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SOME REMARKS ON FRACTALS GENERATED BY A
SEQUENCE OF FINITE SYSTEMS OF CONTRACTIONS

GIORGIO FOLLO

Abstract. We generalize some results shown by J. E. Hutchinson in [7].

Let 3, = {fl(")7 2("), . f,(,fg} be finite systems of contractions on a
complete metric space; then, under some conditions on (§,), there exists
a unique non-empty compact set K such that the sequence defined by
(10820 0Fn)(C)) converges to K in the Hausdorff metric for every
non-empty closed and bounded set C.

If the metric space is also separable and for every n, ZYL)Jé") lg,?)
there are real numbers strictly between 0 and 1, satisfying the condltlon
Z”ﬁll lj = 1, then there exists a unique probability Radon measure pg
such that the sequence

DI Z(Hhk) o f0)

11=11i0o=1 in=1

weakly converges to pux for every probability Borel regular measure v with
bounded support (where by fy we denote the image measure of v under
a contraction f). Moreover, K is the support of .
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1. INTRODUCTION

Let (X,dx) be a complete separable metric space and let fi, fo, ..., far :
X — X be contractions. In [7] it is proved that there exists a unique non-
empty closed and bounded subset K of X invariant with respect to § =
{f1, fay ..., fm} i.e., such that

K =3(K) = | f;(K). (1)

Moreover, K is compact and if Cy # @ is closed and bounded, then the
sequence (C,) defined by C,, = §(C,,_1) converges to K in the Hausdorff
metric.

Let r = {ry,7r9,...,7ar} be a family of M real numbers in ]0,1] with
ij\il r; = 1. Then there exists a unique Borel regular (outer) measure p in
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X with compact support and of total mass 1 such that p is invariant with
respect to (§,7), ie.,

M
u(A) = riu(f; ' (A)) for every Borel set A C X. (2)
=1

Furthermore, the support of i is the fractal K.

We consider the case in which the system § is replaced by a sequence (§,)
of finite systems of contractions, i.e., §, = {fl("), Fmo fY with my, > 2.
Obviously, we cannot write an expression like (1), but we can still construct a
sequence of closed and bounded subsets of X and ask if such a sequence is
convergent with respect to the Hausdorff metric. More precisely, if the sequence
(§n) satisfies the following two conditions:

e there exists a bounded set @ C X such that U7 fj(n)(Q) C Q for any

n € N;
o lim, [T, p®® = 0; here p®*) is the greatest of the Lipschitz constants
of the contractions fl(k), fg(k), ey 7%2,

then there exists a unique non-empty closed and bounded set K C X such
that the sequence ((F10820:--0F,)(Coy)) converges to K in the Hausdorff
metric, for every non empty closed and bounded subset Cj of X. Moreover
K is compact.

As an interesting example, given d €]0, 1], we construct a d-dimensional
compact subset of the real line by considering a sequence (§,) of finite systems
of contractive similitudes fln), an)’ ey fg;;) with Lipschitz constants p(™
(depending only on n ) such that m,(p™)? = 1. We will study the entropy
numbers related to this set.

In Section 4 we consider a generalization of the invariant measure found in
[7].
As before, we cannot write an expression like (2). Let X be a complete
separable metric space and let for every n, ZYL), lén), ey l,(fj) €]0,1[ be so that
PO l](") = 1, then there exists a unique Radon probability measure pux so
that for every Radon probability measure v on X, with bounded support, the
sequence of measures defined by

mi1 ma M,

()= 353 S5 (T (o 5200 12) ™ ),

i1=1142=1 in=1

for Borel sets A C X, weakly converges to k.
Moreover, the support of g is the fractal K.

2. NOTATION AND PRELIMINARY RESULTS

In this note (X,dx) will always be a complete metric space. Additional
requirements for X will be specified when necessary.
N={1,2,...} is the set of all positive integer numbers.
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The closed and open balls in X will be indicated by the symbols Bx(xg, )
and Dx/(xg,r):

BX(xo,r):{x € X |dx(xz,x9) < 7“}, DX(:co,r):{:c € X |dx(x,x0) < r}.

The diameter of a subset A of X isindicated by |A|: |A] = sup dx(x,y)
T,yeA

and its number of elements is indicated by f$A.

If X isseparable and s >0, H*(A) stands for the s-dimensional Hausdorff
measure of A and dimA for its Hausdorff dimension.

If X =RY then we will use the Euclidean metric dg~(x,y) = ||z — yll» =

V ﬁl(&l_nl)27 where $:<517§27"'7€N) and y:(77177727--'777N)~

Lemma 2.1. Let ECRY andlet d>0. If f: E — RN isamapping and
¢ >0 s a constant such that || f(x)— f(y)|la < c|lt—vylla for every z,y € E,
then HA(f(E)) < c*HY(E).

