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SOME REMARKS ON FRACTALS GENERATED BY A
SEQUENCE OF FINITE SYSTEMS OF CONTRACTIONS

GIORGIO FOLLO

Abstract. We generalize some results shown by J. E. Hutchinson in [7].
Let Fn = {f (n)

1 , f
(n)
2 , . . . , f

(n)
mn} be finite systems of contractions on a

complete metric space; then, under some conditions on (Fn), there exists
a unique non-empty compact set K such that the sequence defined by
((F1 ◦ F2 ◦ · · · ◦ Fn)(C)) converges to K in the Hausdorff metric for every
non-empty closed and bounded set C.

If the metric space is also separable and for every n, l
(n)
1 , l

(n)
2 , . . . , l

(n)
mn

there are real numbers strictly between 0 and 1, satisfying the condition∑mn

j=1 l
(n)
j = 1, then there exists a unique probability Radon measure µK

such that the sequence

νn =
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

)(
f

(1)
i1

◦ f
(2)
i2
◦ · · · ◦ f

(n)
in

)
]
ν

weakly converges to µK for every probability Borel regular measure ν with
bounded support (where by f]ν we denote the image measure of ν under
a contraction f). Moreover, K is the support of µK .
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28A33.
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1. Introduction

Let (X, dX) be a complete separable metric space and let f1, f2, . . . , fM :
X → X be contractions. In [7] it is proved that there exists a unique non-
empty closed and bounded subset K of X invariant with respect to F =
{f1, f2, . . . , fM} i.e., such that

K = F(K) =
M⋃

j=1

fj(K). (1)

Moreover, K is compact and if C0 6= ∅ is closed and bounded, then the
sequence (Cn) defined by Cn = F(Cn−1) converges to K in the Hausdorff
metric.

Let r = {r1, r2, . . . , rM} be a family of M real numbers in ]0, 1[ with∑M
j=1 rj = 1. Then there exists a unique Borel regular (outer) measure µ in
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X with compact support and of total mass 1 such that µ is invariant with
respect to (F, r), i.e.,

µ(A) =
M∑

j=1

rjµ(f−1
j (A)) for every Borel set A ⊆ X. (2)

Furthermore, the support of µ is the fractal K.
We consider the case in which the system F is replaced by a sequence (Fn)

of finite systems of contractions, i.e., Fn = {f (n)
1 , f

(n)
2 , . . . , f (n)

mn
} with mn ≥ 2.

Obviously, we cannot write an expression like (1), but we can still construct a
sequence of closed and bounded subsets of X and ask if such a sequence is
convergent with respect to the Hausdorff metric. More precisely, if the sequence
(Fn) satisfies the following two conditions:

• there exists a bounded set Q ⊆ X such that
⋃mn

j=1 f
(n)
j (Q) ⊆ Q for any

n ∈ N;
• limn

∏n
k=1 ρ(k) = 0; here ρ(k) is the greatest of the Lipschitz constants

of the contractions f
(k)
1 , f

(k)
2 , . . . , f (k)

mk
;

then there exists a unique non-empty closed and bounded set K ⊆ X such
that the sequence ((F1 ◦ F2 ◦ · · · ◦ Fn)(C0)) converges to K in the Hausdorff
metric, for every non empty closed and bounded subset C0 of X. Moreover
K is compact.

As an interesting example, given d ∈]0, 1[, we construct a d-dimensional
compact subset of the real line by considering a sequence (Fn) of finite systems

of contractive similitudes f
(n)
1 , f

(n)
2 , . . . , f (n)

mn
with Lipschitz constants ρ(n)

(depending only on n ) such that mn(ρ(n))d = 1. We will study the entropy
numbers related to this set.

In Section 4 we consider a generalization of the invariant measure found in
[7].

As before, we cannot write an expression like (2). Let X be a complete

separable metric space and let for every n, l
(n)
1 , l

(n)
2 , . . . , l(n)

mn
∈]0, 1[ be so that

∑mn
j=1 l

(n)
j = 1, then there exists a unique Radon probability measure µK so

that for every Radon probability measure ν on X, with bounded support, the
sequence of measures defined by

νn(A) =
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

)
ν
(
(f

(1)
i1 ◦ f

(2)
i2 ◦ · · · ◦ f

(n)
in

)−1
(A)),

for Borel sets A ⊆ X, weakly converges to µK .
Moreover, the support of µK is the fractal K.

2. Notation and preliminary results

In this note (X, dX) will always be a complete metric space. Additional
requirements for X will be specified when necessary.
N = {1, 2, . . . } is the set of all positive integer numbers.
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The closed and open balls in X will be indicated by the symbols BX(x0, r)
and DX(x0, r):

BX(x0, r)=
{
x ∈ X | dX(x, x0) ≤ r

}
, DX(x0, r)=

{
x ∈ X | dX(x, x0) < r

}
.

The diameter of a subset A of X is indicated by |A|: |A| = sup
x,y∈A

dX(x, y)

and its number of elements is indicated by ]A.
If X is separable and s ≥ 0, Hs(A) stands for the s-dimensional Hausdorff

measure of A and dimA for its Hausdorff dimension.
If X = RN then we will use the Euclidean metric dRN (x, y) = ‖x − y‖2 =√∑N

i=1(ξi − ηi)2, where x = (ξ1, ξ2, . . . , ξN) and y = (η1, η2, . . . , ηN).

Lemma 2.1. Let E ⊆ RN and let d > 0. If f : E → RN is a mapping and
c > 0 is a constant such that ‖f(x)−f(y)‖2 ≤ c‖x−y‖2 for every x, y ∈ E,
then Hd(f(E)) ≤ cdHd(E).

Proof. See [4], Chapter 2, Proposition 2.2.

2.1. d-sets in RN .
Definition. Let Γ be a closed non-empty subset of RN and let d ∈]0, N ].

A positive Borel outer measure µ with support Γ is called a d-measure on
Γ if there exist c1, c2 ∈]0, +∞[ such that for every x0 ∈ Γ and for every
r ∈]0, 1]

c1r
d ≤ µ

(
BRN (x0, r)

)
≤ c2r

d (1)

holds.

