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ON COMMON FIXED POINTS

ZEQING LIU, M. S. KHAN, AND H. K. PATHAK

Abstract. Some fixed point theorems based on an asymptotic regularity
condition have been obtained, which generalize the previously well-known
results.
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1. Introduction

Throughout this paper, let R+ denote the set of nonnegative real numbers,
W : R+ → R+ be a continuous function such that 0 < W (t) < t for all
t∈R+\{0}, f, g and h be selfmaps on a metric space (X, d). For a point x0 ∈ X,
if there exits a sequence {xn} in X such that hx2n+1 = fx2n, hx2n+2 = gx2n+1,
n = 0, 1, 2, . . . , then O(f, g, h, x0) = {hxn : n = 1, 2, . . . } is called the orbit
of (f, g, h) at x0. h is said to be orbitally continuous at x0 if and only if it is
continuous on O(f, g, h, x0). X is called orbitally complete at x0 if and only
if every Cauchy sequence in O(f, g, h, x0) converges in X. The pair (f, g) is
said to be asymptotically regular (a.r.) with respect to h at x0 if there exists a
sequence {xn} in X such that hx2n+1 = fx2n, hx2n+2 = gx2n+1, n = 0, 1, 2, . . . ,
and d(hxn, hxn+1) → 0 as n →∞. For x, y ∈ X, define

M(x, y) = max
{
d(hx, hy), d(hx, fx), d(hy, gy), d(hx, gy), d(hy, fx)

}
,

N(x, y) = max
{
d(hx, hy), d(hx, fx), d(hy, gy), min{d(hx, gy), d(hy, fx)}

}
.

Sastry et al.[4] proved the following theorem.

Theorem 1.1. Let f, g and h be selfmaps on a metric spaces (X, d) and
fh = hf or gh = hg. Suppose that there exits a point x0 ∈ X such that (f, g)
is a.r. with respect to h at x0, X is orbitally complete at x0 and h is orbitally
continuous at x0. If for all x, y ∈ X,

d(fx, gy) ≤ rM(x, y) (1.1)

holds, where r ∈ (0, 1), then f, g and h have a unique common fixed point in X.

Ray [3] established the following result.
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Theorem 1.2. Let f, g and h be selfmaps on a complete metric space (X, d)
and fh = hf , gh = hg, f(X) ∪ g(X) ⊆ h(X), and

d(fx, gy) ≤ d(hx, hy)−W (d(hx, hy)) (1.2)

for all x, y ∈ X. If h is continuous, then f, g and h have a unique common
fixed point in X.

The purpose of this paper is to extend Theorems 1.1 and 1.2 to a more general
case. To this end, we need the following result due to Chang [1].

Theorem 1.3. If ϕ : fR+ → R+ is an upper semicontinuous function with
ϕ(t) < t for all t > 0 and ϕ(0) = 0, then there exists a strictly increasing,
continuous function ψ : R+ → R+ such that ϕ(t) ≤ ψ(t) < t for t > 0.

2. Main Results

Now we present our main theorems.

Theorem 2.1. Let f, g and h be selfmaps on a metric space (X, d) and fh =
hf or gh = hg. Suppose that there exits a point x0 ∈ X such that (f, g) is said
a.r. with respect to h at x0, X is orbitally complete at x0, and h is orbitally
continuous at x0. If

d(fx, gy) ≤ M(x, y)−W (M(x, y)) (2.1)

holds for all x, y ∈ X, then f, g and h have a unique common fixed point in X.

Proof. Since {f, g} is a.r. with respect to h at x0, there exists a sequence {xn}
in X such that hx2n+1 = fx2n, hx2n+2 = gx2n+1, n = 0, 1, 2, . . . , and

dn = d(hxn, hxn+1) → 0 as n →∞. (2.2)

In order to show that {hxn} is a Cauchy sequence, it is sufficient to show that
{hx2n} is a Cauchy sequence. Suppose that the result is not true. Then there
is be a positive number ε such that for each even integer 2k, there are even
integers 2m(k) and 2n(k) such that 2m(k) > 2n(k) > 2k and

d(hx2m(k), hx2n(k)) > ε. (2.3)

For each integer 2k, let 2m(k) be the least even integer exceeding 2n(k) and
satisfying (2.3) so that

d(hx2m(k)−2, hx2n(k)) ≤ ε. (2.4)

Then for each even integer 2k,

d(hx2m(k), hx2n(k)) ≤ d(hx2m(k)−2, hx2n(k)) + d2m(k)−2 + d2m(k)−1.

