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INEQUALITIES OF CALDERON–ZYGMUND TYPE FOR
TRIGONOMETRIC POLYNOMIALS

K. RUNOVSKI AND H.-J. SCHMEISSER

Abstract. We give a unified approach to inequalities of Calderon–Zygmund
type for trigonometric polynomials of several variables based on the Fourier
analytic methods. Sharp results are achieved for the full range of admissible
parameters p, 0 < p ≤ +∞. The results obtained are applied to the problem
of the image of the Fourier transform in the scale of Besov spaces.
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1. Introduction

In the present paper we treat the problem of finding all p for which the
inequality

‖Pm(D)t‖p ≤ c(d; p; Pm; β) · nm−2β‖∆βt‖p, t ∈ Tn, n ≥ 1, (1.1)

is valid for all real or complex trigonometric polynomials t(x) in the space
Tn spanned by harmonics eikx (kx = k1x1 + · · ·+ kdxd) with |k| = (k2

1 + · · ·+
k2

d)
1/2 ≤ n and for all n ∈ N with some constant independent of t and n.

In (1.1) ‖ · ‖p is the usual Lp − norm (the quasi-norm if 0 < p < 1 ) on the
d -dimensional torus Td = [0, 2π)d, m ∈ N, β ∈ R, β ≥ 0,

Pm(D) = i−m · ∑

k∈Zd, |k|1=m

αkDk ; (|k|1 = k1 + · · ·+ kd);

Dk =
∂|k|1

∂xk1
1 · · · ∂xkd

d

, k = (k1, . . . , kd) ∈ Nd
0 ,

and ∆β is the power of the Laplacian given on the space T of all trigonometric
polynomials by

∆βt(x) = (−1)β
∑

k∈Zd

|k|2βcke
ikx, ((−1)β = eiπβ)


t(x) =

∑

k∈Zd

cke
ikx ∈ T


 .
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Some famous inequalities are special cases of (1.1). The Calderon–Zygmund
inequality [9, p. 59]

∥∥∥∥∥
∂2f

∂xj∂xk

∥∥∥∥∥
p

≤ c(d; p) · ‖∆f‖p (1.2)

for C2-smooth 2π-periodic functions or for functions having a compact support
is of type (1.1) with Pm(ξ) = −ξjξk and β = 1. As is well-known [9, p. 59],
(1.2) is valid for 1 < p < +∞. The Bernstein inequality (for references see,
for instance, [2, Chapter 4, §§1, 3])

‖t(m)‖p ≤ cnm‖t‖p, t ∈ Tn , n ∈ N , (1.3)

corresponds to d = 1, Pm(ξ) = (iξ)m, β = 0. It holds for all 0 < p ≤ +∞.
We notice that the best possible constant in (1.3) is equal to 1 ([1]).

Inequalities (1.2) and (1.3) have been studied separately by using specific
methods and approaches. In the present paper we propose a unified approach
to inequalities of type (1.1). We shall show that this problem has a complete
solution. More precisely, if Pm(ξ) · |ξ|−2β does not coincide on Rd \{0} with a
polynomial, then inequality (1.1) holds if and only if d

d+(m−2β)
< p ≤ +∞, for

m > 2β, and if and only if 1 < p < +∞, for m = 2β. Clearly, if Pm(ξ) · |ξ|−2β

is a polynomial, that is, β is a non-negative integer and Pm(ξ) is divisible by
|ξ|2β, then (1.1) is an immediate consequence of the Bernstein inequality and it
is valid for all 0 < p ≤ +∞. Considering the harmonics eikx it will be proved
below that (1.1) fails for all 0 < p ≤ +∞ if m < 2β.

To prove inequality (1.1) for d
d+(m−2β)

< p ≤ +∞ if m > 2β, and for

1 < p < +∞ if m = 2β, we use standard methods of harmonic analysis like
Fourier multipliers theorems in the scale of Bessel potential spaces [8, p. 150]
and the Marcinkiewicz theorem for periodic multipliers [5, p. 57]. The proof
of the inverse result is more difficult, in particular, we apply some facts of the
theory of homogeneous distributions [3, §§3.2, 7.1].