Remark 1. One can replace the condition r ∈]0, 1] in the above definition by
the condition r ∈]0, r0]; obviously, the constants c1 and c2 will be replaced
by some constants c1(r0) > 0 and c2(r0) > 0 depending on r0.

Definition. A closed non-empty subset Γ of RN is called a d-set if there
exists a d-measure on Γ.

It can be proved that if Γ is a d-set, µ1 and µ2 are d-measures on Γ. Then
there exist constants a, b ∈]0, +∞[ such that aµ1(A) ≤ µ2(A) ≤ bµ1(A) ∀A ⊆
RN . Moreover, the restriction to Γ of the Hausdorff measure Hd is a d-measure
on Γ; so every d-set has its canonical d-measure and therefore d is unique.

For the proof of these facts see [9], Chapter 2 or [11], Chapter 1.

2.2. Entropy numbers. Let Ω be a bounded subset of X. The n-th entropy
number of Ω is defined by

εn(Ω) = inf
{
ε > 0 | ∃ x1, x2, . . . , xn ∈ X such that Ω ⊆

n⋃

i=1

BX(xi, ε)
}
.

The sequence (εn(Ω)) is monotonically decreasing and tends to zero if and only
if Ω is precompact.

See [1] for a complete treatment.
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2.3. The Hausdorff metric.
Definition. If x0 ∈ X and A ⊆ X, we define the distance between x0

and A by
dX(x0, A) = inf

x∈A
dX(x0, x).

Remark 2. For every x0 ∈ X and A ⊆ X,we have dX(x0, A) = dX(x0, A).
Definition. Let B be the class of all non-empty closed bounded subsets

of X.
The Hausdorff metric D on B is defined by

D(A,B) = sup
{
dX(x,B), dX(y,A) | x ∈ A, y ∈ B

}
.

Remark 3. D is a metric on B. Moreover, for every A,B ∈ B

D(A,B) = inf
{
ε > 0 | A ⊆ ⋃

y∈B

DX(y, ε) and B ⊆ ⋃

x∈A

DX(x, ε)
}
.

Lemma 2.2. Let f : X → X be a Lipschitz function and let ρ = inf
{
c >

0 | dX(f(x), f(y)) ≤ cdX(x, y) ∀x, y ∈ X
}

be its Lipschitz constant. Then

D(f(A), f(B)) ≤ ρD(A,B) ∀A,B ∈ B. (2)

Proof. By remark 2 D(f(A), f(B)) = sup
{
dX(u, f(B)), dX(v, f(A)) | u ∈

f(A), v ∈ f(B)
}
.

By the Lipschitz condition on f it follows that dX(f(x), f(B)) ≤ ρdX(x,B)
and dX(f(y), f(A)) ≤ ρdX(y,A), ∀x ∈ A ∀y ∈ B and then the (2).

Lemma 2.3. Let {Aj | j ∈ J}, {Bj | j ∈ J} be two families of elements
of B. Then

D
( ⋃

j∈J

Aj,
⋃

j∈J

Bj

)
≤ sup

j∈J
D(Aj, Bj)

provided that
⋃

j∈J Aj and
⋃

j∈J Bj are bounded.

Proof. Let c > supj∈J D(Aj, Bj): for all j ∈ J D(Aj, Bj) < c and then

Aj ⊆
⋃

yj∈Bj

DX(yj, c) ⊆
⋃

i∈J

⋃

yi∈Bi

DX(yi, c) =
⋃

y∈
⋃

i∈J
Bi

DX(y, c).

It follows that ⋃

j∈J

Aj ⊆
⋃

y∈
⋃

i∈J
Bi

DX(y, c).

In the same way we obtain
⋃

j∈J

Bj ⊆
⋃

x∈
⋃

j∈J
Aj

DX(x, c).

Then

D
( ⋃

j∈J

Aj,
⋃

j∈J

Bj

)
< c.
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2.4. Sequences of indices and product spaces. From now on, (mn) is a
fixed sequence of integer numbers, with mn ≥ 2 for all n ∈ N. Moreover, for

all n ∈ N we fix l
(n)
1 , l

(n)
2 , . . . , l(n)

mn
∈]0, 1[ so that

∑mn
j=1 l

(n)
j = 1.

Definition. For n ∈ N we set In = {1, 2, . . . , mn} and I =
∏+∞

n=1 In. Each
In is equipped with the discrete topology. On I we consider the function
dI : I × I → R,

dI(k, h) =
+∞∑

j=1

1

2j

|kj − hj|
1 + |kj − hj| ,

where k = (kj), h = (hj), kj, hj ∈ Ij for all j ∈ N.

Remark 4. It is well known that dI is a metric on I; moreover dI induces
the product topology on I.

It follows that (I, dI) is a compact metric space and then it is complete and
separable (see, for example, [2], Chapters 2, 5 and 6).

Definition. Given i1, i2, . . . , in∈N, we define the natural projection πi1,i2,...,in :
I → ∏n

j=1 Iij by

πi1,i2,...,in(k) = (ki1 , ki2 , . . . , kin).

Remark 5. For every ij ∈ N, πij is a continuous function by the definition
of product topology. Then πi1,i2,...,in is continuous.

Definition. Let X and Y be metric spaces, µ an outer measure on X
and f : X → Y a function.

The image of µ under f is defined by

f]µ(A) = µ(f−1(A)) ∀A ⊆ Y.

For the proof of the following two theorems see [10], Chapter 1, Theorems
1.18 and 1.19.

Theorem 2.1. Let X and Y be separable metric spaces. If f : X → Y
is continuous and µ is a Radon measure on X with compact support, then
f]µ is a Radon measure. Moreover, if C ⊆ X is the support of µ, then f(C)
is the support of f]µ.

Definition. Let X and Y be separable metric spaces. A mapping f :
X → Y is a Borel mapping if f−1(U) is a Borel set for every open set U ⊆ Y .

Let A ⊆ X be a Borel set. A function g : A → [−∞, +∞] is a Borel
function if the set {x ∈ A | f(x) < c} is a Borel set for every c ∈ R.

