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ON SOME PROPERTIES OF r-MAXIMAL SETS AND
Q1−N -REDUCIBILITY

R. OMANADZE

Abstract. It is shown that if M1, M2 are r-maximal sets and M1 ≡ Q1−N M2,
then M1 ≡ mM2. In addition, we prove that there exists a simultaneously
Q1−N - and W -complete recursively enumerable set which is not sQ-complete.
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A set A is Q-reducible to a set B, written A ≤ QB (see [1, p. 207]), if there
exists a general recursive function (GRF) f such that (∀x) (x ∈ A ⇐⇒ Wf(x) ⊆
B). If, in addition, there exists a GRF g such that (∀x)(∀y) (y ∈ Wf(x) =⇒ y <
g(x)), then a set A is sQ-reducible to a set B, written A ≤ sQB.

A set A is Q1−N -reducible to a set B, written A ≤ Q1−N
B, if there exists a

GRF f such that the following relations hold:
1. (∀x) (x ∈ A ⇐⇒ Wf(x) ⊆ B),
2. (∀x)(∀y) (x 6= y =⇒ Wf(x) ∩Wf(y) = ∅),
3. ∪

x∈N
Wf(x) is recursive.

The notion of Q1−N -reducibility was introduced by Bulitko in [2].
In this work some properties of Q1−N -reducibility are investigated. In par-

ticular, it is proved that if M1, M2 are r-maximal sets and M1 ≡ Q1−N
M2,

then M1 ≡ mM2. It is shown that there exists a simultaneously Q1−N - and
W -complete set which is not sQ-complete. All the notions and notation used
without definition can be found in [1].

An infinite set A is cohesive if there is no recursively enumerable (RE) set W
such that W ∩ A and W ∩ A are both infinite.

An infinite set A is r-cohesive if there is no recursive set R such that R ∩ A
and R ∩ A are both infinite.

An RE set A is maximal (r-maximal) if M is cohesive (r-cohesive).
In [3] it is proved that if M is a maximal set and A is an arbitrary set, then

M ≡ QA =⇒ M ≤ mA.

The following statement shows that a maximal set in this theorem cannot be
replaced by an r-maximal one.
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Proposition 1. There are r-maximal Q-complete sets M1 and M2 such that
M1|mM2.

Proof. Let M1 be an r-maximal Q-complete set. Then M1 is not a hyperhyper-
simple set. Therefore there is a GRF f such that

(∀x)
(
Wf(x) ∩M1 6= ∅

)
, (∀x)(∀y)

(
x 6= y =⇒ Wf(x) ∩Wf(y) = ∅

)
.

Consider the set

M2 = M1

⋃ ( ⋃

x∈K

Wf(x)

)
,

where K is a creative set. Then M2 is an r-maximal Q-complete set and
|M2\M1| = ∞. (Note that the sets M1 and M2 could be built using Theo-
rem 1 from [4] and Proposition X.4.3 from [5], too.) In [6] it is shown that if
M1, M2 are r-maximal sets, M1 ⊂ M2 and |M2\M1| = ∞, then M1|mM2.

Lemma 1. Let M be an r-maximal set. Then

(∀f GRF)
((
|f(M)| = ∞ & f(M) ⊆ M

)

=⇒
∣∣∣
{
x : x ∈ M & f(x) 6= x

}∣∣∣ < ∞
)
. (1)

Proof. Kobzev [7] showed that if M is an r-maximal set, then

(∀f GRF)
(∣∣∣

{
f(x) : x ∈ M & f(x) ∈ M & x 6= f(x)

}∣∣∣ < ∞
)
. (2)

Let

(∃f1 GRF)
(
|f1(M)| = ∞ & f1(M) ⊆ M

&
∣∣∣
{
x : x ∈ M & f(x) 6= x

}∣∣∣ = ∞
)
. (3)

By (2) and (3), we have |{f1(x) : x ∈ M & f1(x) = x}| = ∞. From this it
follows that

∣∣∣
{
x : x ∈ M & f1(x) = x

}∣∣∣ = ∞. (4)

If the statement of Lemma 1 is false, then from (4) we have that the recursive
sets R1 = {x : f1(x) 6= x} and R2 = {x : f1(x) = x} give a splitting of M into
two infinite sets, which is impossible.

By using the construction of Theorem 1 [3], we shall prove the following
statement.

