
Georgian Mathematical Journal
Volume 8 (2001), Number 3, 553–570

CONVOLUTIONAL CODES AND FREQUENCY RESPONSES

V. LOMADZE

Abstract. Frequency responses are introduced as objects that are much
finer than transfer functions, and their investigation is carried out via con-
volutional codes. In particular, a canonical one-to-one correspondence is es-
tablished between frequency responses and equivalence classes of AR-models.
These new objects are important because the study of linear dynamical sys-
tems can to a great extent be reduced to the study of them.
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1. Introduction

Throughout the paper k will be an arbitrary field, s an indeterminate, O the
ring of proper rational functions over k. We adopt Willems’ [7] point of view
that makes no distinction between inputs and outputs, and q will stand for the
signal number.

By a transfer function we understand a k(s)-linear subspace in k(s)q (i.e.,
exactly what Forney [1] calls a convolutional code.) Frequency responses are
defined as k-linear subspaces in k(s)q satisfying certain natural conditions. One
condition is a finiteness condition according to which a frequency response must
contain a transfer function and have finite dimension relative to it; other condi-
tions require a frequency response to be invariant under taking the polynomial
and strictly proper parts, and the forward and backward shift operators. There
is a canonical nondegenerate symmetric k-bilinear form on k(s)q, which is ob-
tained by composing the standard k(s)-bilinear form with the residue map at
infinity. It is easily seen that transfer functions are self-dual with respect to
this form. Based on this simple fact, we show (see Theorem 1 and Theorem
2) that frequency responses are connected via a duality relation with convo-
lutional codes. It is almost obvious that convolutional codes are in a bijective
correspondence with equivalence classes of convolutional encoders. We therefore
obtain that frequency responses correspond bijectively to equivalence classes of
AR-models, which represents the main result of the paper.

The system-theoretic significance of the concept of a frequency response will
become clear in [5]. It will be shown in that follow-up paper that knowledge
of frequency responses is equivalent to that of linear dynamical systems. It
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does not matter that linear dynamical systems are discrete-time or continuous-
time. This emphasizes once more that the theory of linear dynamical systems
is essentially algebraic in nature.

It should be noted that we treat here the general singular case; the classical
regular case is derived easily from it. If the reader is interested in this latter case
only, he should start with the bilinear form k[s]q × s−1Oq → k. An advantage
in considering general frequency responses rather than “classical” frequency
responses (as we call them) lies in the fact that the just mentioned bilinear
form is not so easy to treat. Next, general frequency responses are related with
general linear dynamical systems. And we know that linear dynamical systems
having singularity also deserve to be studied.

The reader is referred to Willems [7] for linear systems, Forney [1] for convo-
lutional codes, and Rosenthal et al. [6] for both of them.

2. Some Preliminaries

There are two important functions on k(s): ord∞ and Res∞. Given a rational
function f , ord∞(f) is the least integer n such that snf ∈ O, and Res∞(f) is
the coefficient at s−1 in the representation of f as a power series in s−1.

For each r ≥ 1, one has a canonical k-bilinear form

< −,− >: k(s)r × k(s)r → k, (1)

which is defined by the formula

< f, g >= Res∞(f trg).

(Here and below “tr” stands for “transpose”.) Clearly, this form is symmetric,
and one can easily check that it is nondegenerate.

Lemma 1. We have

(k[s]r)⊥ = k[s]r and (s−1Or)⊥ = s−1Or.

Proof. Obvious.

For each rational function f , set

π−(f) = polynomial part of f and π+(f) = strictly proper part of f.

Lemma 2. For all f, g ∈ k(s)r,

< π−f, g >=< f, π+(g) > .

Proof. Obvious.

Lemma 3. Let X1 and X2 be k-linear subspaces in k(s)r. Then

(X1 + X2)
⊥ = X⊥

1 ∩X⊥
2 .

Proof. Obvious.

Remark. The equality (X1 ∩X2)
⊥ = X⊥

1 + X⊥
2 is not always true (and this

causes some problems). In general, we have only “⊇”.
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Lemma 4. Let X and Y be k-linear subspaces in k(s)r such that X ⊆ Y . If
X⊥⊥ = X, then the canonical bilinear form

Y/X ×X⊥/Y ⊥ → k

is nondegenerate.

Proof. This is obviously nondegenerate from the right. The hypothesis implies
that this is nondegenerate from the left as well.

Lemma 5. Let l, m ≥ 1 and let A be a rational matrix of size l ×m. If X
is a k-linear subspace in k(s)l, then

(AtrX)⊥ = A−1(X⊥).

Proof. For all f ∈ k(s)l and g ∈ k(s)m,

< Atrf, g >=< f, Ag >,

and the lemma follows.

Lemma 6. If L is a k[s]-submodule in k(s)r, then so is L⊥. Likewise, if M
is an O-submodule in k(s)r, then so is L⊥.