Theorem 2.2. Let X and Y be separable metric spaces and suppose that
f : X → Y is a Borel mapping, µ is a Borel measure on X and g is a
non-negative Borel function on Y . Then

∫

Y

gdf]µ =
∫

X

(g ◦ f)dµ.
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Definition. For every n ∈ N we define a measure τn on In by

τn(A) =
∑

j∈A

l
(n)
j ∀A ⊆ In.

Remark 6. For every n ∈ N, τn is a Radon measure and τn(In) = 1.

Remark 7. From the definition of product measure of two measures it follows
that

(τ1 × τ2 × · · · × τn)(A) =
∑

(k1,k2,...,kn)∈A

n∏

j=1

l
(j)
kj

∀n ∈ N ∀A ⊆
n∏

j=1

Ij.

In order to define the product measure on I, we need the following theorem.

Theorem 2.3. Let {Xα | α ∈ A} be a family of compact Hausdorff spaces
and let, for each α ∈ A, µα be a Radon measure on Xα, with µα(Xα) = 1.

Then there exists a unique Radon measure µ on
∏

α∈A Xα such that
µ(

∏
α∈A Xα) = 1 and µα1 × µα2 × · · · × µαn = πα1,α2,...,αn]µ for any distinct

α1, α2, . . . , αn ∈ A.

Proof. See [5], Chapter 9, Theorem 9.19.

Remark 8. By the previous theorem there is a unique Radon measure τ on
I such that τ(I) = 1 and τi1 × τi2 × · · · × τin = πi1,i2,...,in]τ for any distinct
i1, i2, . . . , in ∈ N.

3. Limit sets

3.1. Basic notation. From now on we will use the following notation:

• for any n ∈ N i ∈ In, f
(n)
i : X → X is a contraction;

– ρ
(n)
i = inf{c > 0 | dX(f

(n)
i (x), f

(n)
i (y)) ≤ cdX(x, y) ∀x, y ∈ X}

(ρ
(n)
i is the Lipschitz constant of f

(n)
i ),

– ρ(n) = max{ρ(n)
1 , ρ

(n)
2 , . . . , ρ(n)

mn
},

– ρ = supn∈N ρ(n),

– x
(n)
i ∈ X is the fixed point of f

(n)
i ;

• for every n ∈ N
– Fn = {f (n)

1 , f
(n)
2 , . . . , f (n)

mn
},

– for every A ⊆ X Fn(A) =
⋃mn

i=1 f
(n)
i (A),

– for every A ⊆ X (Fn ◦ Fn+1)(A) = Fn(Fn+1(A));
• for every i ∈ I, n, k ∈ N with k ≤ n:

– fi1i2···in = f
(1)
i1 ◦ f

(2)
i2 ◦ · · · ◦ f

(n)
in and xi1i2···in is its fixed point,

– f
(k)
ikik+1···in = f

(k)
ik
◦f

(k+1)
ik+1

◦ · · · ◦f
(n)
in and x

(k)
ikik+1···in is its fixed point;

• F = {x(n)
i | n ∈ N i ∈ In} is the set of all fixed points of the contractions

f
(n)
i .
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3.2. Existence and uniqueness.

Lemma 3.1. Let (gn) be a sequence of contraction maps on X, each of
them with the Lipschitz constant ρn. Let us suppose that the following two
conditions hold:

(1) there exists a non-empty closed and bounded set Q ⊆ X such that
gn(Q) ⊆ Q for every n ∈ N;

(2) limn
∏n

k=1 ρk = 0.

Then there exists a unique x ∈ X so that

lim
n

(g1 ◦ g2 ◦ · · · ◦ gn)(x0) = x for every x0 ∈ X.

Moreover, x ∈ Q.

Proof. It is easy to prove, by induction, that for every x, y ∈ X and n ∈ N

dX((g1 ◦ g2 ◦ · · · ◦ gn)(x), (g1 ◦ g2 ◦ · · · ◦ gn)(y)) ≤ (
n∏

k=1

ρk)dX(x, y).

Now, let x0 ∈ Q and ε > 0; by the second hypothesis there exists nε ∈ N
so that

∏n
k=1 ρk < ε/|Q| ∀n ∈ N with n > nε.

Then, for all m,n ∈ N with m > n > nε we have

dX

(
(g1 ◦ g2 ◦ · · · ◦ gn)(x0), (g1 ◦ g2 ◦ · · · ◦ gm)(x0)

)

≤
( n∏

k=1

ρk

)
dX

(
x0, (gn+1 ◦ gn+2 ◦ · · · ◦ gm)(x0)

)
< ε.

Since X is complete, there exists x ∈ X such that limn(g1◦g2◦· · ·◦gn)(x0) =
x.

Now we prove that x does not depend on x0.
Let y0 ∈ X and n ∈ N:

dX

(
x, (g1 ◦ g2 ◦ · · · ◦ gn)(y0)

)
dX

(
x, (g1 ◦ g2 ◦ · · · ◦ gn)(x0)

)

+ dX

(
(g1 ◦ g2 ◦ · · · ◦ gn)(x0), (g1 ◦ g2 ◦ · · · ◦ gn)(y0)

)

≤ dX

(
x, (g1 ◦ g2 ◦ · · · ◦ gn)(x0)

)
+

( n∏

k=1

ρk

)
dX(x0, y0)

and by letting n → +∞ we obtain x = limn(g1 ◦ g2 ◦ · · · ◦ gn)(y0).

Definition. Let x0 ∈ X be fixed; we define ∀n ∈ N a function pn :∏n
j=1 Ij → X by

pn(i1, i2, . . . , in) = fi1i2···in(x0).

Remark 1. Obviously, pn depends on x0 and it is a continuous function
on

∏n
j=1 Ij.

From now on we will suppose that the following two hypotheses are valid:

(1) there exists a non-empty closed bounded set Q ⊆ X such that Fn(Q) ⊆
Q for all n ∈ N;
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(2) limn
∏n

k=1 ρ(k) = 0.

