ON SOME PROPERTIES OF r-MAXIMAL SETS AND Q_{1-N} -REDUCIBILITY

R. OMANADZE

Abstract. It is shown that if M_1 , M_2 are r-maximal sets and $M_1 \equiv Q_{1-N} M_2$, then $M_1 \equiv {}_{m} M_2$. In addition, we prove that there exists a simultaneously Q_{1-N} - and W-complete recursively enumerable set which is not sQ-complete.

2000 Mathematics Subject Classification: 03D25, 03D30.

Key words and phrases: Recursively enumerable set, maximal set, r-maximal set, Q_{1-N} -reducibility, m-reducibility.

A set A is Q-reducible to a set B, written $A \leq_Q B$ (see [1, p. 207]), if there exists a general recursive function (GRF) f such that $(\forall x)$ ($x \in A \iff W_{f(x)} \subseteq B$). If, in addition, there exists a GRF g such that $(\forall x)(\forall y)$ ($y \in W_{f(x)} \implies y < g(x)$), then a set A is sQ-reducible to a set B, written $A \leq_{sQ} B$.

A set A is Q_{1-N} -reducible to a set B, written $A \leq Q_{1-N}B$, if there exists a GRF f such that the following relations hold:

- 1. $(\forall x) (x \in A \iff W_{f(x)} \subseteq B)$,
- 2. $(\forall x)(\forall y) (x \neq y \Longrightarrow W_{f(x)} \cap W_{f(y)} = \varnothing),$
- 3. $\bigcup_{x \in N} W_{f(x)}$ is recursive.

The notion of Q_{1-N} -reducibility was introduced by Bulitko in [2].

In this work some properties of Q_{1-N} -reducibility are investigated. In particular, it is proved that if M_1 , M_2 are r-maximal sets and $M_1 \equiv Q_{1-N}M_2$, then $M_1 \equiv {}_{m}M_2$. It is shown that there exists a simultaneously Q_{1-N} - and W-complete set which is not sQ-complete. All the notions and notation used without definition can be found in [1].

An infinite set A is cohesive if there is no recursively enumerable (RE) set W such that $W \cap A$ and $\overline{W} \cap A$ are both infinite.

An infinite set A is r-cohesive if there is no recursive set R such that $R \cap A$ and $\overline{R} \cap A$ are both infinite.

An RE set A is maximal (r-maximal) if M is cohesive (r-cohesive).

In [3] it is proved that if M is a maximal set and A is an arbitrary set, then

$$M \equiv {}_{Q}A \Longrightarrow M \leq {}_{m}A.$$

The following statement shows that a maximal set in this theorem cannot be replaced by an r-maximal one.

Proposition 1. There are r-maximal Q-complete sets M_1 and M_2 such that $M_1|_mM_2$.

Proof. Let M_1 be an r-maximal Q-complete set. Then M_1 is not a hyperhypersimple set. Therefore there is a GRF f such that

$$(\forall x) \left(W_{f(x)} \cap \overline{M}_1 \neq \varnothing \right), \quad (\forall x) (\forall y) \left(x \neq y \Longrightarrow W_{f(x)} \cap W_{f(y)} = \varnothing \right).$$

Consider the set

$$M_2 = M_1 \bigcup \Big(\bigcup_{x \in K} W_{f(x)}\Big),$$

where K is a creative set. Then M_2 is an r-maximal Q-complete set and $|M_2\backslash M_1|=\infty$. (Note that the sets M_1 and M_2 could be built using Theorem 1 from [4] and Proposition X.4.3 from [5], too.) In [6] it is shown that if M_1 , M_2 are r-maximal sets, $M_1 \subset M_2$ and $|M_2\backslash M_1|=\infty$, then $M_1|_mM_2$. \square

Lemma 1. Let M be an r-maximal set. Then

$$(\forall f \text{ GRF}) \left(\left(|f(\overline{M})| = \infty \& f(\overline{M}) \subseteq \overline{M} \right) \right)$$

$$\Longrightarrow \left| \left\{ x : x \in \overline{M} \& f(x) \neq x \right\} \right| < \infty \right). \tag{1}$$

Proof. Kobzev [7] showed that if M is an r-maximal set, then

$$(\forall f \text{ GRF}) \left(\left| \left\{ f(x) : x \in \overline{M} \& f(x) \in \overline{M} \& x \neq f(x) \right\} \right| < \infty \right). \tag{2}$$

