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Abstract
In this paper the authors have used certain funddaieconcept of functional
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1 Introduction

Minimum time optimal control problem has been sdivey different authors
using functional analysis technique in Banach Spseting. Minamide and
Nakamura [8,9] considered a related problem whegeobjective function was a
continuous convex functional. Choudhury and Mukd®rfl,11,12] developed a
uniform theory of time optimal control problem faystem which can be
represented in terms of linear, bounded and omtiestormation from a Banach
space of control function to another Banach spReeently, the concept of 2-
Banach spaces has been developddany authors like Acikgoz [7];
Lewandowska, Moslehian and Saadatpour [24,25]; dereend Cho [10]; Cho,
Kim and Misiak [23]; Reddy and Dutta [3,5]; ParK;[®om [14] have developed
a uniform theory in 2-Banach spa&ptimization in 2-Banach space setting is an
important area of application of functional anadysso, it may be worthwhile to
make an attempt to develop an optimization thearg-Banach space. In this
paper, we have developed a class of constraineddptimal control problems in
2-Banach space.

The control systems, which can be characterizetthéyollowing vector matrix
differential equation:

= A® X +BO U .

where X(t) is an n vector, representing the instaabus state of the system, u(t)
IS an r-vector &n) representing the control input to the systent) A((n x n)
matrix and B(t) is an (n x r) matrix has receivathsiderable attention in the
literature. The solution of the above equation banexpressed in the following
integral forms:

t
X(O = 0(ttg) X(tg) + [0(t5)B(9) U(s)ds ),
0
where@ (t, t) is the fundamental matrix of the system (1), atg), the initial
state of the system at time ts=The minimum time control problem, is to find the
optimal control u(t) belonging to the admissiblé, s¢hich will drive the systems
from a given initial state x{fat t = ¢ to the desired statg ¥n minimum time t i.e.

t

X(t) = x. Now (2) can be written aX(t) - o(t,ty) X(to):tjw(t,s)B(s)U(s)ds :
0

Put X(t) - o(t, tg) X(ty) =&. Expression (2) can be written &s T; u, where

t
Ttu =tj<p(t,s)B(s)U(s)ds. Thus without any loss of generality one can abersthe
0
problems of finding the optimal u to drive the gystfrom the origin to any point
¢ in minimum time t.
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The above problem can be considered as a mapmgingdome space to which u
belongs to some other spatd®elongs. In the light of the above we can consider
following general problem:

Let B; be a 2-Banach space depending on the parametet Dame also a 2-
Banach space. Let;Toe a bounded linear transformation depending @n th
parameter mapping:®nto D. The problem is to find the optimal contwalB; to
reach& from the origin in minimum time t under the comagtt Ny{(u,u1): u,u O

B: }<1 where N(.,.) denotes the 2-norm function defined qn B

2. Some Preiminaries. Definition of 2-Normed space 2.1: Let B, be a
vector space of dimension greater than one overhEre F is the real or complex
number field. Supposeill,.) be a non negative real valued function qnx BB;
which satisfies the conditions: @) Ni(u;,u)=0 if and only if yand

y; are linearly dependent vectors, (iiJ,u)= Ni(uj,u) for all u,u O By, (i)
N1, )= Ni(ui,u) for all AOF and for all yy O By, (iv) Ni(u+u,z) <
Ni(u,z)+ Ni(u;,z) for all y,u,z0 Bi. Then N(.,.) is called a 2-norm function
defined on Band (B, Nz (.,.)) is called a linear 2-normed space.

A sequence {41 In a linear 2-normed space B called Cauchy sequence if
there exist two linear independent elements y aimdBz such that {N(un, y)} and
{N1(u,, 2z)} are real Cauchy sequence, i.dLrp{Nl(xm -X,Y¥)}=0 and

I!nnn1{N (X, —%,2)}=0

A sequence {§} -1 in alinear 2-normed space(Bly(.,.)) is called convergent if
there exists U B; such thatim{N 1Xn =X, }s1 - 0 Oy U By, le.,

im{N ;(Xn =X, ¥)},;51 =0 Oy 0B

A 2-normed space (By(.,.)) is called a 2-Banach space if every Cauchy
sequence is convergent. Also if &hd D are 2-Banach spaces over the field of
real numbers, it can be verified thaB is also 2-Banach space with respect to
the 2-norm N(.,.) where Na{(ui,vi),( yv))}=
min{N 1(ui,u),N2(Vvi,vj)}, i.e. Ns(.,.)=min{Nai(.,.), No(.,.)}; N1(.,.) and N(.,.) are 2-
norm functions defined on the spaces; Bnd D respectively and
Ns{( ui,vi),( u,v))}=0 iff either u, y are linearly dependent (L.D.) in, Br v,v; are
linearly dependent in D.