Remark 2. The hypotheses 1 and 2 above are implied by the following:

3. F is bounded;
4. ρ < 1.

Indeed, it is obvious that 4 ⇒ 2; moreover, let

Q =
+∞⋂

n=1

mn⋂

i=1

BX

(
x

(n)
i ,

|F |
1− ρ

)
;

we prove that Q satisfies 1.
Q is closed and bounded; moreover F ⊆ Q.
Let n, k ∈ N, i ∈ In and j ∈ Ik; we have ∀x ∈ Q

dX(f
(n)
i (x), x

(k)
j ) ≤ dX(f

(n)
i (x), x

(n)
i ) + dX(x

(n)
i , x

(k)
j )

≤ dX(f
(n)
i (x), f

(n)
i (x

(n)
i )) + |F | ≤ ρ

(n)
i dX(x, x

(n)
i ) + |F |

≤ ρ
|F |

1− ρ
+ |F | = |F |

1− ρ

and then

f
(n)
i (x) ∈ BX

(
x

(k)
j ,

|F |
1− ρ

)
∀k ∈ N ∀j ∈ Ik.

Definition. Let x0 ∈ X be fixed; we define a function p : I → X by

p(k) = lim
n

fk1k2···kn(x0).

Remark 3. By Lemma 3.1 the function p is well defined and does not depend
on x0 ∈ X.

If we take x0 ∈ Q, then we would see that p(I) ⊆ Q. We will always suppose
x0 ∈ Q.

Definition. We denote the set p(I) by K.

Proposition 3.1. The function p is uniformly continuous.

Proof. Let ε > 0 and nε ∈ N be so that
∏nε

i=1 ρ(i) < ε/|Q|. Let δ = 2−nε−1;
for every k, h ∈ I, dI(k, h) < δ implies kj = hj ∀j ∈ N with j ≤ nε and
then, if we suppose x0 ∈ Q,

dX(p(k), p(h))

= lim
j

dX

(
fk1k2···knε

(f
(nε+1)
knε+1knε+2···kj

(x0)), fk1k2···knε
(f

(nε+1)
hnε+1hnε+2···hj

(x0)))

≤
( nε∏

i=1

ρ(i)
)

lim
j

dX

(
f

(nε+1)
knε+1knε+2···kj

(x0), f
(nε+1)
hnε+1hnε+2···hj

(x0)
)

<
ε

|Q| |Q| = ε.

Corollary 3.2. K is compact and K ⊆ Q.

Proposition 3.3. For every C ∈ B limn D((F1 ◦F2 ◦ · · · ◦Fn)(C), K) = 0.
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Proof. Let x0 ∈ Q, ε > 0 and nε ∈ N be so that
∏nε

j=1 ρ(j) < ε/|Q|. For
every n ∈ N with n > nε we have D(pn(π1,2,...,n(I)), K) ≤ ε.

Indeed, for every k ∈ I, we have p(k) ∈ K and

dX

(
pn(π1,2,...,n(k)), p(k)

)
≤

( n∏

j=1

ρ(j)
)
dX

(
x0, lim

i
f

(n+1)
kn+1kn+2···ki

(x0)
)

<
( nε∏

j=1

ρ(j)
)
|Q| < ε

from which dX(pn(π1,2,...,n(k)), K) < ε. On the other hand, ∀x ∈ K there
exists k ∈ I so that p(k) = x and then dX(pn(π1,2,...,n(I)), x) < ε.

But

pn(π1,2,...,n(I)) =
m1⋃

k1=1

m2⋃

k2=1

· · ·
mn⋃

kn=1

{fk1k2···kn(x0)} = (F1 ◦ F2 ◦ · · · ◦ Fn)({x0}).

Now, let C ∈ B: by Lemmas 2.3 and 2.2 it follows that ∀n ∈ N

D
(
(F1 ◦ F2 ◦ · · · ◦ Fn)(C), (F1 ◦ F2 ◦ · · · ◦ Fn)({x0})

)
≤

( n∏

j=1

ρ(j)
)
D(C, {x0});

then, if n > nε,

D
(
(F1 ◦ F2 ◦ · · · ◦ Fn)(C), K

)

≤ D
(
(F1 ◦ F2 ◦ · · · ◦ Fn)(C), (F1 ◦ F2 ◦ · · · ◦ Fn)({x0})

)

+ D
(
(F1 ◦ F2 ◦ · · · ◦ Fn)({x0}), K

)
< ε

(
1 +

D(C, {x0})
|Q|

)
.

3.3. Some properties of K. We follow the notation of the previous para-
graphs.

Definition. Given a finite family of contraction maps G = {g1, g2, . . . , gm}
and a subset A of X, we say that A is invariant with respect to G if
G(A) = A.

Remark 4. If Fn = F = {f1, f2, . . . , fm} for every n ∈ N, then K is
invariant with respect to F.

If there exists k ∈ N such that Fn+k = Fn for all n ∈ N, then K is
invariant with respect to F1 ◦ F2 ◦ · · · ◦ Fk.

Remark 5. If there exists n ∈ N such that Fn+k = Fn for all k ∈ N,
then there is a unique non-empty compact set H ⊆ X which is invariant with
respect to Fn. Moreover,

K =
m1⋃

i1=1

m2⋃

i2=1

· · ·
mn⋃

in=1

fi1i2···in(H).

Lemma 3.2. Let A =
⋃N

j=1 Aj ⊆ X. If A is connected, then |A| ≤∑N
j=1 |Aj|.
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Proof. We consider the case N = 2, the general statement follows by induction.

Let A = B
⋃

C be a connected subset of X and let x, y ∈ A. If x, y ∈ B
or x, y ∈ C; then dX(x, y) ≤ |B|+ |C|.

If x ∈ B and y ∈ C, then ∀z ∈ B, ∀w ∈ C,

dX(x, y) ≤ dX(x, z) + dX(z, w) + dX(w, y) ≤ |B|+ dX(z, w) + |C|.

It follows that

|A| ≤ |B|+ |C|+ inf
{
dX(z, w) | z ∈ B, w ∈ C

}
.

Let us suppose that inf{dX(z, w) | z ∈ B, w ∈ C} = ε > 0; then B′ =⋃
x∈B DX(x, ε/4) and C ′ =

⋃
y∈C DX(y, ε/4) are disjoint open sets whose union

contains A
⋃

B.

Corollary 3.4. If limn
∏n

k=1

∑mk
i=1 ρ

(k)
i = 0, then K is totally disconnected.

