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Abstract. This paper deals with holomorphic functions from Bergman
spaces Bp in the disk and provides the existence of deformations (varia-
tions) which do not increase the norm of functions and preserve some other
prescribed properties. Admissible variations are constructed (for even inte-
ger p ≥ 2) using special quasiconformal maps of the complex plane (in line
with a new approach to variational problems for holomorphic functions in
Banach spaces).
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1. Introduction

Quasiconformal maps have now become one of the basic tools in many fields
of mathematics and its applications. This paper promotes the development of a
new approach to solving variational problems in Banach spaces of holomorphic
functions, which recently has been outlined in [5], [6].

The methods adopted in those problems rely mainly on the integral represen-
tations of holomorphic functions by means of certain measures, which reduces
the problems to the investigation of these measures. This method often en-
counters great difficulties. Our approach is completely different. It is based
on the special kind of quasiconformal deformations of the extended complex
plane Ĉ = C ∪ {∞}, which ensure a controlled change of the norm of a given
function under variation and also preserve some other prescribed properties of
the function.

This approach was established in [5], [6] mainly for the Hardy spaces Hp

in the disk with an even integer p and applied to some well-known conjectures
concerning nonvanishing functions. The specific features of these spaces are used
there in an essential way. The present paper deals with more general Bergman
spaces Bp of holomorphic functions. Its purpose is to show the existence of
deformations (variations) which do not increase the norm of a function and
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preserve some other prescribed properties, for example, vary independent of a
suitable number of the Taylor coefficients of this function. Such requirements
are, of course, rather rigid.

Such problems naturally arise, for example, while studying nonvanishing holo-
morphic functions. These are closely connected with nonbranched holomorphic
coverings.

To preserve nonvanishing, we construct quasiconformal deformations of the
complex plane which fix the origin. This produces additional rigidity of varia-
tions, and we show how it can be resolved in the case of Bergman functions.

Recall that the Bergman space Bp, 1 < p < ∞, in the unit disk ∆ = {z =
x + iy ∈ C : |z| < 1} consists of holomorphic functions f with the finite norm

‖f‖p =
(∫∫

∆
|f(z)|pdxdy

)1/p
. Let |x| denote the Euclidean norm in Rn.

2. Main Existence Theorem

The next theorem gives a complete answer to the question on the existence of
admissible deformations with controlled distortion of the norm and coefficients
of the Bergman functions for even integers p.

Theorem 1. Let m and n be two fixed positive integers (m,n ≥ 1). For every

function f0(z) = c0
0 +

∞∑
k=j

c0
kz

k ∈ B2m∩H∞ with c0
0 6= 0 and c0

j 6= 0 (1 ≤ j < n),

which is not a polynomial of degree n1 ≤ n, there exists a number ε0 > 0 such
that for each ε ∈ (0, ε0) and any points d = (d1, dj+1, . . . , dn) ∈ Cn−j+1 and
a ∈ R satisfying the inequalities |d| ≤ ε, |a| ≤ ε, there is a quasiconformal

automorphism h of Ĉ, which is conformal at least in the disk

∆′
0 := {w : |w| < sup

∆
|f0(z)|+ 1}

and satisfies
(a) h(0) = 0;
(b) h′(0) = 1 + d1;
rom(c) h(k+1)(0) = k! dk, k = j + 1, . . . , n;
(d) ‖(h ◦ F0)

′(z)‖2m
2m − ‖F ′

0‖2m
2m = ‖h′(F0)f0‖2m

2m − ‖f0‖2m
2m = a,

where F0(z) =
z∫
0

f0(t)dt.

The map h can be chosen to have the Beltrami coefficient µh = ∂w̄h/∂wh with
‖µh‖∞ ≤ M0ε. The quantities ε0, M0 as well as the bound of the remainder in
(c) depend only on f0, m and n.

Proof. We associate with the functions f(z) =
∞∑
0

ckz
k ∈ Bp the complex Banach

space B̃p of their primitive functions

F (z) =

z∫

0

f(t)dt =
∞∑

0

ck

k + 1
zk+1, (1)
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letting
‖F‖p := ‖F‖B̃p = ‖f‖Bp .

Note that sup∆ |F (z)| ≤ sup∆ |f(z)|, so if f ∈ Bp ∩ H∞, then F ∈ B̃p ∩ H∞.
In the sequel, we use p = 2m.

Now define for the annulus

E = {w : R < |w| < R + 1},
with a fixed R ≥ sup∆ |f0(z)|+ 1, the integral operators

Tρ = − 1

π

∫∫

E

ρ(ζ)dξdη

ζ − w
, Πρ = ∂wT = − 1

π

∫∫

E

ρ(ζ)dξdη

(ζ − w)2
,

assuming ρ ∈ Lq(E), q ≥ 2, and regarding the second integral as a principal
Cauchy value.