Proof. Left to the reader. (When L, M are finitely generated, the proof is
immediate by the previous lemma and Lemma 1.)

The following simple lemma will be very helpful in the sequel.

Lemma 7. If V is a k(s)-linear subspace in k(s)r, then so is V ⊥ and V ⊥⊥=V.

Proof. One can check easily that

V ⊥ = {g | f trg = 0 for all f ∈ V };
whence follows the lemma.

Given k-linear spaces X and Y such that X ⊆ Y , we write [Y : X] to denote
the dimension of the quotient space Y/X.

Lemma 8. Let X be a k-linear subspace in k(s)r.
a) There exists at most one k(s)-linear subspace V in k(s)r such that X ⊆ V

and [X : V ] < +∞.
b) There exists at most one k(s)-linear subspace V in k(s)r such that V ⊆ X

and [V : X] < +∞.

Proof. Assume that V1 and V2 are two k(s)-linear subspaces satisfying the de-
sired property. Then V1 + V2 also has the same property, and clearly

[(V1 + V2) : V1] < +∞ and [(V1 + V2) : V2] < +∞.

It follows that V1 = V1 + V2 and V2 = V1 + V2; whence V1 = V2.

Given a polynomial (resp. a proper) matrix A, we say that A is left unimod-
ular (resp. left biproper) if BA = I for some polynomial (resp. proper) matrix
B.
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Lemma 9.
a) Let L be a submodule in k[s]r. Then the following are equivalent: 1) k[s]r/L

is torsion free; 2) L = E ∩ k[s]r for some k(s)-linear subspace E ⊆ k(s)r;
3) L = Pk[s]m for some m ≥ 0 and left unimodular r ×m matrix P .

b) Let M be a submodule in Or. Then the following are equivalent: 1) Or/M
is torsion free; 2) M = E ∩ Or for some k(s)-linear subspace E ⊆ k(s)r;
3) M = QOm for some m ≥ 0 and left biproper r ×m matrix Q.

Proof. The assertion a) is fairly well-known. We give a sketch proof for the
assertion b).

Let E denote the k(s)-submodule of k(s)r generated by M (that is, k(s)M).
Then, k(s)r/E is the fraction space of Or/M , and hence the latter is torsion
free if and only if the canonical map Or/M → k(s)r/E is injective. Since the
kernel of this map is equal to (Or ∩ E)/M , we obtain b1) ⇐⇒ b2). Further,
both b1) and b3) are equivalent to saying that Or ' M ⊕Or/M , and hence we
have b1) ⇐⇒ b3).

Concluding the section, define k-linear operators τ : k[s] → k[s] and σ : O →
O, the forward and backward shifts, respectively by

τ(a0s
n+· · ·+an) = a0s

n−1+· · ·+an−1 and σ(b0+b1s
−1+. . . ) = b1+b2s

−1+· · · .

3. Convolutional Encoders and AR-Models

We begin by recalling some basic definitions and facts concerning nonsingular
(square) rational matrices as given in [3].

The cohomology spaces of a nonsingular rational matrix D are defined by

H0(D) = k[s]r ∩DOr and H1(D) = k(s)r/(k[s]r + DOr),

where r denotes the size of D. The Chern number is defined by the formula
ch(D) = − ord∞(det D), and the dual is defined to be D∗ = (D−1)tr. Two
nonsingular rational matrices D1 and D2 are called equivalent if there exists a
unimodular matrix U such that D−1

2 UD1 is biproper. According to the Wiener–
Hopf theorem (which is the most significant fact about rational matrices), if D is
a nonsingular rational matrix of size r, then there exist integers n1, . . . , nr such
that D is equivalent to the diagonal matrix with sn1 , . . . , snr on the diagonal.
The integers n1, . . . , nr are uniquely determined up to permutation; they are
called the Wiener–Hopf indices.

Lemma 10 (Serre’s formulas). Let n be an integer.
a) If n ≥ 0, then the canonical linear map kn+1 → H0(sn) given by

(a0, . . . , an) 7→ a0s
n + · · ·+ an

is bijective; if n < 0, then H0(sn) = 0.
b) If n ≥ 0, then the canonical linear map kn+1 → H1(s−n−2) given by

(b0, . . . , bn) → (b0s
−1 + · · ·+ bns−n−1) mod(k[s] + s−n−2O)

is bijective; if n < 0, then H1(s−n−2) = 0.
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Lemma 11 (Finiteness theorem). Cohomology spaces have finite dimen-
sion.

Lemma 12 (Riemann–Roch theorem). If D is a nonsingular rational
matrix, then

dim H0(s−1D)− dim H1(s−1D) = ch(D).

Lemma 13 (Serre’s duality theorem). If D is a nonsingular rational
matrix of size r, then the canonical pairing (1) induces a nondegenerate pairing

H0(s−1D)×H1(s−1D∗) → k.