Proof. Let x, y ∈ K with x 6= y and let nxy ∈ N be such that∏n
k=1

∑mk
i=1 ρ

(k)
i < dX(x, y)/|Q| ∀n ∈ N with n > nxy. Then, if n > nxy,

we have

K = lim
k

(F1 ◦ F2 ◦ · · · ◦ Fk)(Q)

= (F1 ◦ F2 ◦ · · · ◦ Fn)
(

lim
k

(Fn+1 ◦ Fn+2 ◦ · · · ◦ Fk)(Q)
)

because, by Lemmas 2.2 and 2.3, F1, F2, . . . , Fn are contraction maps with
respect to the Hausdorff metric and then they are continuous. It follows that

K ⊆ (F1 ◦ F2 ◦ · · · ◦ Fn)(Q).

Now, let A ⊆ K be connected and such that x, y ∈ A: we have

A ⊆ K ⊆
m1⋃

i1=1

m2⋃

i2=1

· · ·
mn⋃

in=1

fi1i2···in(Q)

and by Lemma 3.2

|A| ≤
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

|fi1i2···in(Q)|

≤
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

ρ
(k)
ik

)
|Q| = |Q|

n∏

k=1

mk∑

i=1

ρ
(k)
i < dX(x, y) ≤ |A|.

3.4. Examples.
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3.4.1. Cantor sets in R. Let X be the set of real numbers with the Euclidean
distance; we construct a generalized version of the Cantor set. To do this,
we suppose that we are given a real number d ∈]0, 1[ and we construct two
sequences (tn) and (dn) in the following way:

• t0 = 1 and mntdn = tdn−1;

• dn = tn−1−mntn
mn−1

.

Then the set K of the previous paragraph is obtained by setting

f
(n)
i (x) =

tnx + (i− 1)(tn + dn)

tn−1

= m
− 1

d
n x+

i− 1

mn − 1
(1−m

− 1
d

n ) ∀n ∈ N ∀i ∈ In.

Now we show some properties of the fractal set K so obtained. In the
definition of the functions pn we assume x0 = 0.

Remark 6. The functions pn are given by

pn(i1, i2, . . . , in) =
n∑

j=1

(ij − 1)(tj + dj). (1)

We prove this by induction: let n ∈ N, we have f
(n)
in (0) = 1

tn−1
(in−1)(tn+dn) .

Let us suppose that for k ∈ N 2 ≤ k ≤ n,

f
(k)
ikik+1···in(0) =

1

tk−1

n∑

j=k

(ij − 1)(tj + dj), (2)

then

f
(k−1)
ik−1ik···in(0) = f

(k−1)
ik−1

(f
(k)
ikik+1···in(0)) =

1

tk−2

n∑

j=k−1

(ij − 1)(tj + dj).

Then (2) holds for any k ≤ n and in particular

pn(i1, i2, . . . , in) = fi1i2···in(0) =
n∑

j=1

(ij − 1)(tj + dj).

It follows that

p(i) =
+∞∑

j=1

(ij − 1)(tj + dj) ∀i ∈ I (3)

and

K =
{ +∞∑

j=1

(ij − 1)(tj + dj) | ij ∈ Ij ∀j ∈ N
}
. (4)

Example 1. If mn = 2 ∀n ∈ N and d = log3 2, then K is the classical
Cantor set.

Indeed, in this case tn = dn = 3−n, f
(n)
1 (x) = x/3 and f

(n)
2 (x) = (x +

2)/3 ∀n ∈ N and by Remark 4 K is invariant with respect to F = {f (1)
1 , f

(1)
2 }.
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It may also be noted that (4) becomes

K =
{ +∞∑

j=1

cj

3j
| cj ∈ {0, 2} ∀j ∈ N

}
.

Remark 7. It is easy to prove, by induction, that

∀n ∈ N tn =
( n∏

j=1

mj

)− 1
d

and dn =
1−m

1− 1
d

n

mn − 1

( n−1∏

j=1

mj

)− 1
d

.

Remark 8. From Remark 6 we have K ⊆ [0, 1] and 0, 1 ∈ K.
Indeed, if we set k, h ∈ I, kj = 1, hj = mj for every j ∈ N, then by (3) ,

p(k) = 0, p(h) =
∑+∞

j=1(tj−1− tj) = t0 = 1 and for all i ∈ I 0 ≤ p(i) ≤ p(h) =
1.

It may also be noted that 0 ≤ f
(n)
j (x) ≤ 1 ∀x ∈ [0, 1] and for every

n, j ∈ N, j ≤ mn; then we can set Q = [0, 1].

Remark 9. Given n ∈ N, the
∏n

j=1 mj intervals of the form
[pn(i1, i2, . . . , in), pn(i1, i2, . . . , in)+tn] are pairwise disjoint and |pn(i1, i2, . . . , in)−
(pn(k1, k2, . . . , kn) + tn)| ≥ dn for any different (i1, i2, . . . , in), (k1, k2, . . . , kn) ∈∏n

j=1 Ij.

Moreover, for all (i1, i2, . . . , in+1) ∈ ∏n+1
j=1 Ij the interval [pn(i1, i2, . . . , in),

pn(i1, i2, . . . , in)+tn] contains [pn(i1, i2, . . . , in+1), pn(i1, i2, . . . , in+1)+tn+1] and

K =
+∞⋂

n=1

( m1⋃

i1=1

m2⋃

i2=1

· · ·
mn⋃

in=1

[
pn(i1, i2, . . . , in), pn(i1, i2, . . . , in) + tn

])
.

Now we are going to prove that K is a d-set if and only if the sequence
(mn) is bounded.

Theorem 3.5. We have Hd(K) = 1 and so dim K = d.

Proof. See [3] Chapter 1, Theorem 1.15.

Lemma 3.3. For every n ∈ N and (i1, i2, . . . , in) ∈ ∏n
j=1 Ij, we have

Hd
(
K

⋂ [
pn(i1, i2, . . . , in), pn(i1, i2, . . . , in) + tn

])
= tdn.

Proof. Let n ∈ N and (i1, i2, . . . , in) ∈ ∏n
j=1 Ij; we define

f : K
⋂ [

pn(i1, i2, . . . , in), pn(i1, i2, . . . , in) + tn
]
→ K

⋂
[0, tn],

f(x) = x− pn(i1, i2, . . . , in).