Theorem 1. Let M1 and M2 be r-maximal sets. Then

M1 ≡ Q1−N
M2 =⇒ M1 ≡ mM2.
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Proof. Let M1 and M2 be r-maximal sets, M1 ≤ Q1−N
M2 via a GRF f and

M2 ≤ Q1−N
M1 via a GRF g. Using the recursively enumerability of the sets M1

and M2, we can assume that

(∃f1 GRF)(∀x)
(
Wf1(x) = M2 ∪Wf(x)

)
,

(∃g1 GRF)(∀x)
(
Wg1(x) = M1 ∪Wg(x)

)
.

By r-maximality of the sets M1 and M2, from the relations above, in partic-
ular, it follows that

⋃

x∈N

Wf1(x) = ∗N and
⋃

x∈N

Wg1(x) = ∗N, (5)

where X = ∗Y stands for |(X\Y ) ∪ (Y \X)| < ∞.
Let us define a partial recursive function (PRF) ϕ as follows. We compute

simultaneously {Wg1(i)}i∈N and {Wf1(j)}j∈N and, for given z, seek for first inte-
gers x, y (if they exist) such that z ∈ Wg1(y) & y ∈ Wf1(x). If we can find such

x and y, then we let ϕ(z) = x. It is clear that if z ∈ M1, and ϕ(z) is defined,
then ϕ(z) ∈ M1.

From the definition of the function ϕ and from (5) it is clear, that ϕ is defined
for almost all points of the set N .

Lemma 2. |ϕ(M1)| = ∞.

Proof. From the recursiveness of the set ∪
i∈N

Wg(i) and from the condition that

(∀x)(∀y) (x 6= y =⇒ Wg(x) ∩Wg(y) = ∅) it follows that (∀i) (Wg(i) is recursive).

Let us show that (∀x) (|Wg(x) ∩M1| < ∞) and, hence,

(∀x)
(
|Wg1(x) ∩M1| < ∞

)
. (6)

Let us assume the contrary and let

(∃x1)
(
|Wg(x1) ∩M1| = ∞

)
. (7)

Then by the nonrecursiveness of the set M2,
∣∣∣∣M1\

(
Wg(x1) ∩M1

)∣∣∣∣ = ∞. (8)

Conditions (7) and (8) yield a contradiction to the r-maximality of the set
M1 since the set Wg(x1) is recursive.

Thus, condition (6) holds. Now from the definition of the function ϕ it is
clear that |ϕ(M1)| = ∞.

Hence the function ϕ is defined for almost all points of the set N , ϕ(M1) ⊆ M1

and |ϕ(M1)| = ∞.
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It is easy to show that Lemma 1 is valid for every PRF ϕ̃ which is defined
for almost all points of the set N . Therefore it is possible apply Lemma 1 for
ϕ and, consequently, we have

∣∣∣
{
x : x ∈ M1 & ϕ(x) defined & ϕ(x) 6= x

}∣∣∣ < ∞.

Therefore for almost all x we get

x ∈ M1 =⇒
∣∣∣
{
y : y ∈ Wf1(x) & x ∈ Wg1(y)

}∣∣∣ = 1.

Then, for almost all x, we have:

x ∈ M1 =⇒ x ∈ Wg1(y) & y ∈ Wf1(x) =⇒ y ∈ M2,

x ∈ M1 =⇒ x ∈ Wg1(y) & y ∈ Wf1(x) =⇒ y ∈ M2.

Let, for all x, f̃(x) be the first element which appears in the computation of

the set {y : y ∈ Wf1(x) & x ∈ Wg1(y)}. Then with the help of f̃ it is possible to
construct a GRF which m-reduces the set M1 to the set M2.

By symmetry the conditions of the theorem for the sets M1 and M2 yield
M2 ≤ mM1.

Theorem 2. Let A be a maximal set and B be an r-maximal set. Then

A ≤ Q1−N
B ≤ QA =⇒ A ≡ mB.

Proof. Let the conditions of the theorem be satisfied. Then by Theorem 1 [3]
A ≤ mB. Note here that it is possible to prove Theorem 2 without appealing
to Theorem 1 [3]. If it is shown that B ≤ mA, then by the well-known Young
theorem (see [1, Theorem XV]) we will have B ≡ mA. Thus, for the proof of
Theorem 2 it is sufficient to show that B ≤ mA.