From (2.2), (2.3), (2.4) and the above inequality we have

d(hx2m(k), hx2n(k)) → ε as n →∞. (2.5)
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Using the triangular inequality, we obtain

∣∣∣d(hx2m(k)+1, hx2n(k))− d(hx2m(k), hx2n(k))
∣∣∣ ≤ d2m(k),

∣∣∣d(hx2m(k)+1, hx2n(k)+1)− d(hx2m(k)+1, hx2n(k))
∣∣∣ ≤ d2n(k),

∣∣∣d(hx2m(k)+2, hx2n(k)+1)− d(hx2m(k)+1, hx2n(k)+1)
∣∣∣ ≤ d2m(k)+1,

and ∣∣∣d(hx2m(k)+2, hx2n(k))− d(hx2m(k)+1, hx2n(k))
∣∣∣ ≤ d2m(k)+1.

From (2.2), (2.5) and the above inequalities, we get

ε = lim
k→∞

d(hx2m(k)+1, hx2n(k)) = lim
k→∞

d(hx2m(k)+1, hx2n(k)+1)

= lim
k→∞

d(hx2m(k)+2, hx2n(k)+1) = lim
k→∞

d(hx2m(k)+2, hx2n(k)).

Now, it follows from (2.1) that

d(hx2n(k)+1, hx2m(k)+2) = d(fx2n(k), gx2m(k)+1)

≤ max
{
d(hx2n(k), hx2m(k)+1), d2n(k), d2m(k)+1,

d(hx2n(k), hx2m(k)+2), d(hx2m(k)+1, hx2n(k)+1)
}

−W
(

max
{
d(hx2n(k), hx2m(k)+1), d2n(k), d2m(k)+1,

d(hx2n(k), hx2m(k)+2), d(hx2m(k)+1, hx2n(k)+1)
})

.

As k →∞, we have

ε ≤ max{ε, 0, 0, ε, ε} −W
(

max{ε, 0, 0, ε, ε}
)
.

That is, W (ε) ≤ 0, which implies ε = 0, a contradiction. Hence {hxn} is
a Cauchy sequence. Since X is (f, g, h)-orbitally complete at x0, there exists
z ∈ X such that hxn → z as n → ∞. Now, applying (2.1) to d(hx2n, gz) and
d(fz, gx2n+1) and letting n →∞, we have

d(z, gz) ≤ max
{
d(z, hz), d(hz, gz), d(z, gz)

}

−W
(

max
{
d(z, hz), d(hz, gz), d(z, gz)

})
(2.6)

and

d(fz, z) ≤ max
{
d(hz, z), d(hz, fz), d(z, fz)

}

−W
(

max
{
d(hz, z), d(hz, fz), d(z, fz)

})
(2.7)

respectively.
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If fh = hf , then fhx2n = hfx2n → hz since h is orbitally continuous at x0.
By (2.1)

d(fhx2n, gx2n+1) ≤ max
{
d(hhx2n, hx2n+1), d(hhx2n, fhx2n),

d2n+1, d(hhx2n, gx2n+1), d(hx2n+1, fhx2n)
}

−W
(

max
{
d(hhx2n, hx2n+1), d(hhx2n, fhx2n),

d2n+1, d(hhx2n, gx2n+1), d(hx2n+1, fhx2n)
})

.

Letting n →∞, we have

d(hz, z) ≤ d(hz, z)−W (d(hz, z)).

which implies z = hz.
If gh = hg, then ghx2n+1 = hgx2n+1 → hz. Applying (2.1) to d(x2n, ghx2n+1)

and letting n →∞, we obtain z = hz. By (2.6) and (2.7), we have fz = gz =
hz = z. So z is a common fixed point of f, g and h. It is easy to show that z is
a unique common fixed point. This completes the proof.

Remark 2.1. (a) Taking W (t) = (1 − r)t, r ∈ (0, 1), in Theorem 2.1, we
obtain Theorem 1 of Sastry et al. [4].