Let Nll,N'Z, N'3 are the 2-norm functions defined on the spaB'{-;‘sD',(thD)'
respectively, WhereN'S(.,) = min{Nll(.,.),N'Z(.,)} and B't denotes the conjugate of
B:. Let B be the conjugate ofpénd D be the conjugate of Y. Th8rt1 = x't and

D=Y'. Let ¢D-R & f: X - R be two functionals. TheqID’, fOIX"; f1 0 B: :
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Example 2.1: For X=R, define:
N1(X,y)=max{X1y2-X2y1[H[X1Y3-Xay1 [, [ X1Y2-Xoy1 CH X0y 3-X3Yy2L}, where
X=(X1,X2,X3) and y=(¥,Y»,ys)OR%. Then N(.,.) is a 2-norm on R See more details
Freese [10], Acikgoz [7].

For examples of some known 2-normed spaces, geregtél-normed space; see
Adak [15]-[22].

Definition 2.2: Let X and Y be real linear spaces. Denote by Doa-empty
subset of Xx Y such that for every XI X, y 'Y the sets R={y O Y:(x,y) U D}
and D = {x O X:(x,y) O D} are linear subspaces of the spaces Y and X
respectively. A function ¥.,.):D - [0, o) will be called a generalized 2-norm on
D if it satisfies the conditions: (i) 9, ay) =|a | Ns(x, y) = Ns(ax, y) for any
real numben and all (x ,y)d D; (ii))Ns(x, y + z)< Ns(X, y) + Ns(X, z) for xO X,

y, zO Y with (X, y), (X, z)J D; (iii) Ns(x + Yy, z)< Ns(X, z) + Ny(y, z) for x,y X,

z Y with (X, z) (y, 2)J D. Then D is called a 2-normed set.

In particular, if D = Xx Y, the function N(.,.) is said to be a generalized 2-norm
on Xx Y and the pair (% Y, Ns(.,.)) is called a generalized 2-normed space.
Unfortunately, there is no connection between narmpaces and 2-normed
spaces, but in 1999 in order to introduce some ections between normed
spaces and 2-normed spaces, Lewandowska [24] utgeddgyeneralized 2-normed
spaces, as a subspace of 2-normed spaces.

If X =Y, then the generalized 2-normed spacex(X, Ni(.,.)) is denoted by (X,
Ni(.,.)). In the case that Y, D = D™}, where D* = {(y, ) : (X,
y) O D}, and Ny(X, ¥) = Ns(y, x) for all (x, y) [ D, we call N(.,.) a generalized
symmetric 2-norm function defined orxX and D a symmetric 2-norm set.

Also let (X, N(.)) be a normed space. Ther{X\'y) = N(x). N(y) for all x, y(I X

is a 2-norm function defined on XX. So, (X, N(.,.)) is a generalized 2-normed
space.

If we take as N(x)=N(y), our generalized 2-norm@ace will be a generalized
symmetric 2-normed space with the symmetric 2-ndefimed by N(X, y) = N(x).
N(y) for all x, y O X. Let us remark that a syatnc 2-normed
space need not be a 2-normed space in the sensahbér [13]. For instance
given above, %0, y=kx, k0, we obtain MNX,y)=Ni(X, kx)=CK[IN;(x,x)>0, but
inspite of this x and y are linearly dependent.f@on this, we say that the 2-
normed space is not a 2-normed spaoethe sense of Definition 2.1.
Each 2-normed space is a generalized 2-normed.spatean case of X =Y, D =
D the generalized 2-normed space is a 2-normedspac

Throughout the papelxl1 N2 N3 Nll, N'2, N'3 denote the 2-norm functions defined

on the spaceBt,D,(Bt ><D),B't,D',(Bt ><D)' respectively which are defined earlier
in Definition 2.1.
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Problem Statement
In this paper we shall consider the problem whieeecbnstraints on the

control function are given aﬁig‘ Qum| < N,
1 1

2 2
t t
j‘ur(r) ‘ dt I‘US(T) ‘ dty <M, Mand N being positive constraints. The
0 0

problem is to find the optimal control function tnsh will drive the origin
(initial state) tog (desired state) in minimum time t, satisfying #imve
constraints.