Let us seek the required quasiconformal automorphism h = hµ of Ĉ in the
form

h(w) = w − 1

π

∫∫

E

ρ(ζ)dξdη

ζ − w
= w + Tρ(w), (2)

with the Beltrami coefficient µ = µh supported in E, i.e., with ‖µ‖∞ < κ < 1
and µ(w) = 0 on C\E. Substituting (2) into the Beltrami equation ∂w̄h = µ∂wh
(with ∂w = (1/2) (∂u − i∂v), ∂w̄ = (1/2) (∂u + i∂v), w = u + iv), one obtains

ρ = µ + µΠµ + µΠ(µΠµ) + · · · .

As is well-known, this series is convergent in Lq(E) for some q > 2; thus the
distributional derivatives ∂w̄h = ρ and ∂wh = 1 + Πρ belong to Lloc

q (C). This
implies the estimates

‖ρ‖Lq(∆r) ≤ M1(κ, r, q)‖µ‖L∞(C), ‖Πρ‖Lq(∆r) ≤ M1(κ, r, q)‖µ‖L∞(C);

‖h‖C(∆r) ≤ M1(κ, r, q)‖µ‖∞
in the disks ∆r = {w ∈ C : |w| < r} (r < ∞) and the smoothness of
quasiconformal maps as the functions of parameters: if µ(z; t) is a C1-smooth
L∞(C)-function of a real (respectively complex) parameter t, then ∂whµ(·,t) and
∂w̄hµ(·,t) are smoothly R-differentiable (respectively, C-differentiable) Lp func-
tions of t; hence, the map t 7→ hµ(·,t)(z) is C1 smooth as an element of C(∆r).
For the proof of these results, which will be exploited below, see, e.g., [8], Ch.2;
[1]; [4], Ch. 2.

Setting

〈ν, ϕ〉 = −π−1
∫∫

E

ν(ζ)ϕ(ζ)dξdη, (ν ∈ L∞(E), ϕ ∈ L1(E)),

one can rewrite (2) for |w| < R in the form

h(w) = w + Tµ(w) + ω(w) = w +
∞∑

k=0

〈µ, ϕk〉wk + ω(w) (3)
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with

ϕk(ζ) = 1/ζk+1, k = 0, 1, . . . ; ‖ω‖C(∆r) ≤ M2(κ, r)‖µ‖2
∞ (r < ∞).

Comparing (3) for w = F0(z) with the above-given conditions (a), (b) and
(c), one finds that the following relations are satisfied by the desired Beltrami
coefficient µ:

〈µ, ϕ0〉+ O(‖µ‖2
∞) = 0,

〈µ, ϕ1〉+ O(‖µ‖2
∞) = d1,

〈µ, ϕk+1〉+ O(‖µ‖2
∞) = dk, k = j, . . . , n.

(4)

On the other hand, the condition (d), together with (3), gives the equality

‖(h ◦ F0)
′(z)‖2m

2m =
∥∥∥(F0 + Tρ ◦ F0)

′(z)
∥∥∥
2m

2m

=
∫∫

∆

|f0(z) + (Tµ ◦ F0)
′(z)|2mdxdy + O(‖µ‖2

∞)

=
∫∫

∆

|f0(z)− (Πµ ◦ F0)
′(z)f0(z)|2mdxdy + O(‖µ‖2

∞)

=
∫∫

∆

[|f0(z)|2 − 2 Re[f0(z)Πµ ◦ F0(z)f0(z)]

+ |Πµ ◦ F0(z)|2|f0(z)|2
]m

dxdy + O(‖µ‖2
∞) = ‖f0‖2m

2m

+
2m

π
Re

[∫∫

E

µ(ζ)dξdη
∫∫

∆

|f0(z)|2m+1

(ζ − F0(z))2
dxdy

]
+ Om(‖µ‖2

∞).

Define

φ(ζ) = −2m
∫∫

∆

|f0(z)|2m+1

(ζ − F0(z))2
dxdy, (5)

then the previous equality takes the form

‖(h ◦ F0)
′‖2m

2m − ‖f0‖2m
2m = Re〈µ, φ〉+ Om(‖µ‖2

∞). (6)

The function φ is holomorphic in a domain D ⊂ Ĉ containing the disk ∆0, and
φ|E belongs to the span A0

2 of the system {ϕk}∞0 in L2(E). We also have

φ(ζ) 6≡ 0

in D because for large |ζ| integral (5) expands to φ(ζ) =
∞∑

k=2
bkζ

−k with

b2 = 2mπ|c0
0|2m+1 > 0.