It is clear that 0 ≤ f(x) ≤ tn; moreover, f(x) ∈ K by (3) and (1). Then f
is well defined.

The function f is one-to-one because it is injective and ∀y ∈ K
⋂

[0, tn], y =
f(y + pn(i1, i2, . . . , in)). Moreover, f is an isometry and then, by Lemma 2.1,

Hd
(
K

⋂
[0, tn]

)
≤ Hd

(
K

⋂
[pn(i1, i2, . . . , in), pn(i1, i2, . . . , in)+ tn]

)
. By applying

the same arguments to f−1 we obtain the opposite inequality.
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Finally,

1=Hd(K)=Hd

(
m1⋃

i1=1

m2⋃

i2=1

· · ·
mn⋃

in=1

(
K

⋂ [
pn(i1, i2,. . ., in), pn(i1, i2,. . ., in)+tn

]))

=
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

Hd
(
K

⋂ [
pn(i1, i2, . . . , in), pn(i1, i2, . . . , in) + tn

])

=
( n∏

j=1

mj

)
Hd

(
K

⋂
[0, tn]

)

and then

Hd
(
K

⋂ [
pn(i1, i2, . . . , in), pn(i1, i2, . . . , in) + tn

])
= Hd

(
K

⋂
[0, tn]

)

=
( n∏

j=1

mj

)−1

= tdn.

Proposition 3.6. The set K is a d-set if and only if the sequence (mn)
is bounded.

Proof. Let x0 ∈ K and r ∈]0, 1]; by Remark 9, for every k ∈ N there exist
(i1, i2, . . . , ik) ∈ ∏k

j=1 Ij such that x0 ∈ [pk(i1, i2, . . . , ik), pk(i1, i2, . . . , ik) + tk].
Let

n = min
{
k ∈ N | ∃(i1, i2, . . . , ik) ∈

k∏

j=1

Ij so that

x0 ∈
[
pk(i1, i2, . . . , ik), pk(i1, i2, . . . , ik) + tk

]
⊆ [x0 − r, x0 + r]

}

(n is well defined because limk tk = 0 by Remark 7). We prove that

1

mn

rd ≤ Hd
(
k

⋂
[x0 − r, x0 + r]

)
≤ 21+dmnrd; (5)

it will follow that K is a d-set if the sequence (mn) is bounded.

By Lemma 3.3 Hd
(
K

⋂
[x0−r, x0+r]

)
≥ tdn = tdn−1/mn; if tn−1 ≤ r, we would

have x0 ∈ [pn−1(i1, i2, . . . , in−1), pn−1(i1, i2, . . . , in−1) + tn−1] ⊆ [x0 − r, x0 + r]
and this is absurd; then the first inequality follows.

Let us prove the second inequality: we have [pn(i1, i2, . . . , in), pn(i1, i2, . . . , in)+
tn] ⊆ [x0− r, x0 + r]

⋂
[pn−1(i1, i2, . . . , in−1), pn−1(i1, i2, . . . , in−1) + tn−1] and for

every j ∈ N the following implications hold:

• if 1 ≤ j < in−1 − 1 then
[x0−r, x0+r]

⋂
[pn−1(i1, i2, . . . , in−2, j), pn−1(i1, i2, . . . , in−2, j)+tn−1] = ∅

because otherwise we would have
[pn−1(i1, i2, . . . , in−2, in−1−1), pn−1(i1, i2, . . . , in−2, in−1−1)+tn−1] ⊆ [x0−
r, x0 + r];
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• if in−1 + 1 < j ≤ mn−1 then
[x0−r, x0+r]

⋂
[pn−1(i1, i2, . . . , in−2, j), pn−1(i1, i2, . . . , in−2, j)+tn−1] = ∅

because otherwise we would have
[pn−1(i1, i2, . . . , in−2, in−1+1), pn−1(i1, i2, . . . , in−2, in−1+1)+tn−1] ⊆ [x0−
r, x0 + r].

Moreover, at least one of the intervals
[pn−1(i1, i2, . . . , in−2, in−1 − 1), pn−1(i1, i2, . . . , in−2, in−1 − 1) + tn−1] and
[pn−1(i1, i2, . . . , in−2, in−1 + 1), pn−1(i1, i2, . . . , in−2, in−1 + 1) + tn−1] does not
intersect [x0 − r, x0 + r] because otherwise we would have
[pn−1(i1, i2, . . . , in−1), pn−1(i1, i2, . . . , in−1) + tn−1] ⊆ [x0 − r, x0 + r].

Then Hd
(
K

⋂
[x0 − r, x0 + r]

)
< 2tdn−1 = 2mnt

d
n ≤ 21+dmnr

d.

Now we suppose that the sequence (mn) is not bounded; by taking x0 = 0
and rn = tn + dn for every n ∈ N, we have

Hd
(
K

⋂
[x0 − rn, x0 + rn]

)

rd
n

=
Hd

(
K

⋂
[0, tn]

)

rd
n

=
tdn

(tn + dn)d
=

(
mn − 1

m
1
d
n − 1

)d

.

Let (mnk
) be a subsequence of (mn) such that limk mnk

= +∞; then

lim
k

Hd
(
K

⋂
[x0 − rnk

, x0 + rnk
]
)

rd
nk

= 0

because d < 1.

Remark 10. If in the above proposition we suppose tk ≤ dk for all k ∈ N,
then (5) becomes

1

mn

rd ≤ Hd
(
k

⋂
[x0 − r, x0 + r]

)
≤ 2dmnr

d. (6)

We recall that by Remark 7 tk ≤ dk if d ≤ log(2mk−1) mk. If d ≤ log3 2, then
tk ≤ dk independently of mk.

Example 2. For the classical Cantor set, (6) gives

1

2
rd ≤ Hd

(
k

⋂
[x0 − r, x0 + r]

)
≤ 21+drd ∀x0 ∈ K ∀r ∈]0, 1].

Now we estimate the entropy numbers of K under the assumption that
tk ≤ dk ∀k ∈ N.

To avoid tedious notation, we set for every k ∈ N,

Ck =
m1⋃

i1=1

m2⋃

i2=1

· · ·
mn⋃

in=1

[
pn(i1, i2, . . . , in), pn(i1, i2, . . . , in) + tn

]
.

