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Abstract
In 2008, E. Ekici [13] introduced a new class of generalized open sets

in a topological space called e-open sets. M. Ozkoc and G Aslim [26], in
their recent paper (Bull. Korean Math. Soc. 47 (2010), No. 5, pp. 1025-
1036), initiated two strong forms of e-open sets for the study of strongly-
θ-e-continuous functions. J. Dontchev [8] introduced the notion of contra
continuous functions. In this paper, by means of e-open sets, we introduce
and investigate certain ramifications of contra continuous and allied functions,
namely, contra-e-continuous, almost-e-continuous, almost weakly-e-continuous
and almost contra-e-continuous functions along with their several properties,
characterizations and mutual relationships. Further, we introduce new types
of graphs, called e-closed, contra-e-closed and strongly contra-e-closed graphs
via e-open sets. Several characterizations and properties of such notions are
investigated.

Keywords: almost contra-e-continuous, contra-e-closed graphs, contra-e-
continuous, e-connected, e-open.

1 Introduction

In recent literature, we find many topologists have focused their research in
the direction of investigating different types of generalized continuity. One
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of the outcomes of their research leads to the initiation of different orien-
tations of contra-continuous functions. The notion of contra continuity was
first investigated by Dontchev [8]. Subsequently, Jafari and Noiri [16, 17]
exhibited contra-α-continuous and contra-pre-continuous functions. Contra
δ-precontinuous functions [14] was obtained by Ekici and Noiri. A good num-
ber of researchers have also initiated different types of contra continuous-like
functions, some of which are found in the papers [5, 9, 12, 21, 24, 25].

In [13], Ekici obtained a new class of sets in a topological space, known
as e-open sets. Very recently M. Ozkoc and G Aslim [26], in their recent
paper (Bull. Korean Math. Soc. 47 (2010), No. 5, pp. 1025-1036), used
such e-open sets for the study of strongly-θ-e-continuous functions. Here, in
this paper also, attempt has been made to employ this notion of e-open sets
to introduce and investigate a new variation of contra continuous functions,
called contra-e-continuous functions. In section 3 we introduce and study
fundamental properties of contra-e-continuous functions, almost-e-continuous
etc.; and using such functions we characterize e-connectedness. Section 4 is
devoted to the investigation of almost contra-e-continuous functions. Section 5
concerns to the notions of e-closed, contra-e-closed and strongly contra e-closed
graphs.

2 Preliminaries

In this paper, spaces X and Y always represent topological spaces (X, τ) and
(Y, σ) respectively on which no separation axioms are assumed unless otherwise
stated. For a subset A of a space X, cl(A) and int(A) denote the closure and
the interior of A respectively.

A subset A of a space (X, τ) is called regular open (resp. regular closed)
if A = int(cl(A)) (resp. A = cl(int(A))). A subset A of a space X is said
to be δ-open [32] if for each x ∈ A there exists a regular open set G such
that x ∈ G ⊂ A. A point x ∈ X is called a δ-cluster point [32] of A if
A ∩ int(cl(U)) 6= ∅ for each open set U of X containing x. The set of all
δ-cluster points of A is called the δ-closure of A and is denoted by δ-cl(A). If
δ-cl(A) = A, then A is said to be δ-closed. The set {x : x ∈ U ⊂ A for some
regular open set U of X} is called δ-interior of A and is denoted by δ-int(A).