We need a stronger fact.
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Lemma 1. Under the assumptions of Theorem 1, the function φ does not
reduce to a linear combination of the fractions ϕ1, . . . , ϕl, l ≤ n, i.e., it cannot
be of the form

φ(ζ) =
l∑

k=1

bkζ
−k, l ≤ n. (7)

Proof. We modify the arguments exploited in [5]. They rely on the real analyt-
icity of the Lp-norm.

Assuming the contrary that equality (7) holds, one obtains by (6) that any
µ ∈ L∞(E) with ‖µ‖ ≤ ε, ε → 0 and such that 〈µ, φk〉 = 0, k = 0, 1, . . . , l,
satisfies the relation

‖(h ◦ F0)
′‖2m

2m − ‖f0‖2m
2m = O(ε2). (8)

Fix an integer s > n such that c0
s 6= 0, and consider in L1(E) the span Al,s of

the functions ϕk|E, with 0 ≤ k ≤ l and k > s. Then

inf{‖ϕs − χ‖L1(E) : χ ∈ Al,s} = d > 0.

By the Hahn–Banach theorem, there exists µ0 ∈ L∞(E) such that

〈µ0, χ〉 = 0, χ ∈ Al,s; 〈µ0, ϕs〉 = 1, ‖µ0‖∞ = d.

By (2) and (3), the quasiconformal homeomorphism hαµ0 with |α| = ε now
assumes the form

hαµ0(w) = w + αws + O(ε2). (9)

After replacing the element ϕs(w) by ϕs,β(w) = 1/(w − β)s with small |β|,
we obtain the system

ϕk(w), k = 0, 1, 2, . . . , k 6= s; ϕs,β(ζ) = 1/(w − β)s,

which also constitutes a basis in A0
2, and pass to the corresponding map

hαµ0

β (w) = w + α(w − β)s + O(ε2) (10)

with the same remainder as in (9). Then

hαµ0

β ◦ F0(z) :=
∞∑

1

Cα,β
k zk =

s−2∑

1

c0
k−1

k
zk +

[
c0
s−2

s− 1
− sαβ(c0

0)
s−1 + · · ·

]
zs−1

+
[
c0
s−1

s
+ α(c0

0)
s + · · ·

]
zs + · · ·+ O(ε2

1),

where
ε1 =

√
|α|2 + |β|2.

Accordingly,

(
hαµ0

β ◦ F0

)′
(z) =

s−2∑

1

c0
k−1z

k−1 + [c0
s−2 − s(s− 1)αβ(c0

0)
s−1 + · · · ]zs−2

+ [c0
s−1 + sα(c0

0)
s + · · · ]zs−1 + · · ·+ O(ε2

1).

(11)
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In the disk ∆, let

f0(z)m =
∞∑

1

c0
k,mzk, [(hαµ0

β ◦ F0)
′(z)]m =

∞∑

1

cα,β
k,mzk.

Applying Parseval’s equality in L2(∆), one obtains

‖(hαµ0

β ◦ F0)
′‖2m

2m − ‖f0‖2m
2m = ‖[(hαµ0

β ◦ F0)
′]m‖2

2 − ‖fm
0 ‖2

2

=
∞∑

k=0

r2
k

(
|cα,β

k,m|2 − |c0
k,m|2

) (12)

with r2
k = π/(k + 1). The right-hand side of (12) is a nonconstant real analytic

function of α and β. We have

cα,β
k,m = c0

k,m + αgk,m(β) = c0
k,m + Ok(α) + Ok(|αβ|),

where Ok(ε)/ε ³ d with the bounds depending only on ‖f0‖∞. It follows from
(11) that the linear term Cαβ in (12) cannot vanish identically for all small
|αβ|. Therefore

‖(hαµ0 ◦ F0)
′‖2m

2m − ‖f0‖2m
2m = O(ε1), O(ε1)/ε1 ³ d,

which contradicts (8) for suitable choices of ε = |α| → 0 and β → 0.

Denote the scalar product in A0
2 by

〈χ̄, ϕ〉E =
∫∫

E

χ(z)ϕ(z)dxdy.

By Lemma 1, the power series of φ in the disk ∆∗
R must contain the powers

ζ−k−1 with k > n. Thus the remainder

ψ(ζ) = φ(ζ)−
n∑

0

bkζ
−k−1 =

(j−1∑

0

+
∞∑
s

)
bkζ

−k−1, s ≥ n + 1, (13)

does not vanish identically in ∆∗
R. It also satisfies

〈ψ̄, ϕk〉E = 0, k = j + 1, . . . , n.

