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Abstract
In this work, we estimate normalize eigenfunctimnthe T.Regge problem
whenever the weight functions satisfies Lipschatddion
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1. INTRODUCTION

Let's consider spectral problerg(&) U C, |
,p(xX)0Lipland m<p(X) <M )
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=Y (0 + AR Y) = A2p() Y(x) (0<x<a)
1)

y©) =0 y'(a)-ity(@) =0
2)

(_TP(X)| y(x)|2de2 =1, whereA - is spectral parameter.
3)

The problem (1) - (2) arises in different questioofs mathematical
physics. T.Regge [1], who studied it (in caseafk) =1) in connection with the

theory of dispersion has shown, thagi) in left semi-neighborhood of poirat
satisfies to conditiong(x)~ C,(a-x)* x - a-0; 420C, #0, the problem
has discrete spectrurl, and system of eigenfunctions of problem (1) -i¢2ull
of century Lz[o,a]' In work [2] is studied asymptotes of proper valaad received

2 multiple decomposition in uniform converging nwerdon eigenfunctions from

which 2 multiple completeness of eigenfunctionscehtury LZ[OVa]. In case of

equation of2n order andp(x) =1 similar problem is considered in works [3] -
[4]. And for p(x) #1 asymptotic of eigenvalues for more general problem
studied in works [5] - [6].

In work [7] is considered the case of weight fuos close to Holder
class where maximal growth rate of eigenfunctioingroblem (1) - (3) is studied.

The purpose of the present work is reception ofoum estimations for
normalized eigenfunctions of problem (1) - (3) iase of weight functions,
satisfying to Lipschitz condition.

The following is true:

Lemma: For any p(x) O Lip 1 and &£ >0 there is functionp, (x) 0 C?p,4

such, that  p,(a)=p(@), 0,0 =p0).[p.(Rdx= [{o(¥dx,
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c .
- <g, S(X)[<2N d (¥ <—=, wh C
maxo(x) = 2, ()| < &, max ol (x) and - max; (X)| S+ Where C s
constant independent from(x)and € .

Proof:

Let's divide interval [0, a] on m equal parts if-arbitrary) by
pointsO = x, < x, <...<X_., <X, =a, and middle of intervalx,_,,x e shall
designate throughx' (such pointsn, namely x;,X,,...,.X., ). We shall consider

broken line, that connected poifxs, o(X,)), (X, 2(X.)),-- (X, P(Xy - ))

Obviously, this broken line is function graph x ( )satisfying to
inequalitiesré?(?)ﬂp(x)—po(x)|s%and|p{,(x)|s N there, whergo, X pxists.

Let's consider now other broken line connecting

POINtS(X,, B4 (Xo)): (X1, 6 (%1)), (Xz P6 (05)) -+ (X 06 (X ))s (Xens P (X)) -

Obviously, this broken line is the schedule of time p, (x), satisfying to

parities|pj(x)| < N there, whereo] X pxists andxré??)ﬂp(x) - (X)| s%.

On sites[x', x/,,] wherei =12,....m—1 we shall construct curvpi(x) as

polynomials parities  p,(X) = p,(X) +Li3(x— x)* —%(x— x.)*where
8A ZAVAN

- _ Po(X) ~ Po (i)

' 2

A=X —X :Zi, p . On sites[0,x;] and[x,a]we shall
m
get p, (x) = py(x) (in the same placp, (x) = p, X())
Let's put m:2.[%]+2. Direct check shows, that all conditions of

lemma except for equalit)d\/,o_g(x)dx=j p(Xdxare executed. In addition,
0 0

inequality

p_;(x)‘ < N takes place l and 2N in condition of lemma) now let's
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find  number o  from conditionHZ(x)(HJsingx)dx:J',/p(x)dx,
0 0

[P0 =p.(x)dx

hence) = 2— . Obviously at smalle numberd is also not
T
J'sm—x 0. (Xdx
!

enough, and func:tion,og(x):,o_g(x)(1+5$in§x)2 satisfies to conditions of

lemma.

Let's designate throug®,, ,, class of continuous of0,a] functionsg(x)

a
satisfying to inequalitP

c(x)d{ <C,,whereC, =contanda,,a,] O [0a].
3

Let's consider countable subs%qi x| iDN}Ea[O’a] of class Q4
X t
satisfying to conditiori,im”qi (s)dsdt= f, (x), where f, & )function satisfying
"®0%

to Lipschitz condition, and convergence is unifam|0,a].