A subset A of a space (X, τ) is called e-open [13] (resp. α-open [23], β-open
[1] or semi-preopen [2], b-open [3] or sp-open [10] or γ-open [4], preopen [20],
semiopen [19], δ-preopen [28], δ-semiopen [27]) if A ⊂ cl(δ-int(A)) ∪ int(δ-
cl(A)) (resp. A ⊂ int(cl(int(A))), A ⊂ cl(int(cl(A))), A ⊂ int(cl(A)) ∪
cl(int(A)), A ⊂ int(cl(A)), A ⊂ cl(int(A)), A ⊂ int(δ-cl(A)), A ⊂ cl(δ-
int(A))). The complement of an e-open (resp. δ-semiopen, δ-preopen) set
is called an e-closed (resp. δ-semiclosed, δ-preclosed) set. The intersection
of all e-closed (resp. δ-semiclosed, δ-preclosed) sets containing a set A in a
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topological space X is called the e-closure [13] (resp. δ-semiclosure [27], δ-
preclosure [28]) of A and it is denoted by e-cl(A) (resp. δ-scl(A), δ-pcl(A)).
The union of all e-open (resp. δ-semiopen, δ-preopen) sets contained in a
set A in a topological space X is called the e-interior (resp. δ-semiinterior
[27], δ-preinterior [28]) of A and it is denoted by e-int(A) (resp. δ-sint(A),
δ-pint(A)). A subset A of a topological space X is e-regular [26] if it is e-open
and e-closed. The family of all e-open (resp. e-closed, e-regular) sets in X will
be denoted by eO(X) (resp. eC(X), eR(X)). The family of all e-open (resp.
e-closed, e-regular) sets which contain x in X will be denoted by eO(X, x)
(resp. eC(X, x), eR(X, x)).

A function f : (X, τ) → (Y, σ) is called contra continuous [8] (resp. contra
α-continuous [16], contra-precontinuous [17], contra δ-precontinuous [14]) if
inverse image of each open set of Y is closed (resp. α-closed, preclosed, δ-
preclosed) in X. A function f : (X, τ) → (Y, σ) is called e-continuous [13] if
f−1(V ) is e-open in X for each V ∈ σ. A topological space (X, τ) is called
Urysohn [29] if, for each x, y ∈ X with x 6= y, there exist open sets P and Q of
X containing x and y respectively such that cl(P ) ∩ cl(Q) = ∅. A topological
space X is called S-closed [18] (resp. countably S-closed [7], S-Lindeloff [11]) if
every regular closed (resp. countably regular closed, regular closed) cover of X
has a finite (resp. finite, countable) subcover. A topological space X is said to
be nearly compact [29] (resp. nearly countably compact [29], nearly Lindeloff
[29]) if every regular open (resp. countable regular open, regular open) cover
of X has a finite (resp. finite, a countably) subcover. A topological space
(X, τ) is ultra Hausdorff [31] if for each pair of distinct points x and y of X
there exist closed sets U and V such that x ∈ U , y ∈ V and U ∩ V = ∅. A
topological space (X, τ) is said to be weakly Hausdorff [30] if each element of
X is the intersection of regular closed sets of X.

Lemma 2.1 [13, 27] The following hold for a subset A of a space X:
(i) δ-pcl(A) = A ∪ cl(δ-int(A)) and δ-pint(A) = A ∩ int(δ-cl(A));
(ii) δ-sint(A) = A ∩ cl(δ-int(A)) and δ-scl(A) = A ∪ int(δ-cl(A));
(iii) A is e-open if and only if A = δ-pint(A) ∪ δ-sint(A);
(iv) e-cl(A) = δ-pcl(A) ∩ δ-scl(A) = A ∪ [cl(δ-int(A)) ∩ int(δ-cl(A))];
(v) e-int(A) = δ-pint(A) ∪ δ-sint(A) = A ∩ [int(δ-cl(A)) ∪ cl(δ-int(A))];
(vi) A is δ-preopen if and only if A ⊂ δ-pint(δ-pcl(A));
(vii) A is e-open if and only if A ⊂ δ-pcl(δ-pint(A)).

Lemma 2.2 [13] In a topological space (X, τ)
(i) The union of any family of e-open sets is an e-open set;
(ii) The intersection of any family of e-closed sets is an e-closed set.
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3 Contra-e-Continuous Functions

Definition 3.1 A function f : X → Y is called contra-e-continuous if
f−1(V ) is e-closed in X for every open set V of Y .

If f : X → Y is contra-e-continuous at each point of X, we call f is
contra-e-continuous on X.