For the sake of completeness, we shall now giviaiceDefinitions, Theorems
and Lemmas.

Deffinition: Let Ux={X{ Ni(a,X)<1,x0B¢}, a0X,0#£0; Uy={y:N2(B,y) <1,ylID},

BOY, B#£6 be the unit balls in BD respectively.

Deffinition: The set of all point§ [ID, such that Tu =¢ for some ul U; O B

will be called the Reachable set and will be desdte C(t), where Uis the unit
ball in B, for some given time t.

Deffinition: Let X be a 2-Normed linear space. A non-negativa ralued
function p(.,.) on XxX is called a seminorm if it satisfies the condisdi)
p(Xi+Xj,2)=p(Xi,2)+p(X;j,2) O Xi, Xj, X,

(i) p(\ xi,%)=1 A | p(xi,x) for all \OF and for all x, x;, OX.

Deffinition: Let X be a 2-Normed linear space. A 2-no,155(1,.) on XxX is said to

be equivalent to a 2-normsE(.,.) on XxX if there are positive numbers a and b
such that apz(xi,xj) < pl(xi’xj) < bpz(xi,xj). In
following theoremth,Tt,D will mean the same as define earlier, until they a

specially defined.

Theorem 1: If Biand D be the conjugate spaces of the 2-NormedrIsaces X
and Y respectively and;Ts the adjoint of some bounded linear transforamas,
mapping Y one to one and on to a closed subspaXg thfen C(t) is closed.

Proof: By [18] (Corollary 2.1) the unit ball irx: is weak compact. Also, both

X: and D are equipped with their weakpologies. Again, a§t is adjoint to S,

Tt will also be onto and remains continuous with eesgo weak topologies of
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X: and D. Consequently, the unit ball mi will be mapped onto a weak

compact subset of D. Hence C(t) is weelosed and therefore weakly closed and
hence norm closed in D. .
Note: Let X be a 2-normed linear space andbX its conjugate. Hahn-Banach

theorem [16,17] assures that trrmalt{(xi,xj):xi,xj 00X} 0. Then there exists a

real bounded 2-linear functionalliX", defined on the whole space, such that
F(xi,X;) :Nl{(xi’xj) : Xi’xj 0X} and

‘F(xi : Xj)

sup _ =1. Such an F will be called an
X,yarenotL.D. Nl{(xi’xj) ' Xi’Xj 0X}#0

extremal of x.

Note[16,18]: The Reachable set is also convex body, symmetticnegpect to
the origin of D.

Theorem 2: Let B; be the conjugate space of the 2-normed Iinearesp?and D

is the conjugate of some 2-normed linear space et.EL] dC(t), wheredC(t)
denotes the boundary of C(t) for some given timEhen there exists at least one
ug () OU; O Bt which will transfer the system from origin #®© CoC(t) in
minimum time t, Where'l't is an in Theorem 1.

Proof: As Y is reflexive [17], D=Y* is evidently a reflexe space. Now,

S:Y- X implies S*:X** S Y that is, S :B, - D. since Y is reflexive
t t
* * *
S :Y-B,
t

* % * * % * . . *

S =T,. Consequenths =S=T,. AgainS:Y - X, i.e.S:D - X
t t t t

Therefore S~ =S OBut S =T¢{" (by hypothesis). Hence

If

* -

@OD* then Sp X , and soSe X, whereSe denotes the extremal ofpS.e.
t t

T oOX, =B, with Nl{(T:(p,f) :T:(p,f DB*t "} =1. Now if t* is the minimum

t t t

time to reachg, then 0C(t*). Let @¢[ID* be the supporting hyper plane to
oC(t*) at & let u, be optimal control to reach in minimum time t*, then

u =T, ¢,Nf(u ,u):u ,u 0U}=1 Thus u OB See [16,18] for
o= T o NGCu ) o DU LT [16,18]
determininggt, and t* for a givert. Let N'l, N'2, N'3 are the 2-norms of the spaces
X:, Y*, (Xt x Y)* respectively, where X* denotes the conjugate sphee
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Theorem 3: On a finite dimensional 2-normed linear space X, Zmorm pl(.,.)
is equivalent to any other 2-norpré(.,.).