Let

$$(\exists f_1 \text{ GRF}) \left(|f_1(\overline{M})| = \infty \& f_1(\overline{M}) \subseteq \overline{M} \\ \& \left| \left\{ x : x \in \overline{M} \& f(x) \neq x \right\} \right| = \infty \right).$$
 (3)

By (2) and (3), we have $|\{f_1(x): x \in \overline{M} \& f_1(x) = x\}| = \infty$. From this it follows that

$$\left|\left\{x:\ x\in\overline{M}\ \&\ f_1(x)=x\right\}\right|=\infty. \tag{4}$$

If the statement of Lemma 1 is false, then from (4) we have that the recursive sets $R_1 = \{x : f_1(x) \neq x\}$ and $R_2 = \{x : f_1(x) = x\}$ give a splitting of \overline{M} into two infinite sets, which is impossible. \square

By using the construction of Theorem 1 [3], we shall prove the following statement.

Theorem 1. Let M_1 and M_2 be r-maximal sets. Then

$$M_1 \equiv {}_{Q_{1-N}} M_2 \Longrightarrow M_1 \equiv {}_m M_2.$$

Proof. Let M_1 and M_2 be r-maximal sets, $M_1 \leq_{Q_{1-N}} M_2$ via a GRF f and $M_2 \leq_{Q_{1-N}} M_1$ via a GRF g. Using the recursively enumerability of the sets M_1 and M_2 , we can assume that

$$(\exists f_1 \text{ GRF})(\forall x) \left(W_{f_1(x)} = M_2 \cup W_{f(x)}\right),$$
$$(\exists g_1 \text{ GRF})(\forall x) \left(W_{g_1(x)} = M_1 \cup W_{g(x)}\right).$$

By r-maximality of the sets M_1 and M_2 , from the relations above, in particular, it follows that

$$\bigcup_{x \in N} W_{f_1(x)} = {}^*N \text{ and } \bigcup_{x \in N} W_{g_1(x)} = {}^*N,$$
 (5)

where $X = {}^*Y$ stands for $|(X \backslash Y) \cup (Y \backslash X)| < \infty$.

Let us define a partial recursive function (PRF) φ as follows. We compute simultaneously $\{W_{g_1(i)}\}_{i\in N}$ and $\{W_{f_1(j)}\}_{j\in N}$ and, for given z, seek for first integers x, y (if they exist) such that $z\in W_{g_1(y)}$ & $y\in W_{f_1(x)}$. If we can find such x and y, then we let $\varphi(z)=x$. It is clear that if $z\in \overline{M}_1$, and $\varphi(z)$ is defined, then $\varphi(z)\in \overline{M}_1$.

From the definition of the function φ and from (5) it is clear, that φ is defined for almost all points of the set N.

Lemma 2.
$$|\varphi(\overline{M}_1)| = \infty$$
.

Proof. From the recursiveness of the set $\bigcup_{i\in N} W_{g(i)}$ and from the condition that $(\forall x)(\forall y) (x \neq y \Longrightarrow W_{g(x)} \cap W_{g(y)} = \varnothing)$ it follows that $(\forall i) (W_{g(i)}$ is recursive). Let us show that $(\forall x) (|W_{g(x)} \cap \overline{M}_1| < \infty)$ and, hence,

$$(\forall x) \left(|W_{g_1(x)} \cap \overline{M}_1| < \infty \right). \tag{6}$$

Let us assume the contrary and let

$$(\exists x_1) \left(|W_{g(x_1)} \cap \overline{M}_1| = \infty \right). \tag{7}$$

Then by the nonrecursiveness of the set \overline{M}_2 ,

$$\left| \overline{M}_1 \backslash \left(W_{g(x_1)} \cap \overline{M}_1 \right) \right| = \infty. \tag{8}$$

Conditions (7) and (8) yield a contradiction to the r-maximality of the set M_1 since the set $W_{g(x_1)}$ is recursive.

Thus, condition (6) holds. Now from the definition of the function φ it is clear that $|\varphi(\overline{M}_1)| = \infty$. \square

Hence the function φ is defined for almost all points of the set N, $\varphi(\overline{M}_1) \subseteq \overline{M}_1$ and $|\varphi(\overline{M}_1)| = \infty$.