Definition 3.2 For a topological space (X, τ) and A ⊂ X,
(a) Intersection of all open sets of X containing A is called kernel of A and is
denoted by ker(A).
(b) Intersection of all e-closed sets of X containing A is called e-closure of A
[13] and is denoted by e-cl(A).
(c) Union of all e-open sets of X contained in A is called e-interior of A [13]
and is denoted by e-int(A).

Lemma 3.3 [15] The following properties holds for subsets A, B of a topo-
logical space (X, τ):
(a) x ∈ ker(A) iff A ∩ F 6= ∅ for any closed set F of X containing x.
(b) A ⊂ ker(A) and A = ker(A) if A is open in X.
(c) If A ⊂ B, then ker(A) ⊂ ker(B).

Lemma 3.4 The following properties holds for a subset A of a topological
space (X, τ):
(i) e-int(A) = X − e-cl(X − A);
(ii) x ∈ e-cl(A) iff A ∩ U 6= ∅ for each U ∈ eO(X, x);
(iii) A is e-open iff A = e-int(A);
(iv) A is e-closed iff A = e-cl(A).

Theorem 3.5 For a function f : X → Y the following conditions are
equivalent:
(a) f is contra-e-continuous;
(b) for each closed subset F of Y , f−1(F ) is e-open in X;
(c) for each x ∈ X and each closed subset F of Y containing f(x), there exist
U ∈ eO(X, x) such that f(U) ⊂ F ;
(d) f(e-cl(A)) ⊂ ker(f(A)) for every subset A of X;
(e) e-cl(f−1(B)) ⊂ f−1(ker(B)) for every subset B of Y .

Proof. (a) ⇒ (c) : Let x ∈ X and F be any closed set of Y containing
f(x). Using (a), we have f−1(Y − F ) = X − f−1(F ) is e-closed in X and so
f−1(F ) is e-open in X. Taking U = f−1(F ), we get x ∈ U and f(U) ⊂ F .
(c) ⇒ (b): Let F be any closed set of Y and x ∈ f−1(F ). Then f(x) ∈ F and
there exist an e-open subset Ux containing x such that f(Ux) ⊂ F . Therefore,
we obtain f−1(F ) = ∪{Ux : x ∈ f−1(F )} – which is e-open in X.
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(b) ⇒ (a) : Let U be any open set of Y . Then since (Y −U) is closed in Y , by
(b), f−1(Y − U) = X − f−1(U) is e-open in X. Therefore f−1(U) is e-closed
in X.
(b) ⇒ (d): Let A be any subset of X. Suppose that y 6∈ ker(f(A)). Then by
Lemma 3.3, there exist closed set F of Y containing y such that f(A)∩F = ∅.
This implies that A∩ f−1(F ) = ∅ and so e-cl(A)∩ f−1(F ) = ∅. Therefore, we
obtain f(e-cl(A))∩F = ∅ and y 6∈ f(e-cl(A)). Hence, f(e-cl(A)) ⊂ ker(f(A)).
(d) ⇒ (e): Let B be any subset of Y . Using (d) and Lemma 3.3 we have f(e-
cl(f−1(B)) ⊂ ker(f(f−1(B))) ⊂ ker(B) and so e-cl(f−1(B)) ⊂ f−1(ker(B)).
(e) ⇒ (a): Let V be any open subset of Y . Then from Lemma 3.3 and (d)
we have e-cl(f−1(V )) ⊂ f−1(ker(V )) = f−1(V ) and hence e-cl(f−1(V )) =
f−1(V ). This shows that f−1(V ) is e-closed in X.

Remark 3.6 The following diagram holds for a function f : X → Y :

contra continuous ⇒ contra α-continuous ⇒ contra-precontinuous ⇒ con-
tra δ-precontinuous ⇒ contra-e-continuous

None of these implications is reversible as shown from the following exam-
ples:

Example 3.7 Let X = Y = {a, b, c} and τ = {∅, X, {a}, {b}, {a, b}} be
a topology on X and σ = {∅, Y, {a}, {b, c}} be a topology on Y . Define a
function f : (X, τ) → (Y, σ) as f(x) = x. Then f is contra-e-continuous but
not contra δ-precontinuous, as {b, c} is closed in Y but f−1({b, c}) = {b, c} is
not δ-preopen in X.