Lemma 14.
a) If A is a nonsingular rational matrix, then its Wiener–Hopf indices are

nonpositive if and only if there exists a full column rank rational matrix F such
that FA is proper.

b) If B is a nonsingular rational matrix, then its Wiener–Hopf indices are
nonnegative if and only if there exists a full row rank rational matrix G such
that B−1G is proper.

Two nonsingular rational matrices are said to be congruent if they are con-
nected via right multiplication by a biproper matrix. We define a linear bundle
as a congruence class of nonsingular rational matrices. The rank of a linear
bundle is the size of any its representative. The cohomology spaces, the Chern
number, the Wiener–Hopf indices, and the dual of a linear bundle are defined
obviously.

As noted in Introduction, by a transfer function we mean any k(s)-linear
subspace in k(s)q.

A convolutional encoder is a pair (α, F ), where α is a linear bundle and F
a full column rank polynomial matrix, with q rows, such that FA is proper
for any representative A of α. The rank of α is called the input number, the
number − ch(α) the complexity, the space H1(s−1α) the state space. The space
Im F = Fk(s)m, where m is the input number, is called the transfer function.
By Lemma 14a), the Wiener–Hopf indices of α must be nonpositive. These
indices, taken with minus, are called the constraint lengths. By Serre’s formulas
and the Riemann–Roch theorem, their sum is equal to the complexity. Two
convolutional encoders (α1, F1) and (α2, F2) are said to be equivalent if there
exists a unimodular matrix U such that A−1

1 UA2, where A1 ∈ α1 and A2 ∈ α2,
is biproper and F2 = F1U .

An AR-model is a pair (β,G), where β is a linear bundle and G a full row
rank polynomial matrix, with q columns, such that B−1G is proper for any
representative B of β. The rank of β is called the output number, the number
ch(β) the McMillan degree, the space H0(s−1β) the state space. The space
Ker G = G−1{0} is called the transfer function. The Wiener–Hopf indices,
which are nonnegative by Lemma 14b), are called the lag indices. By Serre’s
formulas and the Riemann–Roch theorem, their sum is equal to the McMillan
degree. Two AR-models (β1, G1) and (β2, G2) are said to be equivalent if there
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exists a unimodular matrix U such that B−1
2 UB1, where B1 ∈ β1 and B2 ∈ β2,

is biproper and G2 = UG1.
There is an evident one-to-one correspondence between convolutional en-

coders and AR-models, which is given by

(α, F ) 7→ (α∗, F tr).

A convolutional encoder (α, F ) is said to be controllable if F is left unimodular
and FA, where A is any representative of α, is left biproper. An AR-model
(β, G) is said to be controllable if G is right unimodular and B−1G, where B is
any representative of β, is right biproper. Certainly, controllable convolutional
encoders and controllable AR-models correspond to each other.

Let (α, F ) be a controllable convolutional encoder with input number m, and
(β, G) a controllable AR-model with output number p. Let A ∈ α and B ∈ β.
We say that (α, F ) and (β, G) form an exact pair if the sequences

0 → k[s]m
F→ k[s]q

G→ k[s]p → 0 and 0 → Om FA→ Oq B−1G→ Op → 0 (2)

are exact. We then say also that (α, F ) is a kernel description of (β, G) and
(β, G) a cokernel description of (α, F ).

Lemma 15. Let (α, F ) be an controllable convolutional encoder and (β,G)
a controllable AR-model, and suppose that they form an exact pair. Then, for
each integer n, there is a “long” cohomological exact sequence

0 → H0(snα) → H0(snIq) → H0(snβ) → H1(snα)

→ H1(snIq) → H1(snβ) → 0.

Proof. Left to the reader.

Corollary 1. There is a canonical isomorphism

H1(s−1α) ' H0(s−1β),

and hence the complexity of (α, F ) and the McMillan degree of (β, G) are equal
to each other.

Lemma 16.
a) Every controllable convolutional encoder possesses a cokernel description,

and the latter is determined uniquely up to equivalence.
b) Every controllable AR-model possesses a kernel description, and the latter

is determined uniquely up to equivalence.

Proof. Left to the reader.

Proposition 1. Let (α, F ) be a convolutional encoder with complexity d, and
let n ≥ max{d− 1, 0}. Then (α, F ) is controllable if and only if the linear map

H1(s−n−2α) → H1(s−n−2Iq)

is injective.

Proof.
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Proof. Follows from the following proposition by Serre’s duality theorem.

Proposition 2. Let (β, G) be an AR-model with McMillan degree d, and let
n ≥ max{d− 1, 0}. Then (β, G) is controllable if and only if the linear map

H0(snIq) → H0(snβ)

is surjective.