Proof. See [4], Chapter 2, Proposition 2.2. [

2.1. d-sets in RY.

Definition. Let ' be a closed non-empty subset of RY and let d €]0, N].
A positive Borel outer measure p with support I' is called a d-measure on
I’ if there exist ¢, €]0,+00[ such that for every zp € I' and for every
r €0, 1]

crd < ,u(BRN(xO, r)) < cor (1)
holds.

Remark 1. One can replace the condition r €]0, 1] in the above definition by
the condition r €]0,7¢]; obviously, the constants ¢; and ¢y will be replaced
by some constants c¢i(rg) > 0 and co(ro) > 0 depending on 7.

Definition. A closed non-empty subset I' of RY is called a d-set if there
exists a d-measure on I

It can be proved that if I" is a d-set, p; and pus are d-measures on I'. Then
there exist constants a,b €]0,+oo[ such that apy(A) < p2(A) < buy(A) VA C
RY. Moreover, the restriction to I' of the Hausdorff measure H? is a d-measure
on I'; so every d-set has its canonical d-measure and therefore d is unique.

For the proof of these facts see [9], Chapter 2 or [11], Chapter 1.

2.2. Entropy numbers. Let ) be a bounded subset of X. The n-th entropy
number of {2 is defined by

£n(Q2) = inf {5 >0 |3 x,29,...,2, € X such that Q C U BX(xi,s)}.
i=1
The sequence (£,(£2)) is monotonically decreasing and tends to zero if and only
if € is precompact.
See [1] for a complete treatment.
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2.3. The Hausdorff metric.
Definition. If 2y € X and A C X, we define the distance between xq
and A by
dx(zg, A) = gicrelgdx(xo,x).

Remark 2. For every zp € X and A C X,we have dx(zo, A) = dx(xg, A).

Definition. Let 8 be the class of all non-empty closed bounded subsets
of X.

The Hausdorff metric D on B is defined by

D(A, B) = sup {dx(x, B),dx(y, A) | x € A, y € B}.
Remark 3. D is a metric on B. Moreover, for every A, B € B

D(A,B):inf{s>0 | AC | Dx(y.e) and BC | DX(x,e)}.

yeB €A

Lemma 2.2. Let f: X — X be a Lipschitz function and let p = inf {c >
0] dx(f(z), fly) <cdx(z,y) Vz,y € X} be its Lipschitz constant. Then

D(F(A), J(B)) < pD(A, B) VA,B € . (2)

Proof. By remark 2 D(f(A), f(B)) = sup {dX(u,f(B)),dX(v,f(A)) | u €

F(A), ve f(B)}.
By the Lipschitz condition on f it follows that dx(f(z), f(B)) < pdx(z, B)
and dx(f(y), f(A)) < pdx(y,A), Vx € A Yy € B and then the (2). O

Lemma 2.3. Let {A; | je J}, {B;|j€J} betwo families of elements
of B. Then

D(U Aj U Bj> < sup D(4;, B;)
jes  jed jes
provided that U;e; A; and Uje; B; are bounded.

Proof. Let ¢ > sup;c; D(Aj, By): for all j € J D(Aj, Bj) < c and then
Ajg U DX(yj7C)g U U DX(yivc): U DX(yvc>'
y;€B; icJ y;,€B; yGUiEJ B;

It follows that
U Aj g U DX (yv C)'
jeJ yeUieJ Bi

In the same way we obtain
U Bj g U DX (.T, C).

JjeJ mereJAj

Then

D(U A, Bj) <e O

jeJ jeJ
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2.4. Sequences of indices and product spaces. From now on, (m,) isa
fixed sequence of integer numbers, with m,, > 2 for all n € N. Moreover, for

all neN wefix 1,15, €]0,1] so that ¥y 1% = 1.

Definition. For n € N we set I,, = {1,2,...,m,} and I =]['> I,. Each
I, is equipped with the discrete topology. On [ we consider the function
dr: I xI—R,

X1 |k hyl
dr(k,h) =y — —2—2
jz::lm 1+ |k;j — hy|

where k = (k;), h = (hy), kj,h; € I; forall jeN.

Remark 4. It is well known that d; is a metric on [; moreover d; induces
the product topology on [I.
It follows that (I,d;) is a compact metric space and then it is complete and
separable (see, for example, [2], Chapters 2, 5 and 6).
Definition. Given iy, 1o, ...,1%, €N, we define the natural projection 7;, ;, ;. :
I — 11, Li; by
7Ti1,i2,---,in(k) = (kiu kin SRR kzn)

Remark 5. For every i; € N, m;; is a continuous function by the definition
of product topology. Then m;, ;, . ;. is continuous.

Definition. Let X and Y be metric spaces, u an outer measure on X
and f:X — Y a function.