In Section 2 we formulate the main result of the paper and give some of its
consequences. In Section 3 we describe the asymptotic behavior of the Fourier
transform of the function Pm(ξ) · |ξ|−2βψ(ξ), where ψ belongs to the Schwartz
space S of test functions and satisfies some additional conditions. Section 4 is
devoted to the proof of the main result. In Section 5 we prove the sharpness of
the smoothness order in the Szasz theorem on mapping properties of the Fourier
transform.

2. Main Results

Henceforth we say that inequality (1.1) is valid for p if it holds in the p-norm
(quasi-norm for 0 < p < 1) for all t ∈ Tn and for all n ∈ N with some
positive constant that does not depend on t and n. We call the set of all p,
for which (1.1) is valid, its range of validity.
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For m ∈ N we denote by

Πm =





∑

k∈Zd, |k|1=m

αkξ
k : αk ∈ C



 (ξk = ξk1

1 · · · ξkd
d ) (2.1)

the class of homogeneous polynomials of order m.
The main result of the paper is given by the following

Theorem 2.1. Suppose m ∈ N, β ∈ R, m ≥ 2β > 0 and Pm(ξ) ∈ Πm. If
Pm(ξ)·|ξ|−2β is not identical on Rd\{0} with a polynomial, then the inequality

‖Pm(D)t‖p ≤ c(d; p; Pm; β) · nm−2β‖∆βt‖p, t ∈ Tn, n ≥ 1,

is valid if and only if d
d+m−2β

< p ≤ +∞ for m > 2β and if and only

if 1 < p < +∞ for m = 2β. If β = 0, the inequality is valid for all
0 < p ≤ +∞.

For the sake of simplifying our notations we shall often write

An = n−m · Pm(D) ; Bn = (−1)β · n−2β∆β ,

so that inequality (1.1) can be rewritten in the form

‖Ant‖p ≤ C(d; p; Pm; β) · ‖Bnt‖p, t ∈ Tn, n ∈ N.

Remark 2.1. If Pm(ξ) · |ξ|−2β = Q(ξ) for ξ ∈ Rd \ {0}, where Q(ξ) ∈
Πs, s ∈ N0, then Pm(ξ) = Q(ξ) · |ξ|2β for each ξ ∈ Rd and (1.1) follows for
any 0 < p ≤ +∞ from the inequality

‖Q(D)t‖p ≤ C · ns‖t‖p, t ∈ Tn, n ∈ N,

which is an immediate consequence of (1.3).

Remark 2.2. If m < 2β, the function Pm(ξ) · |ξ|−2β is unbounded at 0;
therefore there exist sequences {ks}+∞

s=1 ⊂ Zd, {ns}+∞
s=1 ⊂ N satisfying

lim
s→+∞

ks

ns

= 0, lim
s→+∞

∣∣∣∣∣Pm

(
ks

ns

)∣∣∣∣∣ ·
∣∣∣∣∣
ks

ns

∣∣∣∣∣
−2β

= +∞.

Then

lim
s→+∞

‖Ans(e
iks·)‖p

‖Bns(e
iks·)‖p

= lim
s→+∞

∣∣∣∣∣Pm

(
ks

ns

)∣∣∣∣∣ ·
∣∣∣∣∣
ks

ns

∣∣∣∣∣
−2β

= +∞

and (1.1) fails for all 0 < p ≤ +∞.

Remarks 2.1 and 2.2 show that the conditions of Theorem 2.1 are natural.

Remark 2.3. The condition “Pm(ξ) · |ξ|−2β does not coincide with a poly-
nomial on Rd \ {0}” means that β is not an integer or otherwise Pm(ξ)
is not divisible by |ξ|2β. In the second case the range of the validity of (1.1)
depends essentially on algebraic properties of the polynomial Pm(ξ). We give
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one example. It is easy to check that the polynomial
d∑

j=1
ξ6
j is divisible by

d∑
j=1

ξ2
j if and only if d = 2; therefore the range of the validity of the inequality

∥∥∥∥∥∥

d∑

j=1

∂6t

∂x6
j

∥∥∥∥∥∥
p

≤ c(d; p) · n4‖∆t‖p, t ∈ Tn, n ∈ N,

is
(

d
d+4

, +∞
]

for d > 2, but it is (0, +∞] for d = 2.

3. Fourier Transform of Some Functions

In this section we deal with the Fourier transform of the function fm;β · ψ,
where

fm;β =





Pm(ξ) · |ξ|−2β, ξ ∈ Rd \ {0}
0, ξ = 0

(3.1)

and ψ belongs to the Schwartz space S and satisfies some additional condi-
tions. We use some facts of the theory of homogeneous distributions that can
be found in [3].