Proof. “If”. Note that if l ≥ 0, then H0(sl+1) = H0(sl) + sH0(sl). From this,
using the Wiener–Hopf theorem, we obtain that

∀i ≥ 0, H0(sl+1β) = H0(slβ) + sH0(slβ).

It follows by induction that

H0(siIq) → H0(siβ)

is surjective for each i ≥ n. Using now Lemma 4 in [3], we see that the homo-
morphisms

k[s]q → k[s]p and Oq → BOp

are surjective.
“Only if”. Let (α, F ) be a kernel description. By Lemma 15, we have an

exact sequence
H0(snIq) → H0(snβ) → H1(snα).

We know (see Lemma 14(a)) that the Wiener–Hopf indices of α are nonpositive.
On the other hand, their sum is equal to ch(α) = − ch(β). Hence these indices
are greater than or equal to −d. We see that every index of snα is greater than
or equal to −1, and therefore its one-dimensional cohomologies are trivial.

4. Convolutional Codes

A convolutional code is a k-linear subspace C in k(s)q satisfying the following
conditions:

(CC1) There is a transfer function E such that C ⊆ E and [E : C] < +∞.
(CC2) C is invariant with respect to π− and π+;
(CC3) C ∩ k[s]q and sC ∩Oq are submodules in k[s]q and Oq, respectively.

By Lemma 8(a) , the “E” is uniquely determined, and we call it the transfer
function of C. The number [E : C] is called the complexity. By the property
(CC2), we have

C = (C ∩ k[s]q) + (C ∩ s−1Oq).

Remarks. 1) As remarked in Introduction, Forney [1] defines a convolutional
code as a k(s)-linear subspace of k(s)q. In Rosenthal et al. [6] a convolutional
code is defined as a k[s]-submodule of k[s]q. The relationships of these defini-
tions with the definition above are explained respectively in Proposition 6 and
Lemma 22.

2) Our definition has been motivated by the purpose to make obvious the
connection with the definition of a frequency response given below, and it is
equivalent to that provided in [4]. In the cited paper a convolutional code is
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defined as a pair (L,M), where L and M are submodules in k[s]q and Oq,
respectively, such that k(s)L = k(s)M . That the two definitions are equivalent
follows from the next lemma. The relation is established as follows. If (L, M)
is a convolutional code in the sense of [4], then L + s−1M is a convolutional
code in the sense of the present paper. Conversely, if C is a convolutional code
in the sense of this paper, then (C ∩ k[s]q, sC ∩ Oq) is a convolutional code in
the sense of [4].

Lemma 17. If L and M are submodules in k[s]q and Oq, respectively, then
k(s)L = k(s)M if and only if there exists a transfer function E such that

L,M ⊆ E and [E : (L + s−1M)] < +∞.

Proof. “If”. The hypothesis implies that the modules L and M have the same
rank, say, m. There exist a polynomial matrix F and a proper rational matrix
Q, both of size q ×m, such that

L = Fk[s]m and M = QOm.

Then Fk(s)m = Qk(s)m, and consequently Q = A−1F for some nonsingular
rational matrix A. Putting E = k(s)M , we have a bijective linear map F :
k(s)m → E. This induces an isomorphism

H0(s−1A) ' E/(L + s−1M).

It remains now to apply the Finiteness theorem.
“Only if”. It is clear that k(s)L, k(s)M ⊆ E. We claim that in fact we

have equalities. Indeed, assume that, say, k(s)L 6= E. We then have an exact
sequence

0 → (M + k(s)L)/k(s)L → E/k(s)L → E/(k(s)L + M) → 0.

Clearly, (M + k(s)L)/k(s)L is a finitely generated O-submodule in E/k(s)L
and therefore has infinite codimension (as a k-linear subspace). On the other
hand, the hypothesis implies that E/(k(s)L + M) has finite dimension. A
contradiction.

Let (α, F ) be a convolutional encoder, with input number m, and let A be a
representative of α. We define the convolutional code of (α, F ) by the formula

CC(α, F ) = Fk[s]m + s−1FAOm.

It is easily seen that this indeed is a convolutional code. Its transfer function
certanly is equal to Fk(s)m.

Notice that two equivalent convolutional encoders generate the same convo-
lutional code.

Proposition 3. The mapping (α, F ) 7→ CC(α, F ) induces a one-to-one cor-
respondence between the equivalence classes of convolutional encoders and the
convolutional codes.
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Proof. Suppose that (α1, F1) and (α2, F2) generate the same code, i.e.,

F1k[s]m + s−1F1A1O
m = F2k[s]m + s−1F2A2O

m.

We clearly have

F1k[s]m = F2k[s]m and F1A1O
m = F2A2O

m.

It follows that

F2 = F1U and F2A2 = F1A1V

for some unimodular matrix U and biproper matrix V . It is easily seen that
V = A−1

1 UA2, and so the encoders are equivalent.

The rest follows from the proof of the “if” part of Lemma 17. Indeed, suppose
that C is a convolutional code. Put L = C ∩ k[s]q and M = sC ∩Oq, and let A
and F be as in that proof. Then (α, F ), where α is the congruence class of A,
generates C.