Remark 1: If D is finite dimensional, then S always exist. \&tate the following
lemmas which can be easily proved.
Lemma 1: Let X be a 2-normed linear spacepl’(x) and p2(X) are the seminorm

and 2-norms respectively in X, thellvlax{pl(x),pz(x)} is a 2-norm in X, where X

O X.
Corollary: Evidently MaX{pl(X),pZ(X)} Is a 2-norm, where each gfl(x),pz(x)}

is a 2-norm.

Lemma 2:

(:[um(r) dt )’/2}

1
O<szt<t '™

(u u )— Max{ essupM i
O<t<t M

(E‘U((T)‘ drt )12}|]/|3X{ essup‘ m( )‘

is equivalent top, (Y, u;) = esssup|u (™) |E€sssup‘u ( r)‘ which is a 2-norm on
O=s1< Ozt

L. (0,1).
Proof: We have

3 k| u(z ) dr )’/Zsiesssup|u (1 )|E{/f=ﬂe5$up|u(r )| G/t
M 0 M O<t<t M O<t<t

We shall consider two cases, case (i) and casaufid) two subcases of case (ii).

2

Case (i): If ts%

L u(
ﬁ(,[ |Ur (T)| dt )12 B_ (J |U (‘C)| dr )12 < essupm eSSUp|um(T)|
0 O<t<t N  O<t<t N
u,(t) 2
Op,(u,u )= eSSUpw essupM_p(u u) fort<M— 3).
200 mMT ogrst N  O<t<t 1 N2

2
Hencepz(ug,um) is equivalent tq) (u u. ) fort< I\l\/ll_

2
Case(ii): t >%. There will be two subcases:

(@)
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lu, (7)) um( )| _ 1
essup—— essup——— = —
O<t<t N Ot N M

on a set of finite measure.

(b)

t t
essupM essupw <i(j luy (r)|2 dr )¥2 Bl—(j lus(®) |2 dr Y12
O<stst N Ot N M 0 M 0

almost everywhere.

((})|Ur @) dt )’/Z%ilus(r) % dr )12

We make use of the following notations:

) lup (1) lug( )| 1t 2 g2 1t 2 12
g = ESsup— — essup—C ,p4(ur,us)—ﬁ%lw(r)| dr ) EIM((J)Ius,(r)l dr )™ 0

Obviouslyps(up,uq) and p4(ur,uq) are 2-norms and they are equivalent to

p3(up,u

p(Y,u)and p2(u£,um) respectively.

In case (ii) (a):pz(uf,um) = p3(up,uq) = p4(ur,us) ,
0P, (U, 0 ) S (U U <P, U ) ()0
In case (i) (b):p,(u, U )=p,(u u)s essupM essupwﬂ/f

O<t<t N O<t<t

or
M (u,u )< essupr(T)‘ essupi‘uq(r)‘— (u,u)<p,(u,u)=p(,u) B)O
NVE2 0T T e N Geret N T3 PTG PalT 9 =AY,

Combining (3), (4) and (5) we obtain

M
MaX{l,N—\/E}pZ(Ug,Um) < p3(Up,Uq) < pz(ug,um) (6)
But p3(up,uq) is obviously equivalent tp, ;(u,uJ)Hence from (6)p2(u€,um) is

equivalent top, (u,p ) Hence the proof.