Further, for any homeomorphism h = hµ satisfying h(0) = 0, with µ ∈ L∞(C)
vanishing on C \ E, we have by (3) the expansion

h ◦ F0(z) = (1 + 〈µ, ϕ1〉)F0(z) +
∞∑

k=2

〈µ, ϕk〉F0(z)k + O(‖µ‖2
∞);

hence,

(h ◦ F0)
′(z) = (1 + 〈µ, ϕ1〉)f0(z) +

∞∑

k=2

k〈µ, ϕk〉F0(z)k−1f0(z)

+ O(‖µ‖2
∞) =:

∞∑

k=1

c∗kz
k, ‖µ‖∞ → 0.
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This yields, in particular, that c∗0 = c0
0h
′(0) and since

kF0(z)k−1f0(z) = k(c0
0z +

c0
j

j + 1
zj+1 + · · · )k−1(c0

0 + c0
jz

j + · · · ),

one concludes that

c∗j = (1 + 〈µ, ϕ1〉)c0
1 + O(‖µ‖2

∞)

for j = 1, and

c∗j = (1 + 〈µ, ϕ1〉)c0
j + (j + 1)〈µ, ϕj+1〉(c0

0)
j+1 + O(‖µ‖2

∞)

when j > 1, provided µ is chosen so that 〈µ, ϕk〉 = 0, k = 0, 1, . . . , j, and

〈µ, ϕj+1〉 = −π−1
∫∫

E

µ(ζ)ζ−j−2dξdη 6= 0.

Then

|c∗j |2 − |c0
j |2 = 2(j + 1) Re{dj+1c

0
j(c̄

0
0)

j+1}+ O(‖µ‖2
∞).

Put here µ = tν with ‖µ‖∞ = 1 and t → 0 (t ∈ C). Combining with (6) and
(7), this results in

lim
t→0

|c∗j |2 − |c0
j |2

t
= 2(j + 1) Re{c0

j(c̄
0
0)

j+1〈ν, ϕj+1〉}
= 2(j + 1) Re{c0

j(c̄
0
0)

j+1bj+1〈ν, ψ〉 6= 0,

which shows that

bj+1 6= 0. (14)

We now choose the desired Beltrami coefficient µ of the form

µ = ξ0ϕ̄0 + ξ1ϕ̄1 +
n∑

k=j

ξkϕ̄k+1 + τ ψ̄, µ|C \ E = 0, (15)

with the unknown constants

ξ0, ξ1, ξj, . . . , ξn, τ

to be determined from equalities (4) and (6). Substituting expression (15) into
(4) and taking into account the mutual orthogonality of ϕk on E, one obtains
for determining ξk and τ the nonlinear equations

k!dk = ξkσ
2
k+1 + O(‖µ‖2

∞), k = 0, 1, j + 1, . . . , n, (16)

with d0 = 0 and σk+1 = ‖ϕk+1‖A0
2

. A comparison of (15) and (6) gives the
equation

‖(h ◦ F0)
′(z)‖2m

2m − ‖f0‖2m
2m

= Re

〈
ξ0ϕ̄0 + ξ1ϕ̄1 +

n∑

k=j

ξkϕ̄k+1 + τ ψ̄, φ

〉

E

+ O(‖µ‖2
∞), (17)
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hence the only remaining equation is a relation for Re ξj, Im ξj, Re τ, Im τ . Thus
we add to (17) three real equations to distinguish a unique solution of the above
system. First of all we will seek ξj satisfying

ξjbj+1σ
2
j+1 = −ξ0b0σ

2
0 − ξ1b1σ

2
1 −

n∑

k=j+1

ξkbk+1r
2
k+1 (18)

(which annihilates the main part of the increment of the magnitude
n∑
0
|ck|2 after

deformation). Then (17) takes the form

‖(h ◦ F0)
′‖2m

2m − ‖f0‖2m
2m = Re〈τψ̄, φ〉E + O(‖µ‖2),

and, letting τ be real, we obtain

‖(h ◦ F0)
′‖2m

2m − ‖f0‖2m
2m = τκ + O(‖µ‖2

∞). (19)

Separating the real and imaginary parts in (16), (18) and adding (19), we
obtain 2(n− j)+ 5 real equalities, which define a nonlinear C1-smooth (in fact,
real analytic) map

y = W (x) = W ′(0)x + O(|x|2)
of the points

x = (Re ξ0, Im ξ0, Re ξ1, Im ξ1, Re ξj, Im ξj + 1, . . . , Re ξn, Im ξn, τ)

in a small neighborhood U0 of the origin in R2(n−j)+5, taking the values

y =
(
Re d0, Im d0, Re d1, Im d1, Re dj+1, Im dj+1, . . . , Re dn, Im dn,

‖(h ◦ F0)
′‖2m

2m − ‖f0‖2m
2m

)

also near the origin of R2(n−j)+5. Its linearization

y = W ′(0)x

defines a linear map R2(n−j)+5 → R2(n−j)+5 whose Jacobian differs from the

product r2
0r

2
1

n∏
j

r2
k+1 by a nonzero constant factor.