Lemma 18. Let C be a convolutional code with transfer function E. Then

[C⊥ : E⊥] = [E : C].

Proof. Let m be the input number and (α, F ) a convolutional encoder generating
C.

Choose any representative A of α, and put G = F tr. Applying Lemmas 3
and 5, we obtain

C⊥ = (Fk[s]m + s−1FAOp)⊥ = (Fk[s]m)⊥ ∩ (s−1FAOm)⊥

= G−1k[s]m ∩G−1(s−1A∗Om) = G−1H0(s−1A∗).

Using again Lemma 5, we have

E⊥ = (Fk(s)m)⊥ = G−1{0}.

Since G has a full row rank, it induces a surjective linear map of G−1H0(s−1A∗)
onto H0(s−1A∗). The kernel is equal to G−1{0}, and consequently we have a
canonical isomorphism

C⊥/E⊥ ' H0(s−1A∗).

There is also a canonical isomorphism

H1(s−1A) ' E/C,

which is determined by the bijective linear map k(s)m → E. It remains now to
apply Serre’s duality theorem.
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5. Frequency Responses

A frequency response is a linear subspace R in k(s)q satisfying the following
conditions:

(FR1) There is a transfer function T such that T ⊆ R and [R : T ] < +∞;
(FR2) R is invariant with respect to π− and π+;
(FR3) R∩k[s]q and sR∩Oq are invariant with respect to τ and σ, respectively.

By Lemma 8(b), the “T” is determined uniquely, and we call it the transfer
function of R. The number [R : T ] is called the McMillan degree. By the
property (FR2), we have

R = (R ∩ k[s]q) + (R ∩ s−1Oq).

Proposition 4. Let (β,G) be an AR-model with state space X. Then
G−1(X) is a frequency response.

Proof. Put R = G−1X, and let p be the output number and B a representative
of β.

The space R satisfies (FR1). Indeed, if T = G−1{0} is the transfer function
of our AR-model, then we have a short exact sequence

0 → T → R → X → 0,

and this implies that [R : T ] < +∞.
Take f ∈ k[s]q and g ∈ s−1Oq. We have Gf ∈ k[s]p and Gg ∈ s−1BOp.

Therefore G(f + g) ∈ X if and only if Gf ∈ X and Gg ∈ X. Hence R satisfies
(FR2).

Let f ∈ R ∩ k[s]q, and let a be the free coefficient of f . We then have
τf = s−1f − as−1. Since Gf ∈ s−1BOp and Ga ∈ BOp, it follows that G(τf) ∈
s−1BOp. On the other hand, G(τf) ∈ k[s]p because τf ∈ k[s]q. Consequently
G(τf) ∈ X; whence τf ∈ R ∩ k[s]q. Let now g ∈ sR ∩Oq, and let b be the free
coefficient of g. We then have σg = sg − sb. Since Gg ∈ sk[s]p and Gb ∈ k[s]p,
it follows that G(σg) ∈ sk[s]p. On the other hand, G(σg) ∈ BOp because
σg ∈ Oq. Consequently G(σg) ∈ sX; whence σg ∈ sR ∩ Oq. We see that R
satisfies (FR3).

We shall write FR(β, G) to denote the frequency response associated to an
AR-model (β, G).

Proposition 5. If (β, G) is an AR-model, then

FR(β,G) = CC(β∗, Gtr)⊥.

Proof. Let p be the output number of (β,G) and B a representative of β.
Applying Lemmas 1, 3 and 5, we have

FR(β,G) = G−1(k[s]p ∩ s−1BOp) = G−1k[s]p ∩ s−1(B−1G)−1Op

= (Gtrk[s]p)⊥ ∩ (s−1(B−1G)trOp)⊥ = (Gtrk[s]p + s−1(B−1G)trOp)⊥

= CC(β∗, Gtr)⊥.
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Theorem 1.
a) If C is a convolutional code, then C⊥ is a frequency response.
b) If R is a frequency response, then R⊥ is a convolutional code.

Proof. a) Follows from the previous two propositions and the fact that C is
representable as the convolutional code of some convolutional encoder.

b) By Lemmas 7 and 4, we have a nondegenerate bilinear form

R/T × T⊥/R⊥ → k. (3)

This implies that [T⊥ : R⊥] < +∞, and thus R⊥ satisfies (CC1).
Using Lemmas 1 and 3, we can easily see that R⊥ satisfies the property (CC2).
Let us show that R + k[s]q and s−1R + s−2Oq are modules over k[s] and O,

respectively. Suppose first w ∈ R + k[s]q. By (FR2), w = f + s−1g, where
f ∈ k[s]q and g ∈ sR ∩ Oq. Let g = b0 + b1s

−1 + . . . . Then, for each i ≥ 0, we
have

siw = sif + si−1g = (sif + b0s
i−1 + · · ·+ bi−1) + σig ∈ R + k[s]q.