Definition: We define L,nu to be the space of all essentially bounded funstion
u, equipped with the 2-norrp512(u£,um) 0
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Definition: We define L, to be the space of all essentially bounded funstign
up@)|  ug@)|

equipped with the 2-norrp3(up u)= 8<ss<utpT 8<Ss<utpT
T T

Definition: The space  consist of all square integrable functions u, pped
with the 2-normp (u ,u) =i(} ur @) de )12[-»1—(} uste) [° dr y¥2 10

Note: Evidently p3(up,uq) and p4(ur,us) are equivalent top,(y,u;) and

p2(u€,um) respectively and hence the spaceyland L.y are complete with

respect to their respective 2-norrps§up,uq) andp 4(ur’us)'

Consider a system described by (1) where u(tsisadar control. Assume that at t
= 0 the state of the system is given be x(0). fecired to find u(t) which will
bring the system from the initial state x(0) to trgyin of the state space in the
least time under the constraint

1 2 1

2 = =
g0 (@) < N,(i\ur(r)\ dr)zi((})‘us(r) de)? < M.

The above constraints can be expressed in thenMolpalternative form:

I, v )—Max{ essup (HU/( ) dt )]/2} D}\/Iax{ essup| mf\l o)

1
O<t<t O<st<t '™
From Lemma 1, it follows thal(uf,vm) Isa2-normin Ly wm.

|“(N)| (:[|um(r)|dt )ﬂ}

Now L.,nm can be considered as the conjugate of the spageu Li.e.
L*l,N,M = LOO,N,M where [ denotes the conjugate of the corresponding spaces.
Here T : Lo.nm — R"where R denotes the n-dimensional Euclidean space. In the
finite dimensional case it can be easily shown HF,:fat S is one to one and onto a

closed subspace ofi v, where S: R - Ly nm. By Theorem 1 one can easily
verify that the corresponding Reachable set iseco®lso By Theorem 2, it
follows that there exists an optimal contu&!.

The Form Of The Optimal Control

The problem is to find u which will maximiz(el,T:@, under the constraint
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2 1 2 1
t — t —
0, @) tum @ < N (o @ d0)2 55 (o] a)? <1 @)
M r M [S
0 0
Case(l): If ts'n—j , then
u ) Jum( )

u,u_ )= essup——— essup——— =1
Pl Yy O<tst N Ot N
U essup k”(
O<t<t

)Uessupju (r)‘:N
Ot ! M

Now, the optimal u must satisfy the conditiQnT,:(p) = Nll{(T,:(p,fl) :Tt*q),le B:}

andp_(u_,u ) =1.So the problem is to find a u, which will maximize
3p'q

* t *
U,T @) =Ju@ )T, ¢) €)dr subjectto essup|u(r)| = N. Evidently the optimal u(t)
t™ t O<t<t

* * t *
will be given byu(P(r) = NSign[Tt(p(r)], 0O<rt< tand(u,Tt 9y = Nj‘(Tt (p)(’r)‘ dr
0

dr.

' * * * t *
It can easily verified thaNl{(Tt (p,fl) : Tt (p,f1 0 Bt} = Ng)‘(Tt 0)(1)

Case(ll) (a)

po(U,.u )= essupw essup|um( T) _

1t 2 2 11 2 2
= ( Jur @] dr W2 Juse) [ dr )P <
Osist N O<ist N M 0 M0

t t
Hence essup‘ kll’(‘) essup‘ u (T)‘ = Nand] |u, (r)|2 dr | |ug (r)|2 dr =M2
O<t<t Ogest | M 0 0
Consequently, one has to find tifat which will maximize
* t .
U T ) = [uE)(T p)(x)dr .
0

Let E = {t; ‘uz(r)‘ fum(@)|=N} and E = {t ‘uz(r)‘ Hum@)|< N }
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t * * *
O u)(Te)@d= [ u@)(Teo)@d+ julr) (T e)@dr.
0 E Ec

Now IjEu(r)(T: 0)@dr will be maximized ifu (7) = Nsign[T,:(p(r)], tOE.
t
Again [[u@)® de=M2ie [Ju@)f di+ | [u@)|® de =m2
0 E Ec
or,Ej lu (r)|2 dt =M2-N%m(E), where m(E) denotes the measure of the set E.