The image of p under f is defined by
fin(A) = u(f7(A)) VACY.

For the proof of the following two theorems see [10], Chapter 1, Theorems
1.18 and 1.19.

Theorem 2.1. Let X and Y be separable metric spaces. If f: X —Y
15 continuous and p s a Radon measure on X with compact support, then
fav is a Radon measure. Moreover, if C C X is the support of p, then f(C)

is the support of fypu.

Definition. Let X and Y be separable metric spaces. A mapping f :
X — Y isa Borel mapping if f~'(U) is a Borel set for every open set U C Y.

Let A C X be a Borel set. A function ¢g : A — [—o0,+00] is a Borel
function if the set {x € A | f(z) < ¢} is a Borel set for every ¢ € R.

Theorem 2.2. Let X and Y be separable metric spaces and suppose that
f: X —Y s a Borel mapping, n 1is a Borel measure on X and g is a
non-negative Borel function on Y. Then

/gdfnu = /(9 o f)dpu.
Y X
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Definition. For every n € N we define a measure 7, on I, by

Ta(A) =1 vAC I,

jEA
Remark 6. For every n € N, 7, is a Radon measure and 7,([,) = 1.

Remark 7. From the definition of product measure of two measures it follows
that

n

Ty X Ty X oo X Tp)(A) = 1Y) VneN VA C I
kj j

(k1,kz,....kn)€A j=1 J=1

In order to define the product measure on I, we need the following theorem.

Theorem 2.3. Let {X, | a € A} be a family of compact Hausdorff spaces
and let, for each o € A, po be a Radon measure on X, with p.(X,) = 1.

Then there exists a unique Radon measure p on Jlaca Xa such that
U(Ilaca Xo) =1 and fay X flay X -+ X flan = Tay,ao,...antht fOr any distinct
a1, Qo, ..., a, € A.

Proof. See [5], Chapter 9, Theorem 9.19. [

Remark 8. By the previous theorem there is a unique Radon measure 7 on
I such that 7(I) =1 and 7, X T, X -+ X Ty, = Ti,ip..iny7T for any distinct
1,199, ...,1, € N,

3. LIMIT SETS

3.1. Basic notation. From now on we will use the following notation:

e forany ne N i€ [,, fl-(") : X — X is a contraction;

=" = inf{e > 0 | dx(f7 (@), ;" (y) < edx(z,y) Yoy € X}

(p™ is the Lipschitz constant of f™),

— p™ = max{p{”, p" ... p},

— p=sup,en p,

— 2™ € X s the fixed point of f™;
e for every n € N

=B = AR

— forevery AC X F,.(A)=U" fi(n)(A),

— for every AC X (Fn0Fni1)(A) = Fu(Snr1(A4));
e for every i € I, n kEN with k <n:

— firigin = “ f fi(:) and ;4,4 is its fixed point,
k k+1) . .
— fi(ki)k+1~--in = f fz(k+1 'sz‘(: and xlkl)kﬂ 4, 1sits fixed point;

o F={2z" |neNiecl,} istheset of all fixed points of the contractions
1.
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3.2. Existence and uniqueness.

Lemma 3.1. Let (g,) be a sequence of contraction maps on X, each of

them with the Lipschitz constant p,. Let us suppose that the following two
conditions hold:

(1) there ezists a non-empty closed and bounded set @ C X such that
9n(Q) € Q for every n € N;
(2) lim,, [T¢_, pr. = 0.
Then there exists a unique = € X so that
liyrln(gl ogao---ogy)(xg) =x for every wzo€ X.
Moreover, x € Q).

Proof. 1t is easy to prove, by induction, that for every x,y € X and n €N

dx((g10g20 0 gu) (@), (910920 © ga)(3)) < <f[ o)dx (. ).

Now, let 2o €  and & > 0; by the second hypothesis there exists n. € N
so that [Ty, px <€/|Q| Yn € N with n > n..
Then, for all m,n € N with m >n >n. we have

dX((gl 0g20--0gy)(T0),(grogao---0 gm)(l’o)>
< < ﬁ pk)dX(an (9n+1 Ogn420:---0 gm>(x0)) <é&.
k=1

Since X is complete, there exists € X such that lim,(g;0gs0- - -0g,)(xg) =
x.