The other examples are shown in the related paper.

The following lemma can be verified easily:

Lemma 3.8 The following conditions are equivalent for a function f : X →
Y :
(a) f is e-continuous;
(b) for each x ∈ X and for each open set V of Y containing f(x), there exist
U ∈ eO(X, x) such that f(U) ⊂ V .

Theorem 3.9 If a function f : X → Y is contra-e-continuous and Y is
regular, then f is e-continuous.

Proof. Let x ∈ X and V be an open set of Y containing f(x). Since Y is
regular, there exist an open set G in Y containing f(x) such that cl(G) ⊂ V .
Again, since f is contra-e-continuous, so by Theorem 3.5, there exists U ∈
eO(X, x) such that f(U) ⊂ cl(G). Then f(U) ⊂ cl(G) ⊂ V . Hence f is
e-continuous.
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Definition 3.10 A topological space X is called e-space (resp. locally e-
indiscrete) if every e-open set is open (resp. closed).

Theorem 3.11 A contra-e-continuous function f : (X, τ) → (Y, σ) is con-
tinuous when X is locally e-indiscrete.

Proof. Straightforward.

Recall that a function f : X → Y is preclosed [6] if the image of every
closed subset of X is preclosed in Y . A space X is called locally indiscrete [22]
if every open set is closed.

Theorem 3.12 Let f : X → Y be a surjective preclosed contra-e-continuous
function. If X is an e-space, then Y is locally indiscrete.

Proof. Let V be an open set of Y . Since f is contra-e-continuous, f−1(V )
is e-closed in X. Let f−1(V ) = U . Then, since X is an e-space, U is closed
in X. Again, since f is preclosed, f(U) = V is preclosed in Y . So, we get
cl(V ) = int(cl(V )) ⊂ V . This shows that V is closed and hence Y is locally
indiscrete.

Definition 3.13 A function f : X → Y is called almost-e-continuous if,
for each x ∈ X and each open set V of Y containing f(x), there exists U ∈
eO(X, x) such that f(U) ⊂ e-int(cl(V )).

Definition 3.14 A function f : X → Y is said to be
(a) pre-e-open if image of each e-open set of X is an e-open set of Y .
(b) e-irresolute if preimage of an e-open subset of Y is an e-open subset of X.

Theorem 3.15 If a function f : X → Y is pre-e-open, contra-e-continuous
then it is almost-e-continuous.

Proof. Let x ∈ X and V be an open set containing f(x). Since f is
contra-e-continuous, then by Theorem 3.5, there exists U ∈ eO(X, x) such that
f(U) ⊂ cl(V ). Again, since f is pre-e-open, f(U) is e-open in Y . Therefore,
f(U) = e-int(f(U)) and hence f(U) ⊂ e-int(cl(f(U)) ⊂ e-int(cl(V )). So f is
almost-e-continuous.

Definition 3.16 The e-frontier of a subset A of a space X, denoted by
e-Fr(A), is defined as e-Fr(A) = e-cl(A)∩ e-cl(X −A) = e-cl(A)− e-int(A).

Theorem 3.17 The set of all points x of X at which f : X → Y is not
contra-e-continuous is identical with the union of e-frontier of the inverse im-
ages of closed sets of Y containing f(x).
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Proof. Necessity : Let f be not contra-e-continuous at a point x of X.
Then by Theorem 3.5, there exists a closed set F of Y containing f(x) such that
f(U)∩(Y −F ) 6= ∅ for every U ∈ eO(X, x), which implies U∩f−1(Y −F ) 6= ∅.
Therefore, x ∈ e-cl(f−1(Y −F )) = e-cl(X−f−1(F )). Again, since x ∈ f−1(F ),
we get x ∈ e-cl(f−1(F )) and so x ∈ e-Fr(f−1(F )).