Let p£1,0>0,A0C - is complex,Im(A) <const (that is p - is fixed

and A - is arbitrary of stripim(A) < const of complex plane).

Let's designate througk(x,A,q) solution of Cauchy problem

—y' (¥ + X Y(X) =Apy(x), xO(0,a)
y(©0)=0,y'(0) =1.

Then the following is true:

Theorem: There is constan€, =C,(Q, ,, Quniform for all clas€), ,,)

such, that

ly(x,4,0)|
max — <C,for every value large enough by module

xJ0,a] & 2
(| Ayx.A.0) dx?
0
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From this theorem and previous lemma follows imgatrconsequence
Consequence: Let q(x) - is continuous function, ane{x) O Lip 1. Then

solution of Cauchy problem

—Y' () + dXY(X) =Apy(x), xO(0,a),p(a) 1
y(©0)=0,y'(0) =1

< const< o

Satisfies to parityrég(@]( - [y
([ Py dx)
0

1
2

For every value large enough from stripim(A) < const.

Proof:

As solution of Cauchy problem continuously depeolsveight function

a 1
o(x)and functional(f p(X)| y(x,1)|”dx)? also continuously depends p(x).
0

max y(x, 1)

xJ0,a]

Hence, functional— —also continuously depends on weight
(| L] y(x, )| dx)?
0

functionp(x) . Hence, there is numbe(R) such, that

max y(x, A, o max{ y(x, A,
xD[O,a>](iy( '0)| 1 XD[O'gﬂy( ) . f |/1|SR and

(o0lyxA o) 9 2 ([ p0olyx. o) 92

v

P09 - p(X)| < £(R)

Where R > Qis arbitrary constant . Let’s take sonfke and by ¢(R) and
lemma let's plot function p.(x) approaching p(x)(‘p(x)—ﬁ(x)‘ <&(R)
p.(a) = p(a). Now let's consider Cauchy problem with weight dtian p, (X)

instead of o(x). In this problemp, (x) 0C?¢04 and consequently we can make
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X

double replacemegt= J' , y(x) AX)17(£(X)),

0

1 1

whereA(x) = p %+ (x).0*(a) .

As a result of such replacement we shall obtaiiblera:

(&) + (GO AX) — A (0) A (E) = P p(ayn() . €0 jA‘j_zt)),
nO=0,

70)=A0), As A©) = p * (0).p* (@) and
a a ()t
{ A I ire Jp(a)I oet

Cr—= )

J—)

o(Hdt
VP(3)

A(X[A(X)AX) - A'(xX)] = q_g(f) we shall obtain problem:

O

—a= const(Independent fronz ), designating

-1"(&) +q, (&) = P p(@)n(&),£0 (0,a),

0) = 0.7 (0) = 4| P&
n©0) =0,7'(0) = 20)

Estimated in theorem functional does not dependiadne y'(0) (as all
solutions of our equation, satisfying to conditigf0) =0, can be obtained from
solution of problem with conditionsy(0) =0, y'(0) =1, by multiplication to

constant, which will be reduced in our functionafl[d consequently if to show,

that

t p—
_[qg(f)d{‘ in regular intervals ore and t 1[0, a] is limited for all small

0

& >0 under theorem there will be constaty > 0such, that
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NV

-<C,,
([ @118 dé)?

From here and from parities

X

V() = ARA(EN), €)= | A‘j'zt)

0

obviously follows, that existsC, > 0such,

that max YA, ) <C,

xJ0,a] &

([ 2] y(x, A, p)|" dx)?

For every|/1| < R, and by arbitrarines®, and for all considered (let's

remind, thatim(A) < const).

t
Let's estimate{qu (E)d[‘. Passing to variable in integral we shall get
0

(f)d{‘ =

() A(X) - A()] A ()~ X

() AX) = A (XA (X)-f'(X)d{ = ool

I jq”d{

Q(X) dx j A(X) A" (x)d{

j:A(X)A"( x)d{ =

[AC)AMX; - [ [A'(x)]Zd{

j q09 d{ | AS)A(9)] +

I(f(x)d{ _
AZ(X) ) AZ(X)

|AQ)A'(0) +

T[A'(x)]zd{,where s0[0,al.

p(a)

&

From definition A(X) = 4 follows, that

AQ) = dp(a) _ J o(@)
0.0 {pO




About uniform limitation of normalized... 122

D Bt o o () = Y P@-0:(9)
A(x) = 2P @).0, 4(X).0.(X) —m ,

_Yp@.0:0) _-p; © [,

A'(0) = A
O o 200 {00
@9, 2.0 Jp(a)

|40 | "1400)1 00

and consequently

2

IJp(a) AC)

4o (ydx+
o 164/0,°(9

(@] < [ 1

4/ p(a)

On lemma|p, ()| < 2N and p(X) - £ < p,(X) < p(X) + £, hence

i o) p(@).N N [p(a)
qu(E)d{‘ j |f</p(x)+edx+ SRiep
2.[ min A(x) - €]2 2P0 1 0)

xJ[0,a]

As ¢ is not enough, consequence is proved.