Clearly, f(ξ) is homogeneous of order a = m− 2β ≥ 0, that is, in spherical
coordinates

f(ξ) = raΦ(u), r = |ξ| > 0, u ∈ Sd−1 ,

where Sd−1 is the unit sphere in Rd. Clearly, Φ(u) is bounded on Sd−1 and
f has at most polynomial growth at infinity. Therefore it is a regular element
of the space S ′ of distributions on S, that is

〈f, ϕ〉 =
∫

Rd

f(ξ)ϕ(ξ)dξ, ϕ ∈ S . (3.2)

We recall that for g ∈ S ′ and k ∈ Nd
0 the derivative Dkg is defined by

〈Dkg, ϕ〉 = (−1)|k|1〈g,Dkϕ〉, ϕ ∈ S . (3.3)

The Fourier transform of g ∈ S ′ is given by

〈ĝ, ϕ〉 = 〈g, ϕ̂〉, ϕ ∈ S ,

where

ϕ̂(x) = (2π)−
d
2 ·

∫

Rd

ϕ(ξ)e−ixξdξ .

We notice that if g ∈ S ′ ∩ C∞(Rd \ {0}), the restriction of Dkg defined by
(3.3) to S0 = {ϕ ∈ S : suppϕ ⊂ Rd \ {0}} coincides as an element of the dual
space S ′0 with the pointwise derivative of g.

A preliminary estimate of the asymptotic behaviour of the Fourier transform
of fψ, where ψ ∈ S is given by the following
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Lemma 3.1. Let f be defined by (3.1) and a = m − 2β. Then for any
ψ ∈ S

|f̂ψ(x)| ≤ c · (1 + |x|)−[a]−d+1 , x ∈ Rd , (3.4)

where c does not depend on x.

Proof. We put l = [a] + d − 1. Let ν ∈ Nd
0 and |ν|1 ≤ l. Then Dνf is

homogeneous of order a−|ν|1 as an element of S ′ [3, p. 95-96]. With the help
of the remarks given above, Dνf is a regular element of S ′0 and

Dνf(ξ) = ra−|ν|1 · Φν(u), r = |ξ| > 0, u ∈ Sd−1 .

Since Φν(u) is bounded on Sd−1,

‖Dνf‖L1(D1) =
∫

Sd−1

1∫

0

ra−|ν|1+d−1 · Φν(u)drdS(u)

≤ c(ν)

1∫

0

ra−|ν|1+d−1dr < +∞ , (3.5)

where dS(u) is the surface element of Sd−1, Dr = {x ∈ Rd : |x| < r},
Dr = {x ∈ Rd : |x| ≤ r}. Applying the Leibnitz formula for the derivative of
the product we deduce from (3.5) that Dν(fψ) ∈ L1(Rd) for |ν|1 ≤ l.

Since fψ ∈ L1(Rd), the inequality (3.4) is valid for |x| ≤ 1. Let now |x| > 1.
Using

xν f̂ψ(x) = (−i)|ν|1D̂ν(fψ)(x), x ∈ Rd ,

we obtain for |ν|1 ≤ l, x ∈ Rd

|xν | · |f̂ψ(x)| ≤ ‖Dν(fψ)‖L1(Rd)

and

|f̂ψ(x)| ≤

 ∑

|ν|1=l

|xν |


−1

· ∑

|ν|1=l

‖Dν(fψ)‖L1(Rd)

≤ c′ ·

 ∑

|ν|1=l

|xν |


−1

≤ c′′ · |x|−l .

This completes the proof.

By X d we denote the space of radial real-valued functions ψ ∈ S with
ψ(0) = 1.

Theorem 3.1. Let f be defined by (3.1) and a = m − 2β. If f(ξ) is not a

polynomial and ψ(ξ) ∈ X d, then f̂ψ(x) ∈ Lp(Rd) if and only if d
d+a

< p ≤ +∞.
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Proof. We prove that

|f̂ψ(x)| ≤ c1(1 + |x|)−(d+a) , x ∈ Rd, (3.6)

and

|f̂ψ(x)| ≥ c2 · |x|−(d+a) , x ∈ Ω, (3.7)

where

Ω ≡ Ω(ρ, θ, u0) = {x = ru : r ≥ ρ, u ∈ Sd−1 , cos θ ≤ (u, u0) ≤ 1}

for some ρ > 0, 0 < θ < π
2

and u0 ∈ Sd−1.