Now we prove that x does not depend on x.
Let yo€ X and n € N:

dx (. (910920 0 ga) (o) )dx (2, (910 g2 © - © gu) (o) )
+dx((g10 9200 ga)(20), (910 g2 0~ © 9a) (0))

< dx<957 (grogao--- 0%)(%)) + <1f[ Pk)dx(foayo)

and by letting n — 400 we obtain x =lim,(g;0g20---0¢,)(yo). O

Definition. Let z9 € X be fixed; we define Vn € N a function p, :
=X
Pty i, yin) = fiyigi, (o)
Remark 1. Obviously, p, depends on 1z, and it is a continuous function
on H?:l Ij
From now on we will suppose that the following two hypotheses are valid:

(1) there exists a non-empty closed bounded set @@ C X such that §,(Q) C
Q forall neN;
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(2) lim, [T{_, p® = 0.
Remark 2. The hypotheses 1 and 2 above are implied by the following:

3. F' is bounded;
4. p < 1.

Indeed, it is obvious that 4 = 2; moreover, let
“+00 mp F
Q= ﬂ ﬂ Bx ( (n) | | ))
n=1i=1 1 - P

we prove that () satisfies 1
@ is closed and bounded; moreover F C ().
Let n,keN, i €1, and j € I; we have Vx € )

dx (£ (2), 2y <dx(f(x), 2™) + dx (27, 2
< dx (£ (), {1 (@) + |F| < o dx (@, 2(7) + |F
F F
<ol 4 ir = 1
and then

F
fz‘(n)($) c BX<37§‘k)a1|_’p> Vk e N Vj e I.

Definition. Let zy € X be fixed; we define a function p: I — X by

p(/{:) = hgn fk‘1k:2~~~kn (l’o)

Remark 3. By Lemma 3.1 the function p is well defined and does not depend

on zg € X.

If we take xg € @, then we would see that p(I) C . We will always suppose

T € Q.
Definition. We denote the set p(I) by K.

Proposition 3.1. The function p is uniformly continuous.

Proof. Let ¢ >0 and n. € N be so that [[7, p¥ < /|Q|. Let § =271,
for every k,h € I, di(k,h) <6 implies k; = h; Vj € N with j <n. and

then, if we suppose zg € Q,
dx (p(k),p(h))

(ne+1) ne+1
= 10 i (Fir o, (i Ry (20)): bt (P ey (20)))

(Hﬂ“)hmd (e oty (7005 Fi s, (0)) < !Q||Q|_8

Corollary 3.2. K is compact and K C Q.

Proposition 3.3. For every C' € B lim, D((F10F20---0F,)(C), K) = 0.
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Proof. Let 29 € Q, € >0 and n. € N be so that [}, p¥) < ¢/|Q|. For
every n € N with n >n. we have D(p,(m2. n(I)),K) <e.
Indeed, for every k € I, we have p(k) € K and

x (pn(miz.n (k). p(8)) < ((TL 0% ) (o, Yn 070 (00)
j=1

(Hp )IQ\<8

from which dx(pn(mi2,.. .(k)),K) < e. On the other hand, Vo € K there
exists k€I sothat p(k) =2 and then dx(pn(mio. .(I)),z)<e.
But

pn(ﬂm ,,,,, U U U {fk1k2 kn xo)} (310320"'03n)({$0})~

ki1=1ko=1 kn=1
Now, let C' € B: by Lemmas 2.3 and 2.2 it follows that Vn € N

D((F10F2 00 F)(C), (§1 0820+ 0 Fu) ({o}) < (ﬁ P)D(C. o))

then, if n > n,,
D((F1082005,)(C). K)
D((F108200Fa)(C), (Fr o020 0Fn)({z0}))

D(C.{zo})
D((10820--0Fu)({ro}), K) < €<1+LQ!>'

3.3. Some properties of K. We follow the notation of the previous para-
graphs.

Definition. Given a finite family of contraction maps G = {g1,92, -, 9m}
and a subset A of X, we say that A is invariant with respect to G if

G(A) = A.
Remark 4. 1If §, = § = {f1,fos---, fm} for every n € N, then K is
invariant with respect to §.

If there exists k € N such that §,.x = §, for all n € N, then K is
invariant with respect to 1 og20 -0 Fk.

Remark 5. If there exists n € N such that §,.x = §, forall k£ e N,
then there is a unique non-empty compact set H C X which is invariant with
respect to §,. Moreover,

mi ma
K= U~ U Firigein(
i1=112=1 in=1

Lemma 3.2. Let A = UL, A; C X. If A s connected, then |A| <
N
1 A
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Proof. We consider the case N = 2, the general statement follows by induction.
Let A= BJC be a connected subset of X andlet x,y € A. If z,y € B
or x,y € C; then dx(z,y) <|B|+|C|.
If € B and y € C, then Vz € B, Yw € C,

dX(xay) S dx(ZL',Z) + dX(Z7w) + dX(wvy) S |B| + dX<Zaw) + |C|
It follows that
|A| < |B| + |C| + inf {dx(z,w) | z€ B, we C}.

Let us suppose that inf{dx(z,w) | 2z € B, w € C} =¢ > 0; then B =
Usen Dx(x,e/4) and C" = U,ec Dx(y,€/4) are disjoint open sets whose union
contains AUB. O

Corollary 3.4. If lim, [T}_, >4 pgk) =0, then K s totally disconnected.