Let's prove now theorem for what we shall evalugjéx,A),#(x,4) and
@' (x,A) (¢(x,A) is solution of equation (1) satisfying to entrynddions
9(0,1)=0,¢'(0,A) =1, and ¢, k A) is solution of such Cauchy problem with
constant coefficiend(x) = p). As it has been established [8, p. 22]

P, (X, A) = —1( sinhg,x cosd, x +i cosho, x.sind,x) and
Jl 1

consequentlyp, (x, 1) =(cosho, x cosd, x —i sinhg, x.sind, x) (simple
transformations are lowered). As at greéﬂiarparities o= \/E.a ando= \/5.5

take place, then obviouslv(’,(x,A)| < constis regular onx[J[0,a] andA from

considered strip. Let’s consider number



Jwamer .K.H and Aigounv .G.A 123

B(x,1) = By (% A) + [[0(7) ~ Al B (X~ 13, D) B, (1, iz, + 3 [0(E,) ~ by (x =1, A) .

i=2 o 0

[[1a(r) = dlgo(zis =7, ) o (7, A) 7, ... T,

Let's enter designationf (x) for i — member of series

(f,(x) = T[q(rl) -ql-¢,(x—1,,A)dr,,...), As result we shall get:

PN = dox )= ()
@

If i =1, then obviously

f.. (X) :I[q(rl) -ql@,(x—1,,4).f,(r,)dr, and consequently, integrating
0

in parts, we shall obtain

fia(X) = {¢0(X_ r,;,4).f; (Tl).r[ os) - qu}

=~ [{{go (x= 1., M).1/@)) = By (x =1, ). 1, (1,)])
Jx'[q(s)— cids}drl

Or

fra () = [[86(x =7, ) £, () - # (x— 7. ) (D] [ «s) - s,

()

Absolutely similarly for f,(x) it is possible to get parity

1,00 = [[85(x= 7,180 (1) = 85 (x= 1. )g3(1)]. [[As) - clldsclr (6)
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Differentiating parities (5) and (6) orx we shall get parities for

derivatives

2409 = 13- [a@) ~ddz +{ [Ta-F A g (x-1, ) f. (1) -

A~ A (D] la@) -ddsd,
(7)

1100 = B (%, A). [[a(7) = dld7 +[ [[q = A 0] B (X~ 7,A)@5 (7,) =
By(x= 1,8, ][ [a(r) - dldscr,

(8)
(Here, it is considered, thaf (x,A) =(q-A°0) @, X 4 ,)).

From choice of clas®,, ,, follows, that

j[ s) - cid% <Q =const< «

0
and consequently from (5) and (8) follows, that

2Q.C,.C,

f,(x)| g 00

ECES A|°+Q[(p+W)C2+C'2] where C,

andC;

Such constants for which inequalitigg, (x, 1) <—O and |¢; (x,4)| <C;

sinh? g, x +sin” J,x
2
o +

are executed (a@,(x,A) < \/ then, obviouslyC, and C;

exist). Using recurrent parities (5) and (7) we lislobtain, that number (4)

converges and moreovep(x,A) — @, (X, /1)| (evaluatlons|f ()| f ().

and|f,(x).| f; (x)... are made consistently f&+2,3, ..).
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Then ¢'(x,/1)=¢(',(x,/1)+JX‘[q(r)—q]¢(')(x—r,)l)dr, or, integrating in

parts, we shall get

X

¢'(x,A) ~#o(x,A) = {¢6(X- r,0)$(r,2).[[As) - qu}

—E{we(x— r )¢ @A) —¢g(x—r,A).¢(r,A)]i[q(s) - qu}dr,
AS 6,(0.4) =L and ¢y (x-7,4) = (@- 0) o (x~T. )
§(xA) -5 (x,1) = ¢(x,A).E[q(s) - dds—i{[%(x— £ ) (7.0) -
(q—AZp)¢o(x—r,A)¢(r,A)].i[q(s)— ddgdr =
¢(x,A).E[q(s) - qu+£{u2p—q) ¢o(x—r,/l)¢(r,/l).i[q(s)— dds}dr
—chﬁg(x—r,/l)czﬁ(r,/l)l[q(s) - qu}dr,