Therefore, x 7→ W ′(0)x is a linear isomorphism of R2(n−j)+5 onto itself, and
one can apply to W the inverse mapping theorem. It implies the existence of
a Beltrami coefficient µ of the form (15), for which we have the assertions of
Theorem 1.

The relations (14) and (18) show a special role played by the first nonzero
coefficient c0

j of f0, which cannot be replaced in general by some c0
k with j <

k < n.
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3. Holomorphic Dependence on Coefficient Parameters
dj+1, . . . , dn

3.1. As a consequence of the proof of Theorem 1 we obtain

Theorem 2. For a fixed small a ∈ R, the Beltrami coefficient µ determined
by (15) can be chosen to be a complex L∞-holomorphic function of the param-
eters d1, dj+1, . . . , dn.

Proof. This follows from the uniqueness of solutions of the system (16), (18),
(19). Let |d| < ε and |a| < ε satisfy the assumptions of Theorem 1 and define
the desired µ by (15). Fix a such a and a τ = τ0 > 0 found in the proof of
Theorem 1 and solve for this

µ = ξ0ϕ̄0 + ξ1ϕ̄1 +
n∑

k=j

ξkϕ̄k+1 + τ0ψ̄

the complex system (16), (18) separately. We already know that it has a unique
solution ξ0, ξj+1, . . . , ξn, and by the inverse mapping theorem these ξk, hence µ,
depend on the given d holomorphically.

In particular, the value dj = h(j)(0)/j! also moves holomorphically, simul-
taneously with the independent parameters dj+1, . . . , dn, and one can use by
variations the openness of holomorphic maps.

3.2. If we need to construct a quasiconformal homeomorphism h satisfying

‖h′(F0)f0‖2m
2m = ‖f0‖2m

2m,

i.e., for a = 0, then Lemma 1 again allows us to seek a Beltrami coefficient µ of
the form (15) with unknown constants ξ0, ξj+1, . . . , ξn, τ to be determined from
equations (4) and

〈µ, φ〉 = 0.

In this case, the existence of a desired µ of such form is again ensured, for
small ε, by the inverse mapping theorem, and moreover, this theorem provides
also L∞ holomorphy of τ and µ in all parameters dj, dj+1, . . . , dn, which move
independently.

3.3. A modification of Theorem 1. Omitting the assertion (a) of Theorem
1 (i.e., that h(0) = 0), one can drop the requirement for the original function
f0 to be bounded in ∆.

Indeed, for f ∈ Bp with p > 2, the Hölder inequality yields

‖f‖2 ≤ π(p−2)/p‖f‖p;

and hence the image domain F (∆), where f is the primitive function (1) for
f , has a finite area (counting with multiplicity). Therefore this domain must
have the exterior points.

Now, conjugating the desired quasiconformal homeomorphism h with a linear
fractional transformation γ of Ĉ, one reduces the proof to the case, where the

primitive function F0(z) =
z∫
0

f0(t)dt is bounded in the unit disk, and this is,
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in fact, exactly what was used in the proof of Theorem 1. As a result, the
homeomorphism h obtained is conformal in some domain containing F0(∆).

4. Infinitesimal Deformations

The following infinitesimal version of Theorem 1 admits a simpler proof.

Theorem 3. Given a function f0(z) =
∞∑

k=1
c0
kz

k ∈ B2m ∩H∞, distinct from

a polynomial of degree n1 ≤ n, then for sufficiently small ε0 > 0 and ε ∈ (0, ε0)
we have that for every point d = (d2, d3, . . . , dn) ∈ Cn−1 and a ∈ R so that

|d| ≤ ε, |a| ≤ ε, there is a quasiconformal homeomorphism h of Ĉ, which is
conformal in the disk D′

0 and satisfies:
(a) h(0) = 0, h′(0) = 1;
(b) h(k)(0) = k! dk + O(ε2), k = 2, 3, . . . , n;

(c) ‖h′(F0)f0‖2m
2m − ‖f0‖2m

2m = a + O(ε2), where again F0(z) =
z∫
0

f0(t)dt.

The Beltrami coefficient of h is estimated similar to Theorem 1.

Proof. By assumption, f0(z) contains at least one nonzero term c0
sz

s with s > n.
Split the space A0

2 into the span

Al = 〈ϕ0, ϕ1, . . . , ϕl〉
and its orthogonal complement

A⊥
l = {g ∈ A2 : 〈g, ϕ〉E = 0, ϕ ∈ Al}

for 0 < l ≤ n and observe that A⊥
l contains all convergent series g(ζ) =

∞∑
k=s

gkζ
−k−1 in the disk ∆∗

R, with gs 6= 0. Any such g determines the map

hε,s[g](w) := w − ε(T ḡ)(s−1)(w) = w − ε(s− 1)!