C
So, EI u(r) (T:(p)('r)dl' will be maximized under the constraint (A), if wake

C
u(e)=a (Tt* ¢)(r) wherea is a positive constant. Substituting= (T: 0)(t) in
x 2 2_ 2
(A), we have o [ (T o)@| dr= M2 - N2m(E) , where « _ WM N mE)
. P12
EC [ (Tt 0)(7)| dt
E
C

a6, T = N [T )0
E

R
dr + M2 - N%m@E) 0 | (T 9| de. It can easily verified
Ec
that

' * * * * * 2
N(Tr 0.1 Tro.f, 0B = NI T o)) dr + fuZ 2@ o) o [ e
E E
C

from the above it follows that
Nsigna(T; )(@)], 7 DE ={t :|a(T, 9)(z)

a(T, 0)(0)], T OE. ={t :|a(T, 0)0)

> N}

u(r) =
< N}

1t 2 1t 2
Case (11) (0): pylt, ) = Jur (O ds )JZZGM%|US(T)| dr y¥2 =1
Or,
t t
0 lor @) ar Y2 fus) [* dr )2 =2 ®.

Now, the problem bess, find u which will
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t x
maximize [u@)(T; 0)(r)dr under the constraint (B).
0
t 2 M
Obviously ug, = a(T,¢), such thatazj (Tyo)(r) dr = M2ie. a = t >
° wGEM)m
0
2
(Tyo)(x) dr
0

dr

t *
j(Tr o))
0
2 ¥2
drp =N{(T 0.i): T o.f, OB}

* t % t
%@=WWWFJM“@€ and[u(r)(T; )7 = a

L
=M1 o)
0

Example: Let us consider the th order constant Ilinear system
dx(t)
dt
problem which we shall consider here is to find ddenissible control vector U(t)
such that the trajectories described by the systeder U(t) remain within ag-

neighbourhood of the target state 4 x

NA(x(t,) — x*,u): x(t) - x*,ud X} <& where

xj(t)‘ . while tst<t; minimizing the fuel

= A X(t) + B U(t), where X(t), U(t), A, B have their usual meaninge

X = essupmax ‘x-(t){ U essupmax

toststyIsisr toststyIjsr
functional
2% 2%
2 1 2| |Y
J(ul,u.) = essummax ‘Ui(t)‘ +< ‘H‘TUi‘ (tydt essummax U.(t)‘ +<[m-TU ‘ (tdt
J tyststlsisr t tyStstlsjsr J t J

1=[to,t1], to & t; being initial and final times respectively. Let mew specify the
2-Banach spaces and linear operators as follows:

X = B((x?oo x B((x?oo =L_(C_(0)XL_(C_(0.0),Y =0 _(n)x¢_(n),Z= B(lr)lx Bgz =L, (1,0, 9 %Ly (0, (0),0)

Then by definition (2.2), X 'Y, Z are generalizesh@med spaces.
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t
1 A(t —S) . d -
S:X - Y,Su= Je 1 BU(s)ds,T: X —» Z,Tu=-u,TakingE = X" —-e

)

Alt, —t.)
10 -
X(t0 Jandn —TU0

The auxiliary problem becomes finding U, such that

NACE=Tu(.,.),w):E=Tu(.,.) )WY} <e, J(ul’uj) IS minimized. For further

details, see [15].

Some examples are given in Adak ([15], [18], [1&])show the technique of
application of the control theory in generalizedd&med spaces.

Note 1. Any complete 2-normed space is said to be 2-Bamspelte. Every 2-
normed space of dimension 2 is a 2-Banach space wigeunderlying field is
complete. For details see Adak [18, 21] & White. [®]linear 2-normed space of
dimension 3 is not a 2-Banach space. For detag$\date [2].

Note 2. Every 2-normed space is a locally convex topoldgregtor space. But
convers is not true. In fact for a fixedl, P,(X)=N1(x,b) Ox[X, is a seminorm
and the family P={R blOX} generates a locally convex topology on X. Such a
topology is called the natural topology induced?byorm N(.,.).

Conclusion: In the previous papers [18, 20, 21], we introdugederalized 2—
normed spaces and 2-normed spaces. There are gpfamnnections between:
(i) normed spaces and generalized 2—normed spépe&;normed spaces and
generalized 2—normed spaces, (iii) 2-normed spawcd<2-Banach spaces, (iv) 2-
normed spaces and locally convex topological vespaces, (v) generalized 2-
normed spaces and generalized symmetric 2-nornmeesp

In this paper we introduced semi-norm and equitalearm. There are
appropriate connections among semi-norm, 2-normegidzalent norm.
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