Subtracting and adding in last integrap, 7 A to) ¢' (r,A) and

representing integral in the form of sum of twoemgrals we shall obtain

#'(6A) = (x,A) = $(x A).[[As) -~ dds+ (¥~ Q)H%(X— r,A)$(,A).~ [[ds) - dds}dT

o {¢z,(x—r,A)[¢z,(r,A). ICER qu}dr— [ {¢a<x—r,A)[¢'(r,A)—¢z,(r,A)1.j [os) - qu}dr

0 0
From this equality follows, that
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' (x,A) = B, (x, )| <|p(x, ).

Jx'[q(s) - qds +|/12p—q|.f|¢0(x—r,A)||¢(r,A)|.

[Tas)- dd%dr+ [[8o =1, M| @, D] {[Tos) - qd%dr +

I|¢g(x—r,ﬂ)|.

[la9) - dd%-lclﬁ'(f,/i) — o (7. A)|dr

And  consequently, using estimations obtained befoffer

8, (X, A), |B(x, 1), ACw) and considering, that

_T[ c(s)d%+ j'qd%:qr+

Jias) - qd{s

J. c(s)ds{< const< oo, we shall obtain
0

(%) =85 (x. N)| < R+ [ B(@)|¢' (z,4) = gy (r. A)jdr

where R >0 and B(7) >0 are limited.

B(r)dr

Hence, by Gronwall’s lemnj@'(x, 1) = ¢, (x, A)| < Re? <const<o .,

As |gy(xA) sconst<e, from last inequality follows, that
¢ (x, 1) <const< e is regular onx 0[0,a] and A from considered strip.

Let now |¢(x, A)| reaches maximung,, in point x, 0 [0a],

Maximum |¢'(x, )| is equalg,,.Then function graphg(x,1)| lies above
triangle with top in point(x,,¢,, &nd lateral faces with angular coefficients

@., ,—¢. accordingly.
37

And consequently
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a a a X
jp(x)|¢(x,/1)|2dxzjm1¢(x,)|)|2dx= mj|¢(x,/1)|2dxz mj|¢m + 41 (x = %) dx
a Xo
+m |8, =g (x= )| dx=m[[8? ,+26,,81,(X = X,) + #1,” (X = %,) *Jdx +
Xo 0
M [ [P = 20,081 (X = %) + 17 (X = %) Tl
Xo

_ m¢a{a+¢;z[%]—j—':[xs +<a—xo>21}.

From inequality we got follows, that

max|g(x, A)|

xJ0,a] 1

<
(| PO (x, )] X2 m_\/a+w)_(¢m 212 +(a-x) ] 2

3 e s

ASS

If to enter designationg, = £.a and=" = zwe shall get

=

+—(a—x0§3 *% .(Z—': 2= [ +(a—xo)2]z—i: -
N a’(l-¢)d+¢£%°
3

_ oe-Y2 sl azoz24t
= daz(az-2)(¢ 2) +12(az 3) +4].

a

=a

72’ -[a’s? +a’(l-&)?%)z=

Where ¢ 0[01] and z[J (0,) . Let’'s enter now designations
B 1, 1 , 1 .
f(£,2) =az(laz-2)(e _E) +E(az—3) +Z and estimate from below

f(£,2). It is obvious, that

1 1 1
f(0,2)=f({,2)==(a’z?-2az2) +—(a’z* —-6az+9) +=
02=1@12 4( ) 12( ) 4

1 3,,.3,_1
="[(az-2)*+>]=2~.
a5 12y
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Inside of interval0 < £ < 1 is unique critical point = % in this point we

have f(%,z):l—lz(az—3)2+%2%.. Hence, for anys[[01] and z[ (0,)

estimation f (&, z)z% is fair, therefore inequality is

max@(x, A
xu[lf]( )| < 1 2

(_T,O(X)|¢(X,/1)|2dx)2 Jm. ajf Jma

So theorem is proved.

Thus we have proved, that normalized eigenfunctansoblem (1) - (3)
in case of weight functions satisfying to Lipschitandition are limited in regular

intervals, the obtained result is proved by statdgmpeoved in [7] ato =1, as
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