π

∫∫

E

g(ζ)dξdη

(ζ − w)s
(20)

if ε ∈ C is chosen close to 0. Similarly to (3), the restriction of T ḡ onto the disk
∆R = {|w| < R} assumes the form

T ḡ(w) = − 1

π

∫∫

E

g(ζ)dξdη

ζ − w
= − 1

π

∞∑

k=s

ḡkσ
2
kw

k (21)

and thus in (20)

(T ḡ)(s−1)(w) = − 1

π

∞∑

k=s

ḡkσ
2
k k(k − 1) · · · (k − s + 2) wk−s+1.

It follows from (20) that

‖(hε,s[g] ◦ F0)
′(z)‖2m

2m − ‖f0‖2m
2m = Re〈ḡ, φs〉E + O(ε2), ε → 0, (22)
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with

φs(ζ) = −2ms!

π

∫∫

∆

|f0(z)|2m+1

(ζ − F0(z))s+1
dxdy. (23)

We first verify that as in Lemma 1, φs cannot be a linear combination only of
ϕ0, . . . , ϕl for some l ≤ n, i.e., the equality

φs(ζ) =
l∑

0

bk

ζk+1
, l ≤ n, (24)

cannot take place. Assume that (24) holds, then the relation (22) must reduce
to

‖(hε,s[g]′(F0)f0‖2m
2m − ‖f0‖2m

2m = O(ε2), ε → 0. (25)

Define

I(f0; g) =
∫∫

∆

|f0(z)|2m
[
(T ḡ)(s−1) ◦ F0

]′
(z)dxdy

=
∫∫

∆

|f0(z)|2m+1(T ḡ)(s) ◦ F0(z)dxdy.

Using (21), this integral is evaluated as follows:

I(f0; g) =

1∫

0

2π∫

0

|f0(re
iθ)|2m

[
(T ḡ)(s−1) ◦ F0

]′
(reiθ)rdrdθ

= − 1

π

1∫

0

rdr
∫

|z|=r

f0(z)mf0

(
r2

z̄

)m

×

×
∞∑

k=s

ḡkσ
2
k k(k − 1) · · · (k − s + 2)(k − s + 1)F0(z)k−sf0(z)dθ

= − 1

πi

1∫

0

rdr
∫

|z|=r

( ∞∑

k=0

c0
kz

k
)m( ∞∑

k=0

c̄0
kr

2k

zk

)m

×

×
∞∑

k=s

ḡkσ
2
k k · · · (k − s + 1)

( ∞∑

k=1

c0
k−1

k
zk

)k−s ∞∑

k=0

c0
kz

k dz

z

=

1∫

0

[
−2ḡsσ

2
ss!

( ∞∑

k=0

|c0
k|2r2k

)m

+
∞∑

k=s+1

ḡkBk(r)
]
rdr.

This shows that by suitable choice of the numbers gs, gs+1, . . . , the corre-
sponding function g ∈ A⊥

l satisfies I(f0; g) > 0, and then

‖hε,s[g] ◦ F0‖2m
2m − ‖F0‖2m

2m

ε
=

2 Re
{
εI(F0; g)

}

ε
+ O(ε) = O(1), ε → 0.
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This shows that equalities (24) and (25) cannot occur for sufficiently small |ε|
and thus the function

ψs(ζ) := φs(ζ)−
n∑

0

ϕk(ζ) =
∞∑

k=n′
bkζ

−k−1, n′ ≥ n + 1,

does not vanish identically in ∆∗
R.

We now construct a linear functional L on the space A2 whose kernel is the
space A⊥

n,s, the orthogonal complement of

An,s = 〈ϕ0, ϕ1, . . . , ϕn, ψs〉.
Fix a complex number d1 with 0 < |d1| < ε, and first define a linear functional
L1 on A2 satisfying

L1(ϕ0) = 0, L1(ϕk) = dk, k = 1, 2, . . . , n,

with given d2, . . . , dn and

L1(ϕ) = 0, ϕ ∈ A⊥
n = 〈ϕ0, ϕ2, . . . , ϕn〉⊥.