By Remark 9 K =
⋂+∞

k=1 Ck.
Let k ∈ N and nk =

∏k
j=1 mj; then εnk

(K) ≤ εnk
(Ck) ≤ tk/2.

Since the extreme points of the intervals of Ck are in K, it follows that

εnk
(K) =

1

2
tk =

1

2
n
− 1

d
k . (7)
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Let h ∈ N be a divisor of mk+1: we compute εhnk
(K).

The set Ck+1 is a disjoint union of nk+1 closed intervals with amplitude
tk+1 and mutual distance greater than or equal to tk+1. Since hnk divides
nk+1 = mk+1nk, we can cover all the mk+1 closed intervals of Ck+1 that are
included into a single interval of Ck with h closed intervals of the form

[
pk+1

(
i1, i2, . . . , ik,

lmk+1

h
+ 1

)
, pk+1

(
i1, i2, . . . , ik,

(l + 1)mk+1

h

)
+ tk+1

]

0 ≤ l < h

and, as before, the extreme points of these intervals are in K; so

εhnk
(K) =

1

2

(
mk+1

h
tk+1 +

(
mk+1

h
− 1

)
dk+1

)

and by Remark 7 we have

εhnk
(K) =

(h− 1)m
1− 1

d
k+1 + mk+1 − h

2h1− 1
d (mk+1 − 1)

(hnk)
− 1

d . (8)

If h is not a divisor of mk+1, we have εhnk
(K) ≤ tk/(2h) and then

εhnk
(K) ≤ 1

2
h

1
d
−1(hnk)

− 1
d . (9)

Let bmk+1/hc = max{n ∈ N | n ≤ mk+1/h}; then we may not cover K by
using hnk intervals of length (tk+1 + dk+1)bmk+1/hc because at least one of
the intervals of Ck+1 will not be covered; so it must be

εhnk
(K) >

1

2
(tk+1 + dk+1)

⌊
mk+1

h

⌋
,

i.e.,

εhnk
(K) >

h
1
d (1−m

− 1
d

k+1)

2(mk+1 − 1)

⌊
mk+1

h

⌋
(hnk)

− 1
d . (10)

Finally, if l ∈ N l < nk, then

εhnk+l(K) = εhnk
(K) (11)

because the additional l intervals can not be equally distributed between the
connected components of Ck.

Example 3. Let K be the classical Cantor set; by (7) and (11) we have

ε2k+l(K) = 2−
k
d
−1 =

1

2
3−k.

It follows that the entropy numbers of the classical Cantor set have the fol-
lowing asymptotic behaviour:

1

2
n−

1
d ≤ εn(K) <

3

2
n−

1
d ∀n ∈ N

(see also [6], Example 2.2).
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Remark 11. If the sequence (mn) is bounded, then K is a d-set by Propo-
sition 3.6 and we can apply Proposition 3.1 of [6] to see that there exist
a, b ∈]0, +∞[ such that

an−
1
d ≤ εn(K) ≤ bn−

1
d ∀n ∈ N .

Moreover, by Corollary 2.7 of [6], the box dimension of K is d.

Remark 12. Let us suppose that the sequence (mn) is not bounded and
tk ≤ dk ∀k ∈ N. Let (mnk

) be a subsequence of (mn) such that limk mnk
=

+∞; we set pk =
∏nk−1

j=1 mj for every k ∈ N; then, by (7) we have

εpk
(K) =

1

2
p
− 1

d
k .

If mnk
is even, then, by setting 2hk = mnk

, we have from (8)

εhkpk
(K)(hkpk)

1
d =

21− 1
d (hk − 1)hk + h

1+ 1
d

k

2hk(2hk − 1)
. (12)

If mnk
is odd, then, we set 2hk = mnk

+ 1 and by (10) it follows

εhkpk
(K)(hkpk)

1
d >

h
1
d
k (1−m

− 1
d

nk )

2(mnk
− 1)

⌊
mnk

hk

⌋
,

but bmnk
/hkc = b2− h−1

k c = 1; then

εhkpk
(K)(hkpk)

1
d >

h
1
d
k

(
1− (2hk − 1)−

1
d

)

4(hk − 1)
. (13)

Since limk hk = +∞, it follows from (12) and (13) that

lim sup
n

εn(K)n
1
d = +∞.

3.4.2. Sierpiński gaskets. Let X be the plane R2 with the Euclidean distance;
a generalized version of the Sierpiński gasket may be constructed in the following
way.

Let (kn) be a sequence of integer numbers, with kn ≥ 2 for all n ∈ N; the
sequence (mn) is given by

mn =
kn∑

j=0

j =
1

2
kn(kn + 1) ∀n ∈ N.

For all n ∈ N, i ∈ In the contraction f
(n)
i is given by

f
(n)
i (x, y) =

(
x

kn

,
y

kn

)
+ (a

(n)
i , b

(n)
i ),

where

a
(n)
i =

kn − (h
(n)
i + 1)2 + 2(i− 1)

2kn

, b
(n)
i =

√
3(kn − h

(n)
i − 1)

2kn
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and 0 ≤ h
(n)
i < kn is so that

h
(n)
i∑

j=0

j < i ≤
h
(n)
i +1∑

j=0

j.

As before we set K = p(I).

Remark 13. If kn = 2 for all n ∈ N, then K is the Sierpiński gasket.
Indeed, in this case, we have mn = 3 for all n ∈ N and

f
(n)
1 (x, y) =

(
x

2
,
y

2

)
+

(
1

4
,

√
3

4

)
,

f
(n)
2 (x, y) =

(
x

2
,
y

2

)
,

f
(n)
3 (x, y) =

(
x

2
,
y

2

)
+

(
1

2
, 0

)
. (14)

Remark 14. Even for the points of the Sierpiński gasket we can give a repre-
sentation by means of series.