Let A ≤ Q1−N
B via a GRF f and B ≤ QA via a GRF g. Using the recursive

enumerability of the sets A and B, we can assume that

(∃f1 GRF)(∀x)
(
Wf1(x) = B ∪Wf(x)

)
,

(∃g1 GRF)(∀x)
((

x ∈ B ⇐⇒ Wg1(x) ⊆ A
)

&
(
x ∈ B =⇒ |Wg1(x) ∩ A| < ∞

)
& A ⊆ Wg1(x)

)
.

From the last relations, in particular, we obtain
⋃

x∈N

Wf1(x) = ∗N and
⋃

x∈N

Wg1(x) = ∗N.

Let us define a PRF ϕ as follows. We compute simultaneously {Wf(i)}i∈N

and {Wg1(j)}j∈N and, for given z, we seek (if they exist)for first integers x, y
such that

z ∈ Wf(y) & y ∈ Wg1(x).

If we can find such x and y, then we let ϕ(z) = x. It is clear that if z ∈ B and
ϕ(z) is defined, then ϕ(z) ∈ B.
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Similarly to the proof of Lemma 2 we can prove

Lemma 3. |ϕ(B)| = ∞.

Now the proof of Theorem 2 can be completed in exactly the same way as
that of Theorem 1.

Remark. Kobzev [7] proved that if M1 and M2 are r-maximal sets and M1 ≡
bttM2, then M1 ≡ mM2.

An RE set A is finitely strongly hypersimple if it is coinfinite and if there is
no GRF f such that:

(1) (∀x) (Wf(x) ∩ A 6= ∅),
(2) (∀x)(∀y) (x 6= y =⇒ Wf(x) ∩Wf(y) = ∅),
(3) (∀x) (|Wf(x)| < ∞),
(4) ∪

x∈N
Wf(x) = N .

It is easy to show that condition (4) can be replaced by the condition
(4′) ∪

x∈N
Wf(x) is recursive.

Proposition 2. A coinfinite RE set A is finitely strongly hypersimple if and
only if it has no Q1−N -complete superset.

Proof. Let a coinfinite RE set A be not finitely strongly hypersimple. Then
there is a GRF f such that conditions (1)–(3) and (4′) are valid. Consider the
set

B = A
⋃ ( ⋃

x∈K

Wf(x)

)
,

where K is a creative set and, hence, Q1−N -complete. Then the set B is Q1−N -
complete.

Let A be a finitely strongly hypersimple set, B be a Q1−N -complete set and
A ⊆ B, C be a RE set such that there is an infinite recursive set R ⊆ C,
C ≤ Q1−N

B via a GRF g, h is a one-to-one GRF, Val h = R. Let us define a
GRF f as follows:

(∀x)
(
Wf(x) = Wgh(x)

)
.

Then the function f satisfies the conditions (1)–(3) and (4′), hence, the set A
is not a finitely strongly hypersimple set, which is a contradiction.

Corollary. There is a Q-complete, but not a Q1−N -complete RE set.

Proof. It is known [4] that there is a Q-complete finitely strongly hypersimple
set.

Theorem 1 from [8] asserts that there is a simultaneously Q- and W -complete
RE set, which is not sQ-complete. Since there is a Q-complete, but not Q1−N -
complete RE set, the following theorem is a stronger statement than Theorem 1
[8].

Theorem 3. There is a simultaneously Q1−N - and W -complete RE set which
is not sQ-complete.
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Proof. First, let us show that there is a Q1−N -complete, but not a W -complete
RE set. Let A be a hypersimple, but not finitely strongly hypersimple set. Then
there is a GRF f such that conditions (1)–(3) and (4′) are valid. Consider the
set

B = A
⋃ ( ⋃

x∈K

Wf(x)

)
,

where K is a creative set. Then the set B is a Q1−N -complete hypersimple
set. It is known [1], that a hypersimple set is not W -complete. Thus there is a
Q1−N -complete, but not a W -complete RE set.

It is known [9] that every RE W -degree contains a nowhere simple set.
Let A1 be a Q1−N -complete but not a W -complete RE set, B1 be a W -

complete nowhere simple set. The set A1 ⊕ B1 = {2x : x ∈ A1} ∪ {2x + 1 :
x ∈ B1} is simultaneously Q1−N - and W -complete. Let us assume that the set
A1⊕B1 is sQ-complete and S is a simple sQ-complete set. Then S ≤ sQA1⊕B1.
From this, by Theorem 2 [8], we have S ≤ sQA1, i.e., the set A1 is sQ-complete,
which is a contradiction.
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