It follows that R + k[s]q is a k[s]-submodule. Now, suppose that w ∈ s−1R +
s−2Oq. By (FR2), w = s−1f + s−2g, where f ∈ R ∩ k[s]q and g ∈ Oq. Let
f = a0s

n + · · ·+ an. Then, for each n ≥ i ≥ 0, we have

s−iw = s−i−1f + s−i−2g

= s−1(τ if + an−i+1s
−1 + · · ·+ ans−i) + s−i−2g ∈ s−1R + s−2Oq.

Further, hw ∈ s−2Oq for each h ∈ s−n−1Oq. It follows that s−1R + s−2Oq is an
O-module. Using Lemmas 1 and 3, we see that

R⊥ ∩ k[s]q = (R + k[s]q)⊥ and sR⊥ ∩Oq = (s−1R + s−2Oq)⊥

are submodules in k[s]q and Oq, respectively. Thus R⊥ has the property
(CC3).

Theorem 2.
a) If C is a convolutional code, then C⊥⊥ = C.
b) If R is a frequency response, then R⊥⊥ = R.

Proof. The proofs for both statements are similar, and we restrict ourselves to
showing, say, b).

Let T be the transfer function of R. Put C = R⊥ and E = T⊥. From (3)
and Lemma 18 (and Lemma 7) we obtain

[R : T ] = [E : C] = [C⊥ : T ].

Further, it is obvious that R ⊆ C⊥. Hence there is a canonical exact sequence

0 → R/T → C⊥/T → C⊥/R → 0.

By the dimension argument, the second linear map in this sequence is bijective.
So C⊥/R = 0, and the theorem follows.

We can now state and prove our main result.
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Theorem 3. The mapping (β,G) 7→ FR(β, G) induces a one-to-one cor-
respondence between the equivalence classes of AR-models and the frequency
responses.

Proof. Follows immediately from Proposition 3, and Theorems 1 and 2.

6. Controllability

A convolutional code C with transfer function E is called controllable if

E ∩ k[s]q ⊆ C and E ∩ s−1Oq ⊆ C.

Remark. In [4] we called the property above the observability property (we
have done this following [7]). In view of Proposition 8, we feel that the term
“controllable” is more appropriate.

Proposition 6. If E is a transfer function, then (E ∩ k[s]q) + (E ∩ s−1Oq)
is a controllable convolutional code. The map

E 7→ (E ∩ k[s]q) + (E ∩ s−1Oq)

establishes a one-to-one correspondence between transfer functions and control-
lable convolutional codes.

Proof. Let E be a transfer function. It is clear that E ∩ k[s]q and sE ∩ Oq are
submodules in k[s]q and Oq, respectively. The fraction spaces of these modules
clearly coincide with E. So (E ∩ k[s]q) + (E ∩ s−1Oq) is a convolutional code
whose transfer function is E. It immediately follows from the definition that
this code is controllable.

Let now C be a controllable convolutional code with transfer function E. By
definition,

C ∩ k[s]q = E ∩ k[s]q and C ∩ s−1Oq = E ∩ s−1Oq.

Therefore C = (E ∩ k[s]q) + (E ∩ s−1Oq).

Proposition 7. Let (α, F ) be a convolutional encoder and C its code. Then
C is controllable if and only if so is (α, F ).

Proof. Follows from Lemma 9.

A frequency response R with transfer function T is called controllable if

R ⊆ T + k[s]q and R ⊆ T + s−1Oq.

Lemma 19. Let E be a transfer function. Then

(E ∩ k[s]q)⊥ = E⊥ + k[s]q and (E ∩ s−1Oq)⊥ = E⊥ + s−1Oq.
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Proof. Let m denote the dimension of E.
There exist a right unimodular polynomial matrix P such that E ∩ k[s]q =

P trk[s]m and a right biproper matrix Q such that E ∩Oq = QtrOm. We clearly
have Pk[s]q = k[s]m and QOq = Om. Consequently,

P−1(k[s]m) = P−1{0}+ k[s]q and Q−1(s−1Om) = Q−1{0}+ s−1Oq.

Lemma 5 completes the proof.

Proposition 8. Let R be a frequency response, and let C be the correspond-
ing convolutional code. Then R is controllable if and only if C is controllable.

Proof. The “if” part follows from the previous lemma. The “only if” part is
obvious by Lemma 3.

Proposition 9. If T is a transfer function, then (T + k[s]q) ∩ (T + s−1Oq)
is a controllable frequency response. The map

T 7→ (T + k[s]q) ∩ (T + s−1Oq)

establishes a one-to-one correspondence between transfer functions and control-
lable frequency responses.