Noting that all ϕ ∈ A2 are of the form ϕ =
∞∑
0

ηkr
−1
k ϕk and by Parseval’s

equality ‖ϕ‖2
A2

=
∞∑
0
|ηk|2, the norm of L1 can be estimated (using also Schwarz’s

inequality) by

‖L1‖ = sup
‖ϕ‖A2

=1
|L1(ϕ)|

= sup
∞∑
0

|ηk|2=1

∣∣∣∣
n∑

k=1

ηkdk/rk

∣∣∣∣ ≤ sup
∞∑
0

|ηk|2=1

n∑

1

|dk|2/r2
k

n∑

0

|η2
k| < M2(n)ε.

There exists a function g1 ∈ A2 representing L1 so that L1(ϕ) = 〈ḡ1, ϕ〉E and
‖g1‖2 = ‖L1‖ = O(ε), which defines a polynomial map h1 : DR → C by

h1(w) = w − 1

π

∫∫

E

g1(ζ)dξdη

ζ − w
= w − 1

π

∞∑

0

〈ḡ1, ϕk〉Ewk =
n∑

1

dkw
k.

Let

h1 ◦ F0(z) =
∞∑

1

ck−1,1

k
zk,

and put

a1 = 2|c0
1|2 Re d1 +

∞∑

k=2

|ck−1,1|2 − |c0
k−1|2

k2
. (26)

Now define another linear functional L2 on A2, setting

L2(ψs) = a− a1
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and L2(ϕ) = 0 for ϕ⊥ψs and extending by the Hahn–Banach theorem from the
space 〈ψs〉⊕〈ψs〉⊥, where 〈ψs〉 denotes the span {tψs : t ∈ C} of ψs onto A2.
Its norm is estimated by

‖L2‖ ≤ M3(1/δ)ε, δ = dist(ψs, 〈ψs〉⊥) > 0.

The corresponding function g2 ∈ A2 for which

L2(ϕ) = 〈ḡ2, ϕ〉E, ‖g2‖2 = ‖L2‖ = O(ε),

determines a holomorphic map DR → C by

h2(w) = −(s− 1)!

π

∫∫

E

g2(ζ)dξdη

(ζ − w)s

= − 1

π

∞∑

k=s

〈ḡ2, ϕk〉E k(k − 1) · · · (k − s + 2) wk−s+1.

Define finally the map h = h1 + h2 : Ĉ→ Ĉ corresponding to L = L1 + L2.
This map is holomorphic in the disk ∆R, and it follows from above that

h(0) = 0, h′(0) = 1 + O(ε), h(k)(0) = k!dk + O(ε2), k = 2, 3, . . . , n,

with given dk, and

‖(h ◦ F0)
′‖2m

2m − ‖f0‖2m
2m = a + O(ε2).

Restricting h to a smaller disk ∆R1 = {|w| ≤ R1 < R}, we get

‖h′(w)− 1‖∆R1
≤ M4(R1)ε, ‖h(j)(w)‖∆R1

≤ M4(R1)ε, j = 2, 3, . . . , n.
(27)

If ε is sufficiently small, h|∆R1 is univalent in this disk and admits quasicon-
formal extensions across the circle {|w| = R1} onto the whole complex plane.
One can use, for example, its Ahlfors–Weill extension [2] with the harmonic
Beltrami coefficient

µh(w) = −1

2
Sh

(
R2

1

w

)
(|w|2 −R2

1)
2

w4
, |w| > R1,

where

Sh = (h′′/h′)′ − (h′′/h′)2/2

denotes the Schwarzian derivative of h on ∆R1 . It follows from (27) that
‖µh‖∞ = O(ε) as ε → 0.

The quasiconformal homeomorphism h constructed above satisfies all the
assertions of the theorem except h′(0) = 1. To establish the latter property,
observe that the parameter d1 has been chosen arbitrarily in the above proof,
and take now those values of d1 for which equality (26) is reduced to

a1 = 0.
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One obtains a linear equation for the ε-linear term of Re d1 by which this quan-
tity is determined uniquely. On the other hand, the value of Im d′1 does not
affect the linear part of the right-hand side of (26).

The corresponding homeomorphism h satisfies

h′(0) = 1 + O(ε2),

and it remains to rescale h by passing to h(z)/h′(0). This completes the proof
of Theorem 2.

5. Extremal Holomorphic Covering Maps

5.1. We present an application of the above theorems to a well-known coeffi-
cient problem for holomorphic functions.

Let F (z) =
∞∑
1

Ckz
k be locally injective in the unit disk. Then its derivative

F ′(z) = f(z) does not vanish in ∆; thus F is a nonbranched holomorphic
covering map ∆ → F (∆) normalized by F (0) = 0. Assume that F ∈ B̃2m and
consider the extremal problem to determine max |Cn| on the closed unit ball

B0(B̃
2m) = {F (z) =

∞∑

1

Ckz
k ∈ B2m : ‖F‖ ≤ 1}.