Proof. Let x,y € K with = # y and let n,, € N be such that

[Th, > o) < dx(z,y)/|Q] Vn € N with n > ng,. Then, if n > ny,
we have

K = liin(gl 0Fz0---0Fk)(Q)
= @020 0F) (It 0 Farz 00 Fu)(Q))

because, by Lemmas 2.2 and 2.3, §1,82,...,8n are contraction maps with
respect to the Hausdorff metric and then they are continuous. It follows that

K C(F10820-0Fn)(Q)

Now, let A C K be connected and such that z,y € A: we have

mi1  mo

kel U Ufme@

i1=112=1 in=1

and by Lemma 3.2

mi  Mma

A< 3 fi,

i1=110=1 in=1

mip  mso n mg

=PI Z(ﬁp§f)>|Q|=|Q|HZp§k)<dx(:c,y)§|A|. =

i1=110=1 in=1 k=11=1

3.4. Examples.
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3.4.1. Cantor sets in R. Let X be the set of real numbers with the Euclidean
distance; we construct a generalized version of the Cantor set. To do this,
we suppose that we are given a real number d €]0,1] and we construct two
sequences (t,) and (d,) in the following way:

o tg=1 and m,td =t ;

__ tn—1—mntn
o d, ="

Then the set K of the previous paragraph is obtained by setting
tn — 1)(t, + dy, ~1
[y = o Dt dn)

ln-1 My, —
Now we show some properties of the fractal set K so obtained. In the
definition of the functions p, we assume zy = 0.

1(1—m;5) VneN Viel,

Remark 6. The functions p, are given by
Palin, iz, ... i) = Y (i; — 1)(t; + d;). (1)
j=1

We prove this by induction: let n € N, we have fi(:)(O) = i(in—l)(tn%—dn) :
Let us suppose that for k e N 2 <k <n,

1 n
k .
£ i (0) = —>(1 = D)t + dy), (2)
tk—l j=k
then
k-1 k1), o(k 1 &
fi(k,li;)cmin(o) = fi(k,l )<fi(ki)k+1~--zn tf Z t + d; )
2 j=k—1

Then (2) holds for any k& <n and in particular

Pt 02, .5 in) = fijigei, (0) = i(% = 1)(t; +dj).

j=1
It follows that
400
p(i) =Y (i — 1)(t; +d;) Viel 3)
j=1
and
+o0
K:{Z(ij—l)(tﬂrdj) | i; € I VjeN}. (4)
j=1

Example 1. If m,, =2 Vn € N and d = log;2, then K is the classical
Cantor set.

Indeed, in this case t, = d, = 37", fl(”)(x) = x/3 and fén)(x) = (z +
2)/3 Vn € N and by Remark 4 K is invariant with respect to § = {fl(l), fg(l)}.
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It may also be noted that (4) becomes

+OOC~ )
K:{Zg“cje{oa} VJEN}.

J=1

Remark 7. Tt is easy to prove, by induction, that

2 ~i 1— ml_% n-l1 -3
VnENtn:<HmJ~) anddn:n<Hmj> )
j=1 my — 1\

Remark 8. From Remark 6 we have K C [0,1] and 0,1 € K.
Indeed, if we set k,h € I, k; =1, hj =m; for every j € N, then by (3) ,
p(k) =0, p(h) = jof(tj_l —tj))=ty=1andforall iel 0<p(i) < plh)=
1.
It may also be noted that 0 < fj(”)(:c) <1 Vx € [0,1] and for every
n,j € N, j <my,; then we can set @ = [0, 1].

Y

Remark 9. Given n € N, the [[;_;m; intervals of the form

[Dn (1,92, . . ., 1), pn(zl,zg,... ) Fn ]are pairwise disjoint and |p, (i1, ta, . .., i) —
(pn(kl,kg,...,kn)—l—tn)’ > d, for any different (i1, ia, ..., in), (k1, ko, ..., kn) €
L
Moreover, for all (iy,1s,...,i,41) € ]_["Jrl I; the interval [p, (i1, t2, ..., in),
pnli, da, ..., 1) +1,] contains [pn(zl,ZQ,.. an) (i1, 02, ..y int1) +tne1] and
mi ma
K= ﬂ ( Uu-- U [P 21,22,...,zn),pn(zl,z‘z,...,in)+tn}>.
i1=112=1 tn=1

Now we are going to prove that K 1is a d-set if and only if the sequence
(my,) is bounded.