(b) Liu [2] proved that there exist mappings f, g, h : X → X such that

d(fx, gy) ≤ ϕ(M(x, y))

for all x, y ∈ X, but they do not satisfy (1.1) for any r ∈ (0, 1), where f = g, h is
the identity mapping and ϕ : R+ → R+ is nondecreasing, right continuous and
vf(t) < t for t > 0. Wong [5] noted that the function ϕ is upper semicontinuous
from the right. Observe that ϕ is nondecreasing. Then

lim sup
s→t

ϕ(s) = lim
ε→0

sup
s∈(t−ε,t+ε)

ϕ(s) = lim
ε→0

sup
s∈(t,t+ε)

ϕ(s) ≤ lim
ε→0

ϕ(t + ε) = ϕ(t)

for t > 0. In view of Theorem 1.3, we conclude that there exists a strictly
increasing continuous function ψ : R+ → R+ such that ϕ(t) ≤ ψ(t) < t for
t > 0. Put W (t) = t − ψ(t) for t ≥ 0.Then W is continuous, W (0) = 0,
W (t) < t for t > 0 and

d(fx, gy) ≤ ϕ(M(x, y)) ≤ ψ(M(x, y)) = M(x, y)−W (M(x, y))

for x, y ∈ X. Thus we have shown that the class of mappings which satisfy
(1.1) is a proper subclass of the class of mappings which satisfy (2.1). Hence
Theorem 2.1 extends substantially the theorem of Sastry et al.[4].

Theorem 2.2. Let f, g and h be selfmaps on a metric space (X, d) and fh =
hf or gh = hg. Suppose that there exists a point x0 ∈ X such that X is orbitally
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complete at x0 and h is orbitally continuous at x0. If at least one of the following
inequalities

d(fx, gy) ≤ N(x, y)−W (N(x, y)), (2.8)

d(fx, gy) ≤ max
{
d(hx, hy), d(hx, fx), d(hy, gy)

}

−W
(

max
{
d(hx, hy), d(hx, fx), d(hy, gy)

})
, (2.9)

d(fx, gy) ≤ d(hx, hy)−W (d(hx, hy)) (2.10)

holds for all x, y ∈ X, then f, g and h have a unique common fixed point in X.

Proof. Let dn = d(hxn, hxn+1), n = 0, 1, 2, . . . . Now suppose that (2.8) is true
for the pair x2n, x2n+1, then

d2n+1 = d
(
fx2n, gx2n+1) ≤ max{d2n, d2n+1} −W (max{d2n, d2n+1}

)

which implies d2n+1 ≤ d2n. Similarly, if (2.9) or (2.10) is true, then, correspond-
ingly, we obtain d2n+1 ≤ d2n. Similarly, we can show that d2n ≤ d2n−1. Thus
{dn} is a decreasing sequence of nonnegative real numbers and hence converges
to a nonnegative real number, say b. It is easy to show that dn ≤ dn −W (dn)
for all n. Letting n → ∞, we have b ≤ b −W (b), which implies b = 0. Thus
dn ≤ 0 as n → ∞, i.e., (f, g) is a.r. with respect to h at x0 ∈ X. Now, as in
the proof of Theorem 2.1, we can show that f, g and h have a unique common
fixed point. This completes the proof.

The following is an immediate consequence of Theorem 2.2.

Corollary 2.1. Let f, g and h be selfmaps on a complete metric space (X, d),
h be continuous, f(X) ∪ g(X) ⊆ h(X), fh = hf , gh = hg. If at least one of
the conditions (2.8), (2.9) and (2.10) is satisfied, then f, g and h have a unique
common fixed point.

Remark 2.2. Corollary 2.1 extends Theorem 1 of Ray [3].
The following example shows that Theorem 2.2 extends properly Theorem 1

of Ray [3].

Example 2.1. Let X = [0, 1)∪{2} with the usual metric | · |. Define f, g, h :
X → X by fx = gx = 1

3
x and hx = x for x ∈ X. Take x0 = 2 and W (t) = 1

4
t

for t ≥ 0. Then O(x0, f, g, h) = { 2
3n : n ≥ 0}, X is orbitally complete at x0, h

is orbitally continuous at x0 and

d(fx, gy) =
1

3
|x− y| ≤ 1

4
|x− y| = d(hx, hy)−W (d(hx, hy))

for all x, y ∈ X. Therefore the conditions of Theorem 2.2 are satisfied. But
Theorem 1 of Ray [3] is not applicable since X is not complete.

Remark 2.3. In recent years, several generalizations of the concept of com-
mutativity such as weak commutative, compatibility and of baised maps have
been introduced by different authors. We do not know if our results can be
extended to these settings or not.
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