It is equivalent to the Hummel–Scheinberg–Zalcman problem for nonvanishing
Bergman holomorphic functions f in the disk (see [3]).

The first coefficient can be estimated in a standard way using Schwarz’s
lemma for holomorphic maps ∆ → B0(B̃

2m). It gives, together with Parseval’s
equality applied to f(z)m, that |C1| ≤ 1/

√
π. The equality takes place only for

the function
F (z) =

εz√
π

, |ε| = 1.

However there is no such connection for higher coefficients.
Boundedness in the B̃p-norm yields, by the mean value inequality, the com-

pactness in the topology of locally uniform convergence on ∆, which, in turn,
implies the existence of extremal covering maps F0 maximizing |Cn| on B0(B̃

2m).
Note that ‖F0‖2m = 1 since otherwise max |Cn| would increase by passing from
F0 to (1 + r)F0 with appropriate r > 0.

Theorem 4. Any extremal map F0 maximizing |Cn| is of the form

F0(z) = C0
1z +

∞∑

k=n

C0
kz

k,

i.e., it satisfies C0
2 = · · · = C0

n−1 = 0 unless F0 is a polynomial of degree n (with
nonvanishing derivative in ∆).

Proof. Let F0 be different from a polynomial of degree at most n. Then its
Taylor series in ∆ contains nonzero powers C0

s with s > n. We assume the
contrary that C0

j 6= 0 for some 1 < j < n and reach, by applying Theorem 1, a
contradiction.
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Observe that for any holomorphic function h in a domain D containing all

the values F (z) for z ∈ ∆, we have h(w) =
∞∑
1

dkw
k in a neighborhood of the

origin w = 0, and

h ◦ F0(z) = d1

∞∑

1

C0
kz

k + d2

( ∞∑

1

C0
kz

k
)2

+ · · ·+ dn

( ∞∑

0

C0
kz

k
)n

+ · · ·

=:
∞∑

1

C∗
kz

k.

Denoting F ′
0(z) = f0(z) =

∞∑
0

c0
kz

k with c0
k = (k + 1)C0

k+1, we get

(h ◦ F0)
′(z) = d1

∞∑

1

kC0
kz

k−1 + 2d2

∞∑

1

C0
kz

k
∞∑

1

kC0
kz

k−1 + · · ·

+ ndn

( ∞∑

1

C0
kz

k
)n−1 ∞∑

1

kC0
kz

k−1 + · · ·

= d1

∞∑

1

c0
k−1z

k−1 + 2d2

∞∑

1

c0
k−1

k
zk

∞∑

1

c0
k−1z

k−1 + · · ·

+ ndn

( ∞∑

1

c0
k−1

k
zk

)n−1 ∞∑

1

c0
k−1z

k−1 + · · ·

=:
∞∑

0

c∗kz
k,

where

c∗0 = d1c
0
0, c∗1 = d1c

0
1 + 2d2(c

0
0)

2, c∗2 = d1c
0
2 + 3d2c

0
0c

0
1 + 3d3(c

0
0)

3, . . . . (28)

If h is, in addition, homeomorphic (thus conformal) on F0(∆), then the map
h ◦ F0 is a local conformal homeomorphism of the disk ∆.

Now, let k = j0 > 1 and s ≥ n be the least indices of nonzero coefficients C0
k

for 1 < k < n and for k > n, respectively.
We apply Theorem 1 starting with j = j0 and a = 0, which provides a

quasiconformal homeomorphism h of Ĉ satisfying the previous conformality
assumptions and obtain from (28) that the coefficient C∗

n becomes a holomorphic
function of the independent parameters

d1, dj0+1, . . . , dn+1

defining h, because dj0 , in itself, is a holomorphic function of these parameters.
The openness of holomorphic maps allows us to choose these parameters (at
least d1 and dn) so that

|C∗
n| = |d1C

0
n + · · ·+ dn(C0

0)n| > |C0
n|+ O(ε) > |C0

n|. (29)

On the other hand, we have

‖(h ◦ F0)
′‖2m = ‖f0‖2m + O(ε2) = 1 + O(ε2),
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hence the map h ◦ F0 + O(ε2) also belongs to B0(B̃
2m). But then (29) violates

the extremality of F0 for Cn by a suitable choice of ε > 0. This proves C0
j0

= 0.
Applying Theorem 1 successively for j0 = 2, 3, . . . , n − 1, one obtains the

assertion of Theorem 4.

It seems likely that similar to what was established in [7] for the Hardy
functions f ∈ Hp(∆), the extremal map F0 in B0(B̃

2m) cannot reduce to a
polynomial of degree n1 ≤ n either.

5.2. The results of this paper extend to arbitrary Hilbert spaces of holomor-
phic functions in the disk whose norm is real analytic.
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