Theorem 3.5. We have HY(K) =1 and so dimK = d.
Proof. See [3] Chapter 1, Theorem 1.15. O
Lemma 3.3. For every n € N and (iy,ia,...,1,) € [Ij=; I;, we have

Hd(Km [pn(ilaib s ain)apn(ilai% s 7Zn) +tn:|> = ti

Proof. Let n € N and (i, 4y, ... ,i,) € [Ij=; I;; we define

£ B () |palin iz, i) palin, 2, - in) + ta] = K ([0, 8],
flz) =2 —ppin,ia, ... 0y).
It is clear that 0 < f(z) < t,; moreover, f(z) € K by (3) and (1). Then f
is well defined.

The function f is one-to-one because it is injective and Vy € K N[0,t,], y =
f(y+ pnlir,is, ..., i,)). Moreover, f is an isometry and then, by Lemma 2.1,

HA(K N[0, a]) < HA(K Npnlin, iz, - in), palin, 2, - in) + t] ). By applying
the same arguments to f~! we obtain the opposite inequality.
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Finally,

1=HYK (Lnj nfj U <Kﬂ[pn(z'l,z'Q,...,z’n),pn(z'l,zg,...,z‘n)+tnD>

i1=1 io=1 in=1

_ ?mi ZZ ’H"(Kﬂ [Pulin, iz, - in), Pa(in, ia, i) H”D
_ (Hmj>Hd(K Mjo.4.])
and thianl
Hd<Kmpn i1yi2y oy in) s Daliny day o) + 8 D Hd<Kﬂ0 t )
~(Tim) =4 o

Proposition 3.6. The set K is a d-set if and only if the sequence (m,,)
15 bounded.

Proof. Let xy € K and r €]0,1]; by Remark 9, for every k € N there exist
(i1, 02, ... i) € [Iiy I; such that xq € [pr(i, iz, .., i), pe(it, iz, ., ix) + ta).
Let

k
n:min{k € N | 3(i1,49,...,1k) € [ L; so that
j=1

To € [pk(ibi% oy t) D, G, . dg) +tk] Clzg—r 20 +7”]}

(n is well defined because limy ¢ =0 by Remark 7). We prove that
1
—rt <K (k ﬂ[xo —r, X0+ 7’]) < oM rd (5)
M,

it will follow that K is a d-set if the sequence (m,,) is bounded.
By Lemma 3.3 Hd(K N[zo—r, x0+r]) >td =4 | /m,;if t, 1 <r, wewould

have 29 € [pn-1(i1,%2, .-, in-1),Pn-1(i1, 92, - - -, In-1) + tn_1] C [0 — 7,20 + 7]
and this is absurd; then the first inequality follows.
Let us prove the second inequality: we have [p, (i1, s, ..., ), p(i1, 2, . . ., i+

tn] C (w0 — 7,20 + 7] N[Pn-1(i1, 92, . - -, In-1), Pn-1(i1, 2, . ., In—1) + 1] and for
every 7 € N the following implications hold:
oif 1<j<i,1—1 then
[.I’O—T, $0+T] ﬂ[pnfl(ila 7;27 s >in727j)7pn71(i17 i27 s 7in727j>+tnfl] =9
because otherwise we would have
[Pn—1(i1,92, .« in—2,tn—1—1), Pn_1(i1,92, . . ., in—2, ln_1—1)F+tn_1] C [x0—
r,xo + 71);
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oif 7, 1+1<j<m,_; then
[ZL‘Q—T‘, $0+T] n[pn—l(ila ig, e ,’in_g,j),pn_l(il, ig, Ce ,in_g,j>+tn_1] =
because otherwise we would have
[Dr—1(i1,2, -« yin—9,tn—141), Dn_1(i1, 09, . . .y in—2,ln_1+1)+tn_1] C [xo—
r, To + 1.
Moreover, at least one of the intervals
[Dr—1(i1, 09, .y in—2,in—1 — 1), Pn_1(t1, 02, ..., in_2,4n—1 — 1) + t,—1] and
[Dn1(i1, i, .o yin—2,in—1 + 1), pn_1(i1,92, ... in_2,in—1 + 1) + t,—1] does not
intersect [zo — 7,29+ r] because otherwise we would have
[Drn_1(i1, %2, -+ yin_1) Pa1(i1, 02, - -« yin_1) + tn_1] C [xo — 7,20 + 1]
Then H? (K N[xo — 1m0 + r]) < 2td | =2m,td < 21Fdm, pd,
Now we suppose that the sequence (m,) is not bounded; by taking xy =10
and r, =t,+d, forevery n € N, we have

Hd<K Nxo — T, To + Tn]) _ Hd<K ﬂ[O,tnD _ td <mn _ 1>d

rd rd (tn+da)? — \ 3 _

Let (my,) be a subsequence of (m,) such that limjm,, = +oo; then

MK Nlwo = ags w0 + 7] )
lim =0
k rgk

because d< 1. O

Remark 10. If in the above proposition we suppose t;, < d; for all k € N,
then (5) becomes

1
— <K (k ﬂ[mo —r, o+ r]) < 29m,,r?. (6)
mn

We recall that by Remark 7 t, < d; if d < log(zmk_l) my. If d <logs 2, then
trx < dj independently of my.