Proof. Follows from Lemma 3 and the previous two propositions.

Remark. Transfer functions and controllable frequency responses are not the
same objects. The equality T = (T + k[s]q) ∩ (T + s−1Oq) holds if and only if
T is generated by a scalar matrix.

Proposition 10. Let (β, G) be an AR-model and R its frequency response.
Then R is controllable if and only if so is (β,G).

Proof. Follows from Propositions 7 and 8.

We need the following

Lemma 20. Let D be a nonsingular rational r×r matrix having nonpositive
Wiener–Hopf indices. Let d be the Chern number of D−1, and let n ≥ d. Then,
for all f, g ∈ k(s)r, there exists h ∈ k(s)r such that

snh ≡ f mod k[s]m and h ≡ g mod s−1DOm.

Proof. If the assertion is true for D, then it is true for UD as well, where U
is a unimodular matrix. Therefore, by the Wiener–Hopf factorization theorem,
there will be no loss of generality if we assume that D = diag(s−d1 , . . . , s−dr).
The proof can be obviously reduced to the case where r = 1, which is easy.
Indeed, let

f = (a1s
−1 +a2s

−2 + · · · ) mod k[s] and g = (b0s
−d + b1s

−d+1 + · · · ) mod s−d−1O,

where ai and bi are constants. Clearly,

h = s−n(a1s
−1 + a2s

−2 + · · · ) + (b0s
−d + b1s

−d+1 + · · · )
has the required property.
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We now present an interpretation of controllability that is analogous to that
of Willems [7].

Theorem 4. Let R be a frequency response with transfer function T and
McMillan degree d, and let n ≥ d. Then R is controllable if and only if, for all
w− ∈ R ∩ k[s]q and w+ ∈ R ∩ s−1Oq, there exists w ∈ T such that

π−(w) = w− and π+(snw) = w+.

Proof. The “if” part is obvious.
To prove the “only if” part consider an AR-model (β,G) generating R. Let

(α, F ) be its kernel description. We remark that the complexity of (α, F ) is
equal to the McMillan degree of (β,G) (see Corollary 1). Take w− ∈ R ∩ k[s]q

and w+ ∈ R∩s−1Oq. The exact sequences (2) imply that there exist f+ ∈ s−1Oq

and f− ∈ k[s]q such that Gf+ = Gw− and Gf− = Gw+. We have w− − f+ ∈ T
and w+ − f− ∈ T . Therefore we can choose u1, u2 ∈ k(s)m such that Fu1 =
w− − f+, Fu2 = w+ − f−. By the previous lemma, there exists u ∈ k(s)m

satisfying the condition

u ≡ u1 mod s−1AOm and snu ≡ u2 mod k[s]m.

(Here A is a representative of α.) Set w = Fu. Using again (2), we have

w ≡ (w− − f+) mod s−1Oq and snw ≡ (w+ − f−) mod k[s]q.

It follows that w does the job.

7. “Classical” Case

A convolutional encoder (α, F ) is regular if FA, where A is any representative
of α, is left biproper.

Lemma 21. There is a canonical one-to-one correspondence between regular
convolutional encoders and full column rank polynomial matrices which is given
by

(α, F ) → F.

Proof. Let F be a full column rank polynomial matrix of size m× q. The set

F−1Oq = {u ∈ k(s)m| Fu ∈ Oq}
obviously is an O-submodule of k(s)m. There is a canonical embedding F−1Oq→
Oq, and therefore this module must be finitely generated. We obtain that
F−1Oq = AOm for some nonsingular rational matrix A. Clearly, FA is proper
because FAOm ⊆ Oq. By construction, FAOm = Fk(s)m ∩ Oq, and therefore
FA must be left biproper (see Lemma 9b)). We conclude that our mapping is
surjective.

To show that our mapping is injective, assume that A′ is another nonsingular
rational matrix such that FA′ is left biproper. Using again Lemma 9b), we
have FA′Om = Fk(s)m ∩ Oq. This implies that FA′Om = F−1Oq, and con-
sequenly FA′Om = FAOm. It follows that A′Om = AOm, and thus A−1A′ is
biproper.
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A convolutional code C with transfer function E is said to be regular if

E ∩ s−1Oq ⊆ C.

We refer to convolutional codes as defined in Rosenthal et al. [6] as “classical”
convolutional codes. These are submodules in k[s]q.

Lemma 22. There is a canonical one-to-one correspondence between regular
convolutional codes and “classical” ones; this is given by

C 7→ C ∩ k[s]q.

Proof. We have a canonical mapping in the opposite direction. Indeed, if C ⊆
k[s]q is a “classical” convolutional code, then

C + s−1(E ∩Oq),

where E = k(s)C, is a regular convolutional code. It is easily seen that the two
mappings are inverse to each other.