Sufficiency : Suppose that x ∈ e-Fr(f−1(F )) for some closed set F of Y
containing f(x) and f is contra-e-continuous at x. Then there exists U ∈
eO(X, x) such that f(U) ⊂ F . Therefore x ∈ U ⊂ f−1(F ) and hence x ∈ e-
int(f−1(F )) ⊂ X − e-Fr(f−1(F )) — which is a contradiction. So f is not
contra-e-continuous at x.

Definition 3.18 A function f : X → Y is called almost weakly-e-continuous
if, for each x ∈ X and for each open set V of Y containing f(x), there exist
U ∈ eO(X, x) such that f(U) ⊂ cl(V ).

Theorem 3.19 If a function f : X → Y is contra-e-continuous then f is
almost weakly-e-continuous.

Proof. For any open set V of Y , cl(V ) is closed in Y . Since f is contra-
e-continuous, f−1(cl(V )) is e-open set in X. We take U = f−1(cl(V )), then
f(U) ⊂ cl(V ). Hence f is almost weakly-e-continuous.

Theorem 3.20 For two functions f : X → Y and g : Y → Z the following
properties holds:
(i) If f is contra-e-continuous function and g is a continuous function, then
g ◦ f is contra-e-continuous.
(ii) If f is e-irresolute and g is contra-e-continuous, then g ◦ f is contra-e-
continuous.

Proof. (i) For x ∈ X, let W be any closed set of Z containing g ◦ f(x).
Since g is continuous, V = g−1(W ) is closed in Y . Also, since f is contra-
e-continuous, there exists U ∈ eO(X, x) such that f(U) ⊂ V . Therefore
g ◦ f(U) ⊂ W . Hence, g ◦ f is contra-e-continuous.
(ii) For x ∈ X, let W be any closed set of Z containing g ◦ f(x). Since g is
contra-e-continuous, there exist V ∈ eO(Y, f(x)) such that g(V ) ⊂ W . Again,
since f is e-irresolute there exist U ∈ eO(X, x) such that f(U) ⊂ V . This
shows that g ◦ f(U) ⊂ W . Hence, g ◦ f is contra-e-continuous.

Theorem 3.21 Let f : X → Y be surjective e-irresolute and pre-e-open
function and g : Y → Z be any function. Then g ◦ f : X → Z is contra-e-
continuous if and only if g is contra-e-continuous.
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Proof. The “if” part is easy to prove. To prove “only if” part, let g ◦ f :
X → Z is contra-e-continuous and let F be a closed subset of Z. Then
(g ◦ f)−1(F ) is an e-open subset of X i.e. f−1(g−1(F )) is pre-e-open in X.
Since f is e-open, f(f−1(g−1(F ))) is an e-open subset of Y and so g−1(F ) is
e-open in Y . Hence, g is contra-e-continuous.

Definition 3.22 A topological space (X, τ) is said to be
(a) e-normal if each pair of non-empty disjoint closed sets can be separated by
disjoint e-open sets.
(b) ultranormal [31] if each pair of non-empty disjoint closed sets can be sep-
arated by disjoint clopen sets.

Theorem 3.23 If f : X → Y is contra-e-continuous, closed injection and
Y is ultranormal, then X is e-normal.

Proof. Let F1 and F2 be disjoint closed subsets of X. Since f is e-closed
injection, f(F1) and f(F2) are disjoint closed subsets of Y . Again, since Y is
ultranormal f(F1) and f(F2) are separated by disjoint clopen sets P and Q
(say) respectively. Therefore, f(F1) ⊂ P and f(F2) ⊂ Q i.e. F1 ⊂ f−1(P ) and
F2 ⊂ f−1(Q), where f−1(P ) and f−1(Q) are disjoint e-open sets of X (since f
is contra-e-continuous). This shows that X is e-normal.

Definition 3.24 A topological space (X, τ) is called e-connected provided
that X is not the union of two disjoint nonempty e-open sets of X.

Theorem 3.25 If f : X → Y is contra-e-continuous surjection, where X
is e-connected and Y is any topological space, then Y is not a discrete space.