It is easy to show that Lemma 1 is valid for every PRF $\tilde{\varphi}$ which is defined for almost all points of the set N. Therefore it is possible apply Lemma 1 for φ and, consequently, we have

$$\left|\left\{x:\ x\in\overline{M}_1\ \&\ \varphi(x)\ \text{ defined }\ \&\ \varphi(x)\neq x\right\}\right|<\infty.$$

Therefore for almost all x we get

$$x \in \overline{M}_1 \Longrightarrow \left| \left\{ y: \ y \in W_{f_1(x)} \ \& \ x \in W_{g_1(y)} \right\} \right| = 1.$$

Then, for almost all x, we have:

$$x \in \overline{M}_1 \Longrightarrow x \in W_{g_1(y)} \& y \in W_{f_1(x)} \Longrightarrow y \in \overline{M}_2,$$

 $x \in M_1 \Longrightarrow x \in W_{g_1(y)} \& y \in W_{f_1(x)} \Longrightarrow y \in M_2.$

Let, for all x, $\tilde{f}(x)$ be the first element which appears in the computation of the set $\{y: y \in W_{f_1(x)} \& x \in W_{g_1(y)}\}$. Then with the help of \tilde{f} it is possible to construct a GRF which m-reduces the set M_1 to the set M_2 .

By symmetry the conditions of the theorem for the sets M_1 and M_2 yield $M_2 \leq_m M_1$. \square

Theorem 2. Let A be a maximal set and B be an r-maximal set. Then

$$A \leq Q_{1-N}B \leq QA \Longrightarrow A \equiv {}_{m}B.$$

Proof. Let the conditions of the theorem be satisfied. Then by Theorem 1 [3] $A \leq_m B$. Note here that it is possible to prove Theorem 2 without appealing to Theorem 1 [3]. If it is shown that $B \leq_m A$, then by the well-known Young theorem (see [1, Theorem XV]) we will have $B \equiv_m A$. Thus, for the proof of Theorem 2 it is sufficient to show that $B \leq_m A$.

Let $A \leq Q_{1-N}B$ via a GRF f and $B \leq QA$ via a GRF g. Using the recursive enumerability of the sets A and B, we can assume that

$$(\exists f_1 \text{ GRF})(\forall x) \left(W_{f_1(x)} = B \cup W_{f(x)}\right),$$
$$(\exists g_1 \text{ GRF})(\forall x) \left(\left(x \in B \iff W_{g_1(x)} \subseteq A\right)\right)$$
&
$$\left(x \in \overline{B} \implies |W_{g_1(x)} \cap \overline{A}| < \infty\right) \& A \subseteq W_{g_1(x)}\right).$$

From the last relations, in particular, we obtain

$$\bigcup_{x \in N} W_{f_1(x)} = {}^*N$$
 and $\bigcup_{x \in N} W_{g_1(x)} = {}^*N$.

Let us define a PRF φ as follows. We compute simultaneously $\{W_{f(i)}\}_{i\in N}$ and $\{W_{g_1(j)}\}_{j\in N}$ and, for given z, we seek (if they exist) for first integers x, y such that

$$z \in W_{f(y)} \& y \in W_{g_1(x)}.$$

If we can find such x and y, then we let $\varphi(z)=x$. It is clear that if $z\in \overline{B}$ and $\varphi(z)$ is defined, then $\varphi(z)\in \overline{B}$.

Similarly to the proof of Lemma 2 we can prove

Lemma 3. $|\varphi(\overline{B})| = \infty$.

Now the proof of Theorem 2 can be completed in exactly the same way as that of Theorem 1. \Box

Remark. Kobzev [7] proved that if M_1 and M_2 are r-maximal sets and $M_1 \equiv {}_{\text{btt}}M_2$, then $M_1 \equiv {}_{m}M_2$.

An RE set A is finitely strongly hypersimple if it is coinfinite and if there is no GRF f such that:

- (1) $(\forall x) (W_{f(x)} \cap \overline{A} \neq \varnothing),$
- (2) $(\forall x)(\forall y)(x \neq y \Longrightarrow W_{f(x)} \cap W_{f(y)} = \varnothing),$
- $(3) (\forall x) (|W_{f(x)}| < \infty),$
- $(4) \bigcup_{x \in N} W_{f(x)} = N.$

It is easy to show that condition (4) can be replaced by the condition

 $(4') \bigcup_{x \in N} W_{f(x)}$ is recursive.

Proposition 2. A coinfinite RE set A is finitely strongly hypersimple if and only if it has no Q_{1-N} -complete superset.

Proof. Let a coinfinite RE set A be not finitely strongly hypersimple. Then there is a GRF f such that conditions (1)–(3) and (4') are valid. Consider the set

$$B = A \bigcup \left(\bigcup_{x \in K} W_{f(x)}\right),\,$$

where K is a creative set and, hence, Q_{1-N} -complete. Then the set B is Q_{1-N} -complete.