Example 2. For the classical Cantor set, (6) gives
1
§rd < Hd<k: ﬂ[xo — 71,29+ r]) < oMdpd vy € K Wr €]0,1].

Now we estimate the entropy numbers of K under the assumption that
ty < dp VkeN.
To avoid tedious notation, we set for every k € N,

mi1 m2 Mn
Ok = U U U |:pn(217l277Zn>7pn(ll7l27’zn)+tn:|
11=114=1 in=1

By Remark 9 K = N} C.
Let k€N and nj = H§:1 my; then e, (K) < e,,(Ck) < t;/2.
Since the extreme points of the intervals of C} are in K, it follows that
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Let h € N be a divisor of my41: we compute epy,, (K).

The set Ciiq is a disjoint union of ng,q closed intervals with amplitude
tx+1 and mutual distance greater than or equal to tg,;. Since hny divides
N1 = Mpr1Ng, we can cover all the my,q closed intervals of Cy,; that are
included into a single interval of C} with h closed intervals of the form

Pr+1 <117227 sy Uk TH + 1>7pk:+1 (2177'27 ceey Uiy (lzﬂ) + thrl

0<l<h

and, as before, the extreme points of these intervals are in K so

1/m m
0= (M4 (7 )

and by Remark 7 we have
1—1
(h = 1)my{ + My — h
2R (myq — 1)
If h is not a divisor of my1, we have ep,, (K) < tr/(2h) and then

IS

Enny, () = (A ). (8)

e (K) < 5 hi ™! (hny) 4. (9)

Let |[mgi1/h] = max{n € N | n < my;1/h}; then we may not cover K by
using hny intervals of length (tx.1 + dii1)|mrr1/h| because at least one of
the intervals of Cjiq will not be covered; so it must be

1 m
Ehny, (K) > 5 (tog1 + dk+1){ kHJ,

h
ie.,
hi(1 m_%) m
() > S T { ’““J hng) . 10
Eh k( ) 2(mk+1 _ 1) h ( nk) d ( )
Finally, if [ € N [ < ng, then
Enni+i(K) = €, (K) (11)

because the additional [ intervals can not be equally distributed between the
connected components of Cj.

Example 3. Let K be the classical Cantor set; by (7) and (11) we have
1
—37k
2

It follows that the entropy numbers of the classical Cantor set have the fol-
lowing asymptotic behaviour:

egrpi(K) = 27! =

(see also [6], Example 2.2).



748 GIORGIO FOLLO

Remark 11. If the sequence (m,) is bounded, then K is a d-set by Propo-
sition 3.6 and we can apply Proposition 3.1 of [6] to see that there exist
a,b €]0,4o00] such that

an~i <ep(K) < bn~a Vn €N .
Moreover, by Corollary 2.7 of [6], the box dimension of K is d.

Remark 12. Let us suppose that the sequence (m,) is not bounded and
tr <di Vk e N. Let (my,) beasubsequence of (m,) such that limgm,, =

+o00; we set pp = H?ﬁfl m; for every k € N; then, by (7) we have
1 -1
p (K) = ipkd'

If m,, iseven, then, by setting 2h; = m,, , we have from (8)

1—1 1+
C 2V a(hy — Dhe+ by ° 12)
B 2hi(2hy, — 1) ‘

If m,, isodd, then, we set 2hy = m,, +1 and by (10) it follows

=

Enypi (K) (hapr)

> hl%(l - m;é) {mnkJ
2(mnk — 1) hk ’

=

5hkpk<K)(hkpk)
but |[my,,/hi] = |2 — h;'] = 1; then

hi (1= (2he — 1)71)
4(hy — 1)
Since limy hy, = 400, it follows from (12) and (13) that

Ehipr (Kv)(hkpk)é > (13)

=

limsup e, (K)nd = +o0.
3.4.2. Sierpinski gaskets. Let X be the plane R? with the Euclidean distance;
a generalized version of the Sierpinski gasket may be constructed in the following
way.

Let (k,) be a sequence of integer numbers, with k, > 2 for all n € N; the
sequence (m,,) is given by

kn 1
my =3 5= g kalky+1) VneN.
7=0

For all n € N, ¢ € I, the contraction fl-(") is given by
fi(z,y) <kn Y + (ai™, b,
where
0 _Fn = (P12 426-1) oy VBl = b = 1)

K %, SR %,
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and 0 < hz(n) < k,, is so that
h{™ h{™M 41
Yi<i< Y g
J=0 J=0
As before we set K = p(I).