Clearly, Theorem 3.1 follows from (3.6) and (3.7). Indeed, as a ≥ 0, f is

bounded on D1 and f̂ψ ∈ L∞(Rd). If d
d+a

< p < +∞, then σ ≡ d − 1 −
p(d + a) < −1 and we obtain from (3.6)

‖f̂ψ‖p
Lp(Rd) ≤ c ·





1 +
∫

Sd−1

+∞∫

1

r−p(d+a) · rd−1 drdS(u)





≤ c′ ·


1 +

+∞∫

1

rσdr



 < +∞ .

Let now 0 < p ≤ d
d+a

. Then σ ≥ −1 and we get from (3.7)

‖f̂ψ‖p
Lp(Rd) ≥ ‖f̂ψ‖p

Lp(Ω) ≥ c ·
∫

cos θ≤(u,u0)≤1

+∞∫

ρ

r−p(d+1) · rd−1drdS(u)

= c′ ·
+∞∫

ρ

rσdr = +∞ .

First we prove (3.6) and (3.7) for functions ψ in

X d
0 =

{
ψ ∈ X d : ψ̂ ≥ 0, suppψ̂ ⊂ D3/4

}
. (3.8)

Since f is bounded on D1, fψ belongs to L1(Rd) that implies (3.6) for |x| ≤ 1.
Let now |x| > 1. By the properties of the Fourier transform of homogeneous

distributions [3, p. 203-205, Theorems 7.1.16, 7.1.18], f̂ is homogeneous of
order −(d+a) as an element of S ′ and it belongs to C∞(Rd\{0}), in particular,
it is a regular element of S ′0 and

f̂(x) = r−(d+a) ·Ψ(u), r = |x| > 0, u ∈ Sd−1 . (3.9)
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Noticing that ψ̂(x− ·) belongs to S0 for |x| > 1 and applying the properties
of convolution [3, p. 202, Theorem 7.1.15] as well as (3.8) and (3.9) we obtain

|f̂ψ(x)| = c · | < f̂, ψ̂(x− ·) > | = c ·
∣∣∣∣∣∣∣

∫

Rd

f̂(y)ψ̂(x− y)dy

∣∣∣∣∣∣∣

= c ·
∣∣∣∣∣∣∣

∫

|x−y|≤3/4

f̂(y)ψ̂(x− y)dy

∣∣∣∣∣∣∣
≤ c · max

|x−y|≤3/4
|f̂(y)| ·

∫

Rd

ψ̂(y)dy

≤ c′ · max
|x−y|≤3/4

|y|−(d+a) ≤ c′′ · |x|−(d+a) ,

that proves (3.6).
To show the lower estimate, we observe first that since f is not a polynomial,

f̂ cannot be concentrated at 0 and, therefore, there is u0 ∈ Sd−1 such that
Ψ(u0) 6= 0. Without loss of generality we may assume that ReΨ(u0) > 0. We
choose 0 < θ < π

2
from the condition

ReΨ(u) ≥ 1

2
ReΨ(u0), u ∈ Sd−1, cos 2θ ≤ (u, u0) ≤ 1.

Let ρ > 1 be so large that the conditions x ∈ Ω(ρ, θ, u0), |y − x| ≤ 3
4

imply
y ∈ Ω(1, 2θ, u0). Then for x ∈ Ω(ρ, θ, u0) we obtain

|f̂ψ(x)| = c ·
∣∣∣∣∣∣∣

∫

|x−y|≤3/4

f̂(y)ψ̂(x− y)dy

∣∣∣∣∣∣∣

≥ c ·
∫

|x−y|≤3/4

|y|−(d+a) ·ReΨ

(
y

|y|

)
ψ̂(x− y)dy

≥ c

2
ReΨ(u0) ·

∫

|x−y|≤3/4

|y|−(d+a)ψ̂(x− y)dy

≥ c2−(d+a)−1 ·ReΨ(u0) · |x|−(d+a)
∫

Rd

ψ̂(y)dy

= c′ · |x|−(d+a) ,

where c′ = c2−(d+a)−1ReΨ(u0)(2π)d/2ψ(0) > 0. Inequality (3.7) is proved.
Let now ψ be an arbitrary function in X d. We set

fψ = fϕ + f(ψ − ϕ), ϕ ∈ X d
0 .