Let A be a finitely strongly hypersimple set, B be a Q_{1-N} -complete set and $A \subseteq B$, C be a RE set such that there is an infinite recursive set $R \subseteq \overline{C}$, $C \leq Q_{1-N}B$ via a GRF g, h is a one-to-one GRF, Val h = R. Let us define a GRF f as follows:

$$(\forall x) \left(W_{f(x)} = W_{gh(x)} \right).$$

Then the function f satisfies the conditions (1)–(3) and (4'), hence, the set A is not a finitely strongly hypersimple set, which is a contradiction. \square

Corollary. There is a Q-complete, but not a Q_{1-N} -complete RE set.

Proof. It is known [4] that there is a Q-complete finitely strongly hypersimple set. \square

Theorem 1 from [8] asserts that there is a simultaneously Q- and W-complete RE set, which is not sQ-complete. Since there is a Q-complete, but not Q_{1-N} -complete RE set, the following theorem is a stronger statement than Theorem 1 [8].

Theorem 3. There is a simultaneously Q_{1-N} - and W-complete RE set which is not sQ-complete.

Proof. First, let us show that there is a Q_{1-N} -complete, but not a W-complete RE set. Let A be a hypersimple, but not finitely strongly hypersimple set. Then there is a GRF f such that conditions (1)–(3) and (4') are valid. Consider the set

 $B = A \bigcup \left(\bigcup_{x \in K} W_{f(x)}\right),\,$

where K is a creative set. Then the set B is a Q_{1-N} -complete hypersimple set. It is known [1], that a hypersimple set is not W-complete. Thus there is a Q_{1-N} -complete, but not a W-complete RE set.

It is known [9] that every RE W-degree contains a nowhere simple set.

Let A_1 be a Q_{1-N} -complete but not a W-complete RE set, B_1 be a W-complete nowhere simple set. The set $A_1 \oplus B_1 = \{2x : x \in A_1\} \cup \{2x+1 : x \in B_1\}$ is simultaneously Q_{1-N} - and W-complete. Let us assume that the set $A_1 \oplus B_1$ is sQ-complete and S is a simple sQ-complete set. Then $S \leq {}_{sQ}A_1 \oplus B_1$. From this, by Theorem 2 [8], we have $S \leq {}_{sQ}A_1$, i.e., the set A_1 is sQ-complete, which is a contradiction. \square

References

- 1. H. ROGERS, Jr. Theory of recursive functions and effective computability. *McGraw-Hill, New York*, 1967.
- 2. V. K. Bulitko, On ways for characterizing complete sets. (Russian) *Izv. Akad. Nauk SSSR*, Ser. Math. **55**(1991), No. 2, 227–253; English transl.: Math. USSR, *Izv.* **38**(1992), No. 2, 225–249.
- 3. R. Sh. Omanadze, Upper semilattice of recursively enumerable Q-degrees. (Russian) Algebra i Logika 23(1984), No. 2, 175–184; English transl.: Algebra and Logic 23(1984), 124–130.
- R. Sh. Omanadze, Major sets, classes of simple sets, and Q-complete sets. (Russian) Mat. Zametki 71(2002), No. 1, 100-108; English transl.: Math. Notes 71(2002), No. 1, 90-97.
- 5. R. I. Soare, Recursively enumerable sets and degrees. Springer-Verlag, Berlin, 1987.
- 6. A. N. Degtev, m-degrees of simple sets. (Russian) Algebra i Logika 11(1972), No. 2, 130–139; English transl.: Algebra and Logic 11(1972), 74–80.
- 7. G. N. KOBZEV, On btt-reducibilities. (Russian) Algebra i Logika 12(1973), No. 4, 433–444; English transl.: Algebra and Logic 12(1973), 242–248.
- 8. R. Sh. Omanadze, Relations between some reducibilities. (Russian) Algebra i Logika **33**(1994), No. 6, 681–688; English transl.: Algebra and Logic **33**(1994), 381–385.
- 9. R. A. Shore, Nowhere simple sets and the lattice of recursively enumerable sets. *J. Symb. Logic* **43**(1978), No. 2, 322–330.

(Received 1.05.2001)

Author's Address:

- I. Vekua Institute of Applied Mathematics
- I. Javakhishvili Tbilisi State University
- 2. University St., Tbilisi 380043

Georgia

E-mail: omanr@viam.hepi.edu.ge