Given a full column rank polynomial matrix (i.e., a “classical” convolutional
encoder) F , one defines its code by the formula

CC(F ) = Fk[s]m,

where m is the column number of F . Clearly, if (α, F ) is a regular convolutional
encoder, then

CC(F ) = CC(α, F ) ∩ k[s]q.

Proposition 3′. The mapping F 7→ CC(F ) induces a one-to-one correspon-
dence between equivalence classes of full column rank polynomial matrices and
“classical” convolutional codes.

Proof. Follows from Proposition 3 and the previous two lemmas.

Remark. Of course the proposition above can be proved directly, and of
course the direct proof is obvious.

An AR-model (β,G) is regular if B−1G, where B is any representative of β,
is right biproper.

Lemma 23. There is a canonical one-to-one correspondence between regular
AR-models and full row rank polynomial matrices which is given by

(β,G) → G.

Proof. Follows from Lemma 21 by transposition.

A frequency response R with transfer function T is said to be regular if

R ⊆ T + s−1Oq.

We call any k-linear subspace R ⊆ s−1Oq such that

[sR : M ] < +∞ for some “classical” transfer function M and σ(sR) ⊆ sR
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a “classical” frequency response. By a “classical” transfer function we mean
any submodule M ⊆ Oq that satisfies the conditions of Lemma 9b).

Lemma 24. There is a canonical one-to-one correspondence between regular
frequency responses and “classical” ones which is given by

R 7→ R ∩ s−1Oq.

Proof. Let R be a regular frequency response, and let T be its transfer function.
The canonical linear map

R ∩ s−1Oq → R/T

is surjective. Indeed, if w ∈ R, then w = w0 + g, where w0 ∈ T and g ∈ s−1Oq,
and we clearly have g ∈ R∩s−1Oq and g mod T = w mod T . Further, the kernel
of this map is equal to T ∩s−1Oq, and therefore there is a canonical isomorphism

(R ∩ s−1Oq)/(T ∩ s−1Oq) ' R/T.

It immediately follows from this that R ∩ s−1Oq is a “classical” frequency re-
sponse.

Let now R be a “classical” frequency response, and let M be the “classical”
transfer function that exists by definition. Put T = k(s)M . We claim that
T + R is a regular frequency response.

Consider the canonical linear map

R → (T + R)/T, w 7→ w mod T.

It is easily seen that this map is surjective and its kernel is equal to T ∩R. We
have

s−1M ⊆ T ∩R ⊆ T ∩ s−1Oq = s−1M,

and consequently T ∩R = s−1M . It follows that [(T + R) : T ] = [R : s−1M ].
Let n ≥ 1 and g ∈ M . If g = b0 + b1s

−1 + b2s
−2 + . . . , then

sn−1g = (b0s
n−1 + · · ·+ bn−1) + s−1(bn + bn+1s

−1 + . . . ).

Consequently,

π−(sn−1g) = sn−1g − s−1σn(g) ∈ T + R.

Now the point is that modulo s−1Oq any element of T is equal to a linear
combination of elements of the form sn−1g, with n ≥ 1 and g ∈ M . (Indeed,
because T = k(s)M , every element in T is a sum of elements of the form ag,
with a ∈ k(s) and g ∈ M . Therefore modulo s−1Oq every element in T is a
sum of elements of the form ag, with a ∈ k[s] and g ∈ M .) It follows that the
polynomial parts of elements in T belong to T + R. Automatically, the same is
true for the strictly proper parts. We conclude that T + R satisfies (FR2).

Notice that (T + R) ∩ k[s]q consists just of the polynomial parts of elements
in T . Take an arbitrary f ∈ (T + R) ∩ k[s]q, and suppose that f = π−(w),
where w ∈ T . Then

τ(f) = π−(s−1w) ∈ (T + R) ∩ k[s]q.
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Hence (T + R) ∩ k[s]q is invariant under τ . Further, it is easily seen that
(T + R) ∩ s−1Oq = R, and we conclude that T + R satisfies (FR3).

Obviously, T + R ⊆ T + s−1Oq, and the proof is completed.

Given a full row rank polynomial matrix (i.e., a “classical” AR-model) G, we
define its frequency response by the formula

FR(G) = {w ∈ s−1Oq| Gw ∈ k[s]p}.
This is exactly what Kuijper [2] calls the rational behavioral space. It is clear
that if (β,G) is a regular AR-model, then

FR(G) = FR(β, G) ∩ s−1Oq.

Theorem 3′. The mapping G 7→ FR(G) induces a one-to-one correspon-
dence between equivalence classes of full row rank polynomial matrices and “clas-
sical” frequency responses.

Proof. Follows from Theorem 3 and the previous two lemmas.

Remark. One may want to deduce the above theorem directly from Proposi-
tion 3′. For this one should consider the bilinear form k[s]q × s−1Oq → k. But
this consideration is not so easy.
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