Proof. If possible, suppose that Y is a discrete space. Let P be a proper
nonempty open and closed subset of Y . Then f−1(P ) is a proper nonempty
e-open and e-closed subset of X, which contradicts to the fact that X is e-
connected. Hence the theorem follows.

Theorem 3.26 If f : X → Y is contra-e-continuous surjection and X is
e-connected, then Y is connected.

Proof. If possible, suppose that Y is not connected. Then there exist
nonempty disjoint open sets P and Q such that Y = P ∪Q. So P and Q are
clopen sets of Y . Since f is contra-e-continuous function, f−1(P ) and f−1(Q)
are e-open sets of X. Also f−1(P ) and f−1(Q) are nonempty disjoint e-open
sets of X and X = f−1(P ) ∪ f−1(Q), which contradicts to the fact that X is
e-connected. Hence Y is connected.

Theorem 3.27 A space X is e-connected if and only if every contra-e-
continuous function from X into any T1 space Y is constant.
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Proof. Let X be e-connected. Now, since Y is a T1 space, Ω = {f−1(y) :
y ∈ Y } is disjoint e-open partition of X. If |Ω| ≥ 2 (where |Ω| denotes the
cardinality of Ω), then X is the union of two nonempty disjoint e-open sets.
Since X is e-connected, we get |Ω| = 1. Hence, f is constant.

Conversely, suppose that X is not e-connected and every contra-e-continuous
function from X into any T1 space Y is constant. Since X is not e-connected,
there exist a non-empty proper e-open as well as e-closed set V (say) in X.
We consider the space Y = {0, 1} with the discrete topology σ. The function
f : (X, τ) → (Y, σ) defined by f(V ) = {0} and f(X − V ) = {1} is obviously
contra-e-continuous and which is non-constant – a contradiction. Hence X is
e-connected.

Definition 3.28 [26] A space X is said to be e-T2 if for each pair of distinct
points x, y in X there exist U ∈ eO(X, x) and V ∈ eO(X, y) such that U ∩V =
∅.

Theorem 3.29 Let X and Y be two topological spaces. If for each pair
of distinct points x and y in X there exist a function f of X into Y such
that f(x) 6= f(y) where Y is an Urysohn space and f is contra-e-continuous
function at x and y then X is e-T2.

Proof. Let x, y ∈ X and x 6= y. Then by assumption, there exist a function
f : X → Y , such that f(x) 6= f(y) where Y is Urysohn and f is contra-e-
continuous at x and y. Now, since Y is Urysohn, there exist open sets U and
V of Y containing f(x) and f(y) respectively, such that cl(U) ∩ cl(V ) = ∅.
Also, f being contra-e-continuous at x and y there exist e-open sets P and Q
containing x and y respectively such that f(P ) ⊂ cl(U) and f(Q) ⊂ cl(V ).
Then f(P ) ∩ f(Q) = ∅ and so P ∩Q = ∅. Therefore X is e-T2.

Corollary 3.30 If f : X → Y is contra-e-continuous injection where Y is
an Urysohn space, then X is e-T2.

Corollary 3.31 If f is contra-e-continuous injection of a topological space
X into a ultra Hausdorff space Y, then X is e-T2.

Proof. Let x, y ∈ X where x 6= y. Then, since f is an injection and Y
is ultra Hausdorff, f(x) 6= f(y) and there exist disjoint closed sets U and V
containing f(x) and f(y) respectively. Again, since f is contra-e-continuous,
f−1(U) ∈ eO(X, x) and f−1(V ) ∈ eO(X, y) with f−1(U) ∩ f−1(V ) = ∅. This
shows that X is e-T2.
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4 Almost Contra-e-Continuous Functions

Definition 4.1 A function f : X → Y is said to be almost contra-e-
continuous if f−1(V ) is e-closed in X for every regular open set V of Y .