Remark 13. If k, = 2 for all n € N, then K is the Sierpinski gasket.
Indeed, in this case, we have m,, =3 for all n € N and

A = (5 0)+ (5%,

29 L4
(n) _ (T y)
2 (J:ay) <272 9
) = (5.2) +(5.0) (1)
’ 279 2’

Remark 14. Even for the points of the Sierpinski gasket we can give a repre-
sentation by means of series.

For the sake of simplicity we only consider the case in which k, =2 Vn € N.
Let us consider the functions f,g:{1,2,3} — Z,

Li=1 1 i=1
(i) = oz=2,mw={0i>1.
2 1=3

(15)

Let x9 = (0,0), then for every n € N and iy,4s,...,4, € {1,2,3} we have

i) = 5 32 55 (706, VB(i). (16)
As in Remark 6, even (16) is proven by induction. Let n € N, by (14) and
(15) we have
7(0,0) = 7 (£), V3g(i)
Let us suppose that for k € N k£ < n,

fl(lckflil)c-&ﬂ’bn (O’O> = ; Z 2j1—k (f(l]), \/gg(ij))7

then

B 0.0 = 5 > (700, VEg(5) + 1 (7). VBa(i)
1
5

In particular, for k=1 we have (16).
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It follows that
~(£(0)),V3g(iy)) Viel

and

K= {;]f;( (i), V3g(ij)) | ij € {1,2,3} Vj eN}.

4. A MEASURE ON K

In this section X is a complete separable metric space.

We recall (§ 2.4) that for every n € N, 1o UM are real numbers
in ]0,1[ so that >0 l(n =1, 7, is a measure on I, defined by 7,(A) =
djeA lgm VA C I, and 7 is a unique Radon measure on I such that 7(I) =1
and 7;, X T, X -0 X T = T4, 4T for any distinct 4i,40,...,4, € N.

Definition. We set ug = py7.

Remark 1. K is the support of ux and ux(K)=1.

Definition. Let (1,) be a sequence of Radon measures on X. We say that
the sequence (v,) converges weakly to a Radon measure v if

hgl!fdun :/fdu Vf € Cu(X).

X
We denote this fact by writing v, — v.
Remark 2. We recall that if v is a Borel regular measure on X and for

every x € X thereis r > 0 such that v(Bx(x,7)) < +00, then v is a Radon
measure on X. For the proof see [8], chapter 5, theorem V.5.3.

Proposition 4.1. Let v be a Borel regular measure on X, with bounded
support and such that v(X)=1. For every n € N we set

mi1 M2

Z Z Z ( H l(k )filig---inﬁy‘

i1=112=1 in=1
Then v, — lk.
Proof. Let v be a Borel regular measure on X with bounded support and

such that v(X) = 1; let C be the support of v and let f € C.(X). We
prove that

lim ! fduy, = )[ Fdux.

Let ¢ >0 and § > 0 be such that [f(z) — f(y)] < e Va,y € X with
dx(z,y) < 0; we consider n. € N such that

p(k)> supdx(x,xo) < 4. (1)

zeC
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Moreover, let n? € N be such that |Q| H?il pY¥) < 6; for every n € N with
n >n’ we have

dx (pn(m12,..n(2)), p(i)) = limdx (fz‘lz'2~-z‘n (20), Frizin (F 2 i (l’o)))

S!Q\Hp(j)<5 Viel YneN n>n!
j=1
and then
Fu(m.n(@) — F((0)| < Vie T ¥neN n>nl. )

Then, if n > max{n.,n’}, we have

o o

< Zi:“?;' %1 (lﬁllf,f)( f(firigein (2))dv(2) —f(filiz---in($0))>|
" z‘?:uggil --i§§1<lﬁl§f)>f Frizin (0)) /f

))dv(a /fhm%%WM)

<>y (1)

i1=lig=1  in=1 k=1 4

+ Fpulinyin, .. in))d(my X T X -+ X 1) /f
IT_ %

=D I %(ﬁﬂﬂ]mwu>ﬂm%mWM>
i1=lis=1  in=1 k=1

+ /f P (12,0 ( /f

< % f Z ( | ( /‘f fmg zn fmz “in IO ‘dV
i1=1ip=1 1 VNk=1

+/‘fpn7rl2 _____ 2(7))) pz‘de

By (1)

dx (filiz---in (@), firizin (l'o)) <o Vrel
and then

| Fisizein (@) = f(firizean (20))] < & Y € C. (3)
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Then, by (3) and (2) it follows

‘/den /fd/lK‘ % % Z (ﬁlfk >€V(C)+€T(]) = 2¢

i1=110=1 in=1 ~k=1

because

$ 58 ()

i1=1149=1 in=1 k=1
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