Clearly,

ψ(ξ)− ϕ(ξ) = α|ξ|2 · ψ1(ξ) ,

where ψ1 ∈ X d and

α = lim
ξ→0

ψ(ξ)− ϕ(ξ)

|ξ|2 .
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Therefore,

f(ξ)ψ(ξ) = f(ξ)ϕ(ξ) + αf(ξ) · |ξ|2 · ψ1(ξ) . (3.10)

Noticing that g(ξ) = f(ξ) · |ξ|2 is homogeneous of order a + 2, we obtain by
Lemma 3.1 that

|ĝψ1(x)| ≤ c(1 + |x|)−(d+[a]+1) , x ∈ Rd . (3.11)

From (3.6) for functions in X d
0 , (3.10) and (3.11) we get for x ∈ Rd

|f̂ψ(x)| ≤ |f̂ϕ(x)|+ |α| · |ĝψ1(x)|
≤ c′

(
1 + |x|−(d+a) + |x|−(d+[a]+1)

)
≤ c′′

(
1 + |x|−(d+a)

)
.

Hence estimate (3.6) is proved for ψ ∈ X d.
Let Ω(ρ, θ, u0) be the domain, where (3.7) is valid for ϕ. We put

ρ̃ = max



ρ,

(
2|α|c
c2

) 1
1−{a}



 .

Then for |x| ≥ ρ̃

c2 − c|α| · |x|{a}−1 ≥ c2

2
. (3.12)

From (3.7) for ϕ ∈ X d
0 , (3.11) and (3.12) we have for x ∈ Ω(ρ̃, θ, u0)

|f̂ψ(x)| ≥ |f̂ϕ(x)| − |α| · |ĝψ1(x)|
≥ c2|x|−(d+a) − c|α| · |x|−(d+[a]+1)

≥ |x|−(d+a) ·
(
c2 − c|α| · |x|{a}−1

)
≥ c2

2
|x|−(d+a) .

The proof of Theorem 3.1 is complete.

4. Proof of the Main Result

To simplify our notations we omit the index n in An and Bn defined in
Section 2. We notice that the operator B−1 is well-defined on

T ◦ =



t(x) =

∑

k∈Zd

cke
ikx ∈ T : c0 = 0





by the formula

B−1t(x) =
∑

k∈Zd, k 6=0

∣∣∣∣∣
k

n

∣∣∣∣∣
−2β

· cke
ikx (t(x) ∈ T ◦ ). (4.1)

By P we denote the projection operator

P


 ∑

k∈Zd

cke
ikx


 =

∑

k∈Zd, k 6=0

cke
ikx
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that maps T into T ◦.
We split the proof of Theorem 2.1 into 4 steps.

Step 1. If m > 2β, then (1.1) is valid for d
d+(m−2β)

< p ≤ +∞.

Indeed, as it follows from Theorem 3.1, f̂ψ(x) ∈ Lq(Rd) (ψ ∈ X d) for all

q ∈
(

d
d+(m−2β)

, +∞
]
; therefore f̂ψ(x) ∈ Lp̃(Rd), where p̃ = min(1, p). It

was proved in [8, p. 150–151] that
∥∥∥∥∥∥

∑

|k|≤n

f

(
k

n

)
cke

ikx

∥∥∥∥∥∥
p

≤ c · ‖f̂ψ‖Lp̃(Rd) · ‖t‖p , t ∈ Tn ,

where ψ(ξ) = 1 on D1 and ψ(ξ) = 0 outside D2. Hence the inequality

‖AB−1Pt‖p ≤ c‖t‖p, t ∈ Tn, n ∈ N, (4.2)

is valid for d
d+(m−2β)

< p ≤ +∞. For t(x) =
∑

k∈Zd

cke
ikx ∈ Tn we put τ(x) =

Bt(x). Then we get from (4.2)

‖AB−1Pτ‖p ≤ c‖τ‖p . (4.3)

Since B−1Pτ(x) = t(x)− c0 and Pm(0) = 0, AB−1Pτ(x) = At(x)− Ac0 =
At(x) and (4.3) can be rewritten in the form

‖At‖p ≤ c · ‖Bt‖p ,

that is, (1.1) is valid.

