equivalent to the category of group-groupoid coverings,
the proof is completed by the following diagram:

TRCov/X % RGpdCov/mX
! ! O
TGCov/X % GpGpdCov/m X.

Before giving the main theorem we adopt the following definition:

Definition 2.4. Let p: G — G bea covering morphism of groupoids
and ¢: H — G a morphism of groupoids. If there exists a unique morphism
q: H — G such that p = qq we say q¢ lifts to ¢ by p.

We recall the following theorem from [6] which is an important result to
have the lifting maps on covering groupoids.

Theorem 2.5. Let p: G—Gbea covering morphism of groupoids, x €
Og and © € Oy such that p(x) = x. Let q: H — G be a morphism of
groupoids such that H is transitive and y € Og such that ¢(y) = x. Then
the morphism q: H — G uniquely lifts to a morphism q: H —>~(~; such that
q(y) = = if and only if q[H(y)] C p|G(Z)], where H(y) and G(T) are the
object groups.



COVERINGS AND RING-GROUPOIDS 481

Let G be a ring groupoid, e the identity of Og, and let G be just a
groupoid, € € 05 such that p(€) = e. Let p: G — G be a covering morphism

of groupoids. We say the ring structure of G lifts to G if there exists a ring
structure on G with the identity element ¢ € 05 such that G is a group-

groupoid and p: G—Gisa morphism of ring-groupoids.
Theorem 2.6. Let G be a groupoid and G a ring-groupoid. Let p: G —

G be a universal covering on the underlying groupoids such that both group-
0ids G and G are transitive. Let e be the identity element of Og and € € Oz

such that p(€) = e. Then the ring structure of G lifts to G with identity e.

Proof. Since G is a ring-groupoid as in Definition 1.1 it has the following
maps:

m:GxG—G, (a,b)—a+b,

uw:G— G, a— —a,
n:GxG— G, (a,b)— ab.

Since G is a universal covering, the object group é(é} has one element at
most. So by Theorem 2.5 these maps respectively lift to the maps

m: éXC:'HG, (E,g) r—>E+Z,

: G, aw— —a,
n:GxG—G, (@b)r—ab
by p: G — G such that
p(@+b) = p(@) + p(b),
p(ab) = p(@)p(b),
p(u(a)) = —(pa).

Since the multiplication m: G x G — G +— a + b is asociative, we have
m(m x 1) = m(1 x m), where 1 denotes the identity map. Then again by
Theorem 2.5 these maps m(m x 1) and m(1 x m) respectively lift to

m(m x 1), m(l xm): GxGxG— G

which coincide on (€, €, €). By the uniqueness of the lifting we have m(m x
1) = m(1 x m), i.e., m is associative. Similarly, n is associative. Further
the distributive law is satisfied as follows:

Let p1,p2: G X G X G — G be the morphisms defined by

P1 (a7 b7 C) = ab> pZ(aa b7 C) = bc
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and
(p1,p2): GXxGxG—GxG, (ab,c)— (ab,ac)

for a, b, c € G. Since the distribution law is satisfied in G, we have n(1xm) =
m(p1,p2). The maps n(1 x m) and m(py, p2) respectively lift to the maps

n(1 x m), m(pr,p2): Gx Gx G — G
coinciding at (€,€,€). So by Theorem 2.5 we have n(1 x m) = m(p1,p2).

That means the distribution law on G is satisfied. The rest of the proof is
straightforward. [

From Theorem 2.6 we obtain

Corollary 2.7. Let X and X be path connected_topological spaces and
p: X — X be a simply connected covering, i.e., X is simply connected.
Suppose that X is a topological ring, and e is the identity element of the
group structure on X . If e € X with p(€) = e, then X becomes a topological
ring with identity € such that p is a morphism of topological Tings.

Proof. Since p:}? — X is a simply connected covering, the induced mor-
phism mip: m X — m X is a universal covering morphism of groupoids.
Since X is a topological ring by Proposition 1, 71 X is a ring-groupoid. By
Theorem 2.6 71 X becomes a ring-groupoid and again by Proposition 2.3 X
becomes a topological ring as required. [
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