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ON SOME PROPERTIES OF ~-MAXIMAL SETS AND
@1-n-REDUCIBILITY

R. OMANADZE

Abstract. It is shown that if M, My are r-maximal sets and My = g, _, Mo,
then M; = ,,M>. In addition, we prove that there exists a simultaneously
Q1_n- and W-complete recursively enumerable set which is not s@Q-complete.
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A set A is Q-reducible to a set B, written A < B (see [1, p. 207]), if there
exists a general recursive function (GRF) f such that (V) (x € A <= Wy, C
B). If, in addition, there exists a GRF g such that (Vz)(Vy) (y € Wy =y <
g(x)), then a set A is sQ-reducible to a set B, written A < ;oB.

A set A is Q1_n-reducible to a set B, written A < g, , B, if there exists a
GRF f such that the following relations hold:

1. (VZL‘) (:E €A== Wf(x) - B),

2. (Vo) (vy) (x # y = Wi N W) = 9),

3. xLeJNWf(””) is recursive.

The notion of @Q;_n-reducibility was introduced by Bulitko in [2].

In this work some properties of )1_n-reducibility are investigated. In par-
ticular, it is proved that if M;, M, are r-maximal sets and M; = o, Mo,
then My = ,,Ms. It is shown that there exists a simultaneously ();_y- and
W-complete set which is not s@Q)-complete. All the notions and notation used
without definition can be found in [1].

An infinite set A is cohesive if there is no recursively enumerable (RE) set W
such that W N A and W N A are both infinite.

An infinite set A is r-cohesive if there is no recursive set R such that R N A
and RN A are both infinite.

An RE set A is maximal (r-maximal) if M is cohesive (r-cohesive).

In [3] it is proved that if M is a maximal set and A is an arbitrary set, then

The following statement shows that a maximal set in this theorem cannot be
replaced by an r-maximal one.
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Proposition 1. There are r-maximal QQ-complete sets My and My such that
M| M.

Proof. Let M; be an r-maximal ()-complete set. Then M; is not a hyperhyper-
simple set. Therefore there is a GRF f such that

(v2) (Wi N My £ 2),  (v2)(Wy) (2 £y = Wy 0 Wy = 2).

Consider the set

M, = M1U< U Wf<x>>7

zeK

where K is a creative set. Then M, is an r-maximal ()-complete set and
| M3\ M| = oco. (Note that the sets M; and My could be built using Theo-
rem 1 from [4] and Proposition X.4.3 from [5], too.) In [6] it is shown that if
M, My are r-maximal sets, My C My and |Ms\ M| = oo, then M;|,,My. O

Lemma 1. Let M be an r-maximal set. Then
(vf GRF) ((|(W1)] = 00 & f(¥T) € )
ﬁ‘{x:xeﬁ&f(x)#x}‘<oo. (1)

Proof. Kobzev [7] showed that if M is an r-maximal set, then

(Vf GRF) <Hf(x): reM& f(z) € M&a# f(z)) <oo>. 2)
Let

(3 GRF) (1(0D)] = oo & £i(W) € 71
&Hx: xEM&f(x)#:cH:oo). (3)

By (2) and (3), we have [{fi(z) : = € M & fi(x) = x}| = co. From this it
follows that

Hx: xeﬁ&fl(x):x}‘:oo. (4)

If the statement of Lemma 1 is false, then from (4) we have that the recursive
sets Ry = {x: fi(x) #z} and Ry = {z: fi(z) = x} give a splitting of M into
two infinite sets, which is impossible. [

By using the construction of Theorem 1 [3], we shall prove the following
statement.

Theorem 1. Let M, and My be r-maximal sets. Then
Ml = Ql—NM2 — Ml = mMZ'
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Proof. Let M, and M, be r-maximal sets, M; < ¢, M, via a GRF f and
My < o, M, via a GRF g. Using the recursively enumerability of the sets M;
and Ms, we can assume that

(31 GRF)(¥z) (W) = Mo U Wy ),
(g1 GRF)(¥z) (Wyu = My U W),

By r-maximality of the sets M; and M, from the relations above, in partic-
ular, it follows that

U Wfl(m) = *N and U ng(x) = *N, (5)

zeN TeN

where X =*Y stands for [(X\Y) U (Y\X)| < co.

Let us define a partial recursive function (PRF) ¢ as follows. We compute
simultaneously {Wy, ) }ien and {Wy, ;) }jen and, for given z, seek for first inte-
gers x, y (if they exist) such that z € Wy, () & y € Wy, (). If we can find such
x and y, then we let p(z) = z. Tt is clear that if z € My, and o(z) is defined,
then ¢(z) € M;.

From the definition of the function ¢ and from (5) it is clear, that ¢ is defined
for almost all points of the set N.

Lemma 2. |p(M;)| = oco.