Step 2. If m = 2β, (1.1) is valid for 1 < p < +∞.

Since m = 2β, f is homogeneous of order 0 and D(m)f ≡ ∂mf
∂ξ1···∂ξm

is

homogeneous of order −m for each 1 ≤ m ≤ d [3, p. 95-96], that is,

D(m)f(ξ) = r−mΦm(u), r = |ξ| > 0, u ∈ Sd−1. (4.4)

For each dyadic rectangle

Il =
m∏

s=1

[
2|ls|−1, 2|ls|

]
⊂ {η ∈ Rm : rl ≤ |η| ≤ 2rl} , l = (l1, . . . , lm) ∈ Zm,

where rl =
(

m∑
s=1

22(|ls|−1)

) 1
2

, for k ∈ Nd we have from (4.4)

sup
km+1,...,kd

2|l1|−1∑

k1=2|l1|−1

· · ·
2|lm|−1∑

km=2|lm|−1

|∆1 · · ·∆mf(k)|

≤ sup
km+1,...,kd

∫

Il

∣∣∣D(m)f(ξ1, . . . , ξm, km+1, . . . , kd)
∣∣∣ dξ1 · · · dξm

≤ max
m∈Sd−1

|Φm(u)|
2rl∫

rl

dξ1 · · · dξm

(ξ2
1 + · · ·+ ξ2

m)
m
2
≤ Cm ,
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where ∆jf = f(. . . , kj + 1, . . . ) − f(. . . , kj, . . . ) is the first difference of the
sequence f(k) with respect to the variable j and Cm does not depend on l.
If ls is equal to 0, the corresponding sum is extended only to ks = 0. The same
estimate is obviously valid for any other set of variables 1 ≤ j1 < · · · < jm ≤ d.

We have checked the conditions of the Marcinkiewicz theorem on periodic
multipliers [5, p. 57]. In view of this theorem we conclude that the inequality

‖AB−1Pt‖p ≤ c‖t‖p, t ∈ T ,

is valid for all 1 < p < +∞. As it was shown in Step 1, this implies (1.1).

Step 3. If (1.1) is valid for some 0 < p ≤ +∞, then d
d+(m−2β)

< p.

Obviously, it is enough to consider the case 0 < p ≤ 1. For a function
ψ ∈ X d with support in D1 we consider the polynomial

Ψ(x) ≡ Ψn(x) =
∑

k∈Zd

ψ

(
k

n

)
eikx ∈ Tn .

We choose h ≡ hn such that

‖∆hAB−1PΨ‖p = max
y∈Rd

‖∆yAB−1PΨ‖p ,

where ∆yg(·) = g(·+ y)− g(·). We put

t(x) = B−1∆hΨn(x) .

Clearly, t(x) ∈ Tn ∩ T ◦. We notice that

∥∥∥∥∥∥
∑

k∈Zd

ψ

(
k

n

)
eikx

∥∥∥∥∥∥
p

≤ cnd(1−1/p) , n ∈ N, (4.5)

where c does not depend on n. For 0 < p ≤ 1 this was proved in [4] with
the help of the Poisson summation formula. Using a Jackson type inequality
(obviously, the proof given in [7] fits for complex-valued functions), (1.1) for
t(x) and (4.5) we get

E0(AB−1PΨ)p ≤ c · ‖∆hAB−1PΨ‖p

= c · ‖AB−1P∆hΨ‖p = c · ‖AB−1∆hΨ‖p

= c · ‖At‖p ≤ c′‖Bt‖p ≤ c′ · ‖∆hΨ‖p

≤ 21/pc′‖Ψ‖p ≤ c′′ · nd(1− 1
p
) , (4.6)
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where E0(g)p = inf
z∈Rd

‖g(x)−z‖p is a best approximation to g by constants. Re-

calling that f(ξ) is bounded on D1, we get with the help of Hölder’s inequality

‖AB−1PΨ‖p ≤ (2π)d( 1
p
− 1

2
)‖AB−1PΨ‖2

= (2π)
d
p ·





∑

k∈Zd

∣∣∣∣∣f
(

k

n

)
ψ

(
k

n

)∣∣∣∣∣
2




1/2

≤ c · {card(suppψ ∩ Zd)}1/2 ≤ c′ · nd/2 . (4.7)

We choose σ ≡ σn such that

E0(AB−1PΨ)p ≥ 2−
1
p‖AB−1PΨ− σ‖p . (4.8)

From (4.7) and (4.8) we obtain

(2π)d|σ|p ≤ 2 · E0(AB−1PΨ)p
p + ‖AB−1PΨ‖p

p

≤ 3‖AB−1PΨ‖p
p ≤ cn

pd
2 ,

in particular,

lim
n→+∞ n−d · σn = 0 . (4.9)

We note that in different formulas the constans c can also be different, but all
of them do not depend on n.