For the sake of simplicity we only consider the case in which kn = 2 ∀n ∈ N.
Let us consider the functions f, g : {1, 2, 3} → Z,

f(i) =





1 i = 1
0 i = 2
2 i = 3

, g(i) =

{
1 i = 1
0 i > 1

. (15)

Let x0 = (0, 0), then for every n ∈ N and i1, i2, . . . , in ∈ {1, 2, 3} we have

pn(i1, i2, . . . , in) =
1

2

n∑

j=1

1

2j

(
f(ij),

√
3g(ij)

)
. (16)

As in Remark 6, even (16) is proven by induction. Let n ∈ N, by (14) and
(15) we have

f
(n)
in (0, 0) =

1

4

(
f(in),

√
3g(in)

)
.

Let us suppose that for k ∈ N k ≤ n,

f
(k+1)
ik+1ik+2···in(0, 0) =

1

2

n∑

j=k+1

1

2j−k

(
f(ij),

√
3g(ij)

)
,

then

f
(k)
ikik+1···in(0, 0) =

1

4

n∑

j=k+1

1

2j−k

(
f(ij),

√
3g(ij)

)
+

1

4

(
f(ik),

√
3g(ik)

)

=
1

2

n∑

j=k

1

2j−k+1

(
f(ij),

√
3g(ij)

)
.

In particular, for k = 1 we have (16).
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It follows that

p(i) =
1

2

+∞∑

j=1

1

2j

(
f(ij),

√
3g(ij)

)
∀i ∈ I

and

K =
{

1

2

+∞∑

j=1

1

2j

(
f(ij),

√
3g(ij)

)
| ij ∈ {1, 2, 3} ∀j ∈ N

}
.

4. A measure on K

In this section X is a complete separable metric space.

We recall (§ 2.4) that for every n ∈ N, l
(n)
1 , l

(n)
2 , . . . , l(n)

mn
are real numbers

in ]0, 1[ so that
∑mn

j=1 l
(n)
j = 1, τn is a measure on In defined by τn(A) =

∑
j∈A l

(n)
j ∀A ⊆ In and τ is a unique Radon measure on I such that τ(I) = 1

and τi1 × τi2 × · · · × τin = πi1,i2,...,in]τ for any distinct i1, i2, . . . , in ∈ N.

Definition. We set µK = p]τ .

Remark 1. K is the support of µK and µK(K) = 1.
Definition. Let (νn) be a sequence of Radon measures on X. We say that

the sequence (νn) converges weakly to a Radon measure ν if

lim
n

∫

X

fdνn =
∫

X

fdν ∀f ∈ Cc(X).

We denote this fact by writing νn ⇀ ν.

Remark 2. We recall that if ν is a Borel regular measure on X and for
every x ∈ X there is r > 0 such that ν(BX(x, r)) < +∞, then ν is a Radon
measure on X. For the proof see [8], chapter 5, theorem V.5.3.

Proposition 4.1. Let ν be a Borel regular measure on X, with bounded
support and such that ν(X) = 1. For every n ∈ N we set

νn =
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

)
fi1i2···in]ν.

Then νn ⇀ µK.

Proof. Let ν be a Borel regular measure on X with bounded support and
such that ν(X) = 1; let C be the support of ν and let f ∈ Cc(X). We
prove that

lim
n

∫

X

fdνn =
∫

X

fdµK .

Let ε > 0 and δ > 0 be such that |f(x) − f(y)| < ε ∀x, y ∈ X with
dX(x, y) < δ; we consider n′ε ∈ N such that

( n′ε∏

k=1

ρ(k)
)

sup
x∈C

dX(x, x0) < δ. (1)
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Moreover, let n′′ε ∈ N be such that |Q|∏n′′ε
j=1 ρ(j) < δ; for every n ∈ N with

n > n′′ε we have

dX(pn(π1,2,...,n(i)), p(i)) = lim
k

dX

(
fi1i2···in(x0), fi1i2···in(f

(n+1)
in+1in+2···ik(x0))

)

≤ |Q|
n∏

j=1

ρ(j) < δ ∀i ∈ I ∀n ∈ N n > n′′ε

and then
∣∣∣f(pn(π1,2,...,n(i)))− f(p(i))

∣∣∣ < ε ∀i ∈ I ∀n ∈ N n > n′′ε . (2)

Then, if n > max{n′ε, n′′ε}, we have
∣∣∣∣
∫

X

fdνn −
∫

X

fdµK

∣∣∣∣

=

∣∣∣∣∣
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

) ∫

X

fdfi1i2···in]ν −
∫

X

fdp]τ

∣∣∣∣∣

≤
∣∣∣∣∣

m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

)( ∫

X

f(fi1i2···in(x))dν(x)− f(fi1i2···in(x0))
)∣∣∣∣∣

+

∣∣∣∣∣
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

)
f(fi1i2···in(x0))−

∫

I

f(p(i))dτ(i)

∣∣∣∣∣

≤
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

)∣∣∣∣
∫

X

f(fi1i2···in(x))dν(x)−
∫

X

f(fi1i2···in(x0))dν(x)
∣∣∣∣

+

∣∣∣∣∣
∫

∏n

j=1
Ij

f(pn(i1, i2, . . . , in))d(τ1 × τ2 × · · · × τn)−
∫

I

f(p(i))dτ(i)

∣∣∣∣∣

≤
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

) ∫

X

∣∣∣f(fi1i2···in(x))− f(fi1i2···in(x0))
∣∣∣dν(x)

+
∣∣∣∣
∫

I

f(pn(π1,2,...,n(i)))dτ(i)−
∫

I

f(p(i))dτ(i)
∣∣∣∣

≤
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

)
∫

C

∣∣∣f(fi1i2···in(x))− f(fi1i2···in(x0))
∣∣∣dν(x)

+
∫

I

∣∣∣f(pn(π1,2,...,n(i)))− f(p(i))
∣∣∣dτ(i).

By (1)

dX

(
fi1i2···in(x), fi1i2···in(x0)

)
< δ ∀x ∈ C

and then
∣∣∣f(fi1i2···in(x))− f(fi1i2···in(x0))

∣∣∣ < ε ∀x ∈ C. (3)
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Then, by (3) and (2) it follows
∣∣∣∣
∫

X

fdνn −
∫

X

fdµK

∣∣∣∣ <
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

)
εν(C) + ετ(I) = 2ε

because
m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

( n∏

k=1

l
(k)
ik

)
= 1.
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