Proof. From the recursiveness of the set ‘UNWg(i) and from the condition that
1€

(Vo) (Vy) (x # y = W@y N Wy, = @) it follows that (Vi) (W) is recursive).
Let us show that (V) (|Wy) N M;| < oo) and, hence,

(va) ([Woua) N M| < 00). (6)
Let us assume the contrary and let
(1) Wy N 31| = 00). (7)
Then by the nonrecursiveness of the set Mo,

‘Ml\ (Wg(wl) N Ml)

= 0. (8)

Conditions (7) and (8) yield a contradiction to the r-maximality of the set
M since the set Wy, is recursive.
Thus, condition (6) holds. Now from the definition of the function ¢ it is

clear that |p(M;)| =o00. O

Hence the function ¢ is defined for almost all points of the set N, (M) C M,
and |p(M;)| = oo.
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It is easy to show that Lemma 1 is valid for every PRF ¢ which is defined
for almost all points of the set N. Therefore it is possible apply Lemma 1 for
¢ and, consequently, we have

Ha: : 2 € My & p(x) defined & p(x) # x}‘ < 0.
Therefore for almost all = we get

T < Ml - Hy Ty e Wfl(:r) &xe ng(y)}‘ =1
Then, for almost all x, we have:

€M = xe Wy &ye Wy =y € Mo,
xEMlixEng(y)&yEWfl(m):>y€M2.

Let, for all z, f(x) be the first element which appears in the computation of
the set {y: y € Wy ) & x € Wy, }. Then with the help of f it is possible to
construct a GRF which m-reduces the set M; to the set Ms.

By symmetry the conditions of the theorem for the sets M; and M, yield
My, < .M. O

Theorem 2. Let A be a mazimal set and B be an r-mazximal set. Then
ASQI_NBSQA:AEmB.

Proof. Let the conditions of the theorem be satisfied. Then by Theorem 1 [3]
A < ,,B. Note here that it is possible to prove Theorem 2 without appealing
to Theorem 1 [3]. If it is shown that B < ,, A, then by the well-known Young
theorem (see [1, Theorem XV]) we will have B = ,,A. Thus, for the proof of
Theorem 2 it is sufficient to show that B < ,,A.

Let A <, yBviaa GRF fand B < gA via a GRF g. Using the recursive
enumerability of the sets A and B, we can assume that

(3f1 GRF)(Va) (W, (@) = BUWy()),
(391 GRF)(Va) ((x € B = Wy C A)
& (37 €eB= |W91(l") QZ‘ < OO) & AC ng(f))'

From the last relations, in particular, we obtain

U Wfl(gc) =*N and U ng(x) ="N.
zEN zEN
Let us define a PRF ¢ as follows. We compute simultaneously {Wy }ien
and {Wy, () }jen and, for given z, we seek (if they exist)for first integers x, y
such that
2 € Wiy &y € W)

If we can find such x and y, then we let p(2) = z. It is clear that if z € B and

©(2) is defined, then ¢(z) € B.
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Similarly to the proof of Lemma 2 we can prove
Lemma 3. |p(B)| = .

Now the proof of Theorem 2 can be completed in exactly the same way as
that of Theorem 1. [J

Remark. Kobzev [7] proved that if M; and M, are r-maximal sets and M,
bttM27 then Ml = mMZ-

An RE set A is finitely strongly hypersimple if it is coinfinite and if there is
no GRF f such that:

(1) (V) (Wi N A # 2),

(2) (Vo) (Vy) (x # y = W@ O Wy = 9),

(3) (V) (IW(w)| < 00),
(4) U Wf(m) = N.

TEN
It is easy to show that condition (4) can be replaced by the condition

(4" UNWf(m) is recursive.
xE

Proposition 2. A coinfinite RE set A is finitely strongly hypersimple if and
only if it has no QQ1_n-complete superset.

Proof. Let a coinfinite RE set A be not finitely strongly hypersimple. Then
there is a GRF f such that conditions (1)—(3) and (4’) are valid. Consider the

- B=Al ( U Wf(w))v

zeK
where K is a creative set and, hence, (Q;_y-complete. Then the set B is (Q1_n-
complete.

Let A be a finitely strongly hypersimple set, B be a ()1 y-complete set and
A C B, C be a RE set such that there is an infinite recursive set R C C,
C < g, yBviaa GRF g, h is a one-to-one GRF, Val h = R. Let us define a
GRF f as follows:

(¥2) (Wria) = Wonew))-
Then the function f satisfies the conditions (1)—(3) and (4’), hence, the set A
is not a finitely strongly hypersimple set, which is a contradiction. [

Corollary. There is a QQ-complete, but not a QQ1_y-complete RE set.

Proof. 1t is known [4] that there is a @-complete finitely strongly hypersimple
set. O

Theorem 1 from [8] asserts that there is a simultaneously Q- and W-complete
RE set, which is not s@)-complete. Since there is a Q)-complete, but not Q)_ -
complete RE set, the following theorem is a stronger statement than Theorem 1

[3].
Theorem 3. There is a simultaneously Q1_n- and W -complete RE set which
18 not sQ-complete.
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Proof. First, let us show that there is a ()1 y-complete, but not a W-complete
RE set. Let A be a hypersimple, but not finitely strongly hypersimple set. Then
there is a GRF f such that conditions (1)—(3) and (4’) are valid. Consider the

* B=Al ( U Wf(w))v

zeK
where K is a creative set. Then the set B is a ();_y-complete hypersimple
set. It is known [1], that a hypersimple set is not W-complete. Thus there is a
(Q1_n-complete, but not a W-complete RE set.

It is known [9] that every RE W-degree contains a nowhere simple set.

Let A; be a @,_y-complete but not a W-complete RE set, B; be a W-
complete nowhere simple set. The set Ay @& By ={2z: z € AjJUu{2x+1:
x € By} is simultaneously @_n- and W-complete. Let us assume that the set
A1 ® B, is sQ)-complete and S is a simple s@Q)-complete set. Then S < ;oA ® B;.
From this, by Theorem 2 [8], we have S < oAy, i.e., the set A; is s@Q)-complete,
which is a contradiction. [J
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