We consider the functions {Fn(x)}+∞
n=1 given by

Fn(x) =





n−dp ·
∣∣∣∣∣∣
∑

k∈Zd

f

(
k

n

)
ψ

(
k

n

)
ei k

n
x − σn

∣∣∣∣∣∣

p

, x ∈ [−πn, πn]d,

0, otherwise .

(4.10)

Clearly, the functions Fn(x), n ∈ N, are non-negative and measurable. Let
x0 ∈ Rd. Then there exists n0 ∈ N, such that x0 ∈ [−πn, πn]d for n ≥ n0.
The function f(ξ)ψ(ξ)eiξx0 of variable ξ is integrable in the Riemann sense on
[−1, 1]d. By the definition of the Riemann integral we get

lim
n→+∞ n−d · ∑

k∈Zd

f

(
k

n

)
ψ

(
k

n

)
ei k

n
x0

=
∫

[−1,1]d

f(ξ)ψ(ξ)eiξx0dξ = (2π)d/2 · f̂ψ(−x0) .

Therefore by (4.9) we have

lim
n→+∞ Fn(x0) = (2π)dp/2 · |f̂ψ(−x0)|p . (4.11)
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From (4.6) and (4.8) we get

∫

Rd

Fn(x)dx = n−dp
∫

[−πn,πn]d

∣∣∣∣∣∣
∑

k∈Zd

f

(
k

n

)
· ψ

(
k

n

)
eik x

n − σn

∣∣∣∣∣∣

p

dx

= nd(1−p)

∥∥∥∥∥∥
∑

k∈Zd

f

(
k

n

)
· ψ

(
k

n

)
eiky − σn

∥∥∥∥∥∥

p

p

= nd(1−p)‖AnB
−1
n PΨn − σn‖p

p ≤ 2nd(1−p)E0(AnB−1
n PΨn)p

p ≤ c .

Thus we have proved that the sequence {Fn(x)}+∞
n=1 satisfies all conditions of

Fatou’s lemma. Hence the integral of its limit can be estimated by the same
constant, that is, f̂ψ ∈ Lp(Rd). On the basis of Theorem 3.1 we obtain

d
d+(m−2β)

< p.

Step 4. In the case m = 2β, (1.1) fails for p = +∞.

Let us assume that (1.1) is valid for p = +∞. For t(x) =
∑

k∈Zd

cke
ikx ∈ Tn

we put τ(x) = B−1(t(x)− c0). From (1.1) for τ(x) we get

‖AB−1(t(x)− c0)‖∞ ≤ c · ‖t(x)− c0‖∞ . (4.12)

Noticing that t(x) − c0 = Pt(x) and ‖t(x) − c0‖∞ ≤ 2‖t‖∞ , we obtain from
(4.12) that

‖Mn(f)t‖∞ ≤ c‖t‖∞ , t ∈ Tn, n ∈ N, (4.13)

where Mn(f) ≡ AnB−1
n P−1 ≡ AB−1P .

Next we shall use the principle of duality. For a function ϕ(x) ∈ X d that is
equal to 1 on D1 and to 0 outside of D2 we consider the polynomial

Φn(x) =
∑

k∈Zd

ϕ

(
k

n

)
eikx ∈ T2n .

For g ∈ L∞ we have

Mn(ϕ)g ≡ ∑

k∈Zd

ϕ

(
k

n

)
g∧(k)eikx = (2π)−d ·

∫

Td

g(x + h)Φn(h)dh ,

where

g∧(k) = (2π)−d ·
∫

Td

g(x)e−ikxdx, k ∈ Zd ,

and by virtue of (4.5)

‖Mn(ϕ)g‖∞ ≤ (2π)−d · ‖g‖∞ · ‖Φn‖1 ≤ c′ · ‖g‖∞ , (4.14)

where c′ does not depend on g and n.
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Noticing that inequality (4.13) being valid for f is also valid for f, we get
by (4.14)

‖Mn(f)Ψn‖1 = sup
‖g‖∞≤1

|(Mn(f)Ψn, g)|

= (2π)d sup
‖g‖∞≤1

∣∣∣∣∣∣
∑

k∈Zd

f

(
k

n

)
ψ

(
k

n

)
g∧(k)

∣∣∣∣∣∣

= (2π)d sup
‖g‖∞≤1

∣∣∣∣∣∣
∑

k∈Zd

ψ

(
k

n

)
f

(
k

n

)
ϕ

(
k

n

)
g∧(k)

∣∣∣∣∣∣
= sup

‖g‖∞≤1
|(Ψn, Mn(f)(Mn(ϕ)g))|

≤ ‖Ψn‖1 · sup
‖g‖∞≤1

‖Mn(f)(Mn(ϕ)g)‖∞ ≤ c. (4.15)

We put in (4.10) σn = 0, p = 1. Then we obtain from (4.15)

∫

Rd

Fn(x)dx = n−d
∫

[−πn,πn]d

∣∣∣∣∣∣
∑

k∈Zd

f

(
k

n

)
· ψ

(
k

n

)
eik x

n

∣∣∣∣∣∣
dx

=

∥∥∥∥∥∥
∑

k∈Zd

f

(
k

n

)
· ψ

(
k

n

)
eiky

∥∥∥∥∥∥

p

p

= ‖Mn(f)Ψn‖1 ≤ c .

Thus, by virtue of Fatou lemma, f̂ψ ∈ L1(Rd). Since f is homogeneous of order
0, we obtain a contradiction to Theorem 3.1.

The second statement of Theorem 2.1 concerning the case β = 0 is a direct
consequence of the classical Bernstein inequality.

The proof is complete.

5. Some Estimates for the Fourier Transform

Mainly, the proof of Theorem 2.1 was based on Theorem 3.1. In this Section
we give one of its further possible applications that concerns mapping properties
of the Fourier transform. We consider the Besov spaces Bs

2;p, s ∈ R, 0 < p ≤
+∞, that can be defined as

Bs
2;p =





g ∈ S ′ :




+∞∑

j=0

2spj · ‖ĝ‖p
L2(Kj)




1
p





, p < +∞;

Bs
2;∞ =

{
g ∈ S ′ : sup

j=0,1,...
2sj · ‖ĝ‖L2(Kj)

}
, p = +∞ ,

where K0 = {x ∈ Rd : |x| ≤ 1}; Kj = {x ∈ Rd : 2j−1 ≤ |x| ≤ 2j}, j ∈ N. The
following estimate is known (see [6, pp. 9-11]; [8, p. 55]).
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Theorem. Let α ≥ 0, 0 < p ≤ 1, σ ≡ σ(d; p; α) = α + d
(

1
p
− 1

2

)
. Then

‖(1 + |x|)α · ĝ‖p ≤ c · ‖g|Bσ
2;p‖ , g ∈ Bα

2;p,

where the positive constant c does not depend on g.

We will show that the order of smoothness σ is sharp. More precisely, the
following theorem holds.

Theorem 5.1. Let α ≥ 0, 0 < p ≤ 1. For each s < σ and for each 0 <
q ≤ +∞ there exists a function g ∈ Bs

2;q, such that the function (1+|x|)α ·ĝ(x)
does not belong to Lp.

Proof. We consider a function f = Pm(ξ) · |ξ|−2β such that a ≡ m − 2β =

α + d
(

1
p
− 1

)
. We put g = fψ, where ψ ∈ X d. By (3.7) we obtain

‖(1 + |x|)α · ĝ‖p
p ≥ c ·

+∞∫

ρ

rαp · r−(d+a)p · rd−1dr =

+∞∫

ρ

r−1 = +∞.

Since d + a = α + d
p
, we get for q < +∞

‖g|Bs
2;q‖q = c ·


1 +

+∞∑

j=1

2sqj ·



2j∫

2j−1

r−2(d+a) · rd−1dr




q
2




≤ c′ ·

1 +

+∞∑

j=1

2qj(s+ d
2
−(d+a))


 ≤ c′′ ·

+∞∑

j=0

2qj(s−σ) < +∞.

The case q = +∞ follows from the embedding Bs
2,q ⊂ Bs

2,∞.
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