Theorem 4.2 The following are equivalent for a function f : X → Y :
(a) f is almost contra-e-continuous;
(b) f−1(F ) is e-open in X for every regular closed set F of Y ;
(c) for each x ∈ X and each regular open set F of Y containing f(x), there
exist U ∈ eO(X, x) such that f(U) ⊂ F ;
(d) for each x ∈ X and each regular open set V of Y non-containing f(x),
there exist an e-closed set K of X non-containing x such that f−1(V ) ⊂ K;

Proof. (a) ⇔ (b) : Let F be any regular closed set of Y . Then (Y − F )
is regular open and therefore f−1(Y − F ) = X − f−1(F ) ∈ eC(X). Hence,
f−1(F ) ∈ eO(X). The converse part is obvious.

(b) ⇒ (c) : Let F be any regular closed set of Y containing f(x). Then
f−1(F ) ∈ eO(X) and x ∈ f−1(F ). Taking U = f−1(F ) we get f(U) ⊂ F .

(c) ⇒ (b) : Let F be any regular closed set of Y and x ∈ f−1(F ). Then,
there exist Ux ∈ eO(X, x) such that f(Ux) ⊂ F and so Ux ⊂ f−1(F ). Also, we
have f−1(F ) ⊂ ∪x∈f−1(F )Ux. Hence f−1(F ) ∈ eO(X).

(c) ⇔ (d) : Let V be any regular open set of Y non-containing f(x). Then
(Y −V ) is regular closed set of Y containing f(x). Hence by (c), there exist U ∈
eO(X, x) such that f(U) ⊂ (Y − V ). Hence, U ⊂ f−1(Y − V ) ⊂ X − f−1(V )
and so f−1(V ) ⊂ (X − U). Now, since U ∈ eO(X), (X − U) is e-closed set of
X not containing x. The converse part is obvious.

Theorem 4.3 If f : X → Y is almost contra-e-continuous, then f is al-
most weakly-e-continuous.

Proof. For x ∈ X, let Q be any open set of Y containing f(x). Then cl(Q)
is a regular closed set of Y containing f(x). Then by Theorem 4.2, there exist
P ∈ eO(X, x) such that f(P ) ⊂ cl(Q). So f is almost weakly-e-continuous.

The following lemma can be easily verified.

Lemma 4.4 A function f : X → Y is almost e-continuous, if and only if
for each x ∈ X and each regular open set V of Y containing f(x), there exist
U ∈ eO(X, x) such that f(U) ⊂ V .

We recall that a topological (X, τ) is said to be extremally disconnected if
the closure of every open set of X is open in X.
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Theorem 4.5 Let f : X → Y be a function, where Y is extremally dis-
connected. Then f is almost contra-e-continuous if and only if it is almost
e-continuous.

Proof. Suppose x ∈ X and V be an regular open set of Y containing f(x).
Then since Y is extremally disconnected, V is clopen and so it is regular closed.
Then using Theorem 4.2, there exist U ∈ eO(X, x) such that f(U) ⊂ V . Hence
by Lemma 4.4, f is almost e-continuous.

Conversely, let f be almost e-continuous and W be any regular closed set of
Y . Since Y is extremally disconnected, W is also regular open in Y . Therefore,
f−1(W ) is e-open in X. This shows that f is almost contra-e-continuous.

Theorem 4.6 If f : X → Y is an almost contra-e-continuous injection
and Y is weakly Hausdorff, then X is e-T1.

Proof. Since Y is weakly Hausdorff, for distinct points x, y of Y , there
exist regular closed sets U and V such that f(x) ∈ U , f(y) 6∈ U and f(y) ∈ V ,
f(x) 6∈ V . Now, f being almost contra-e-continuous, f−1(U) and f−1(V ) are
e-open subsets of X such that x ∈ f−1(U), y 6∈ f−1(U) and y ∈ f−1(V ),
x 6∈ f−1(V ). This shows that X is e-T1.

Corollary 4.7 If f : X → Y is an contra-e-continuous injection and Y is
weakly Hausdorff, then X is e-T1.

Theorem 4.8 If f : X → Y is an almost contra-e-continuous surjection
and X is e-connected, then Y is connected.

Proof. If possible, suppose that Y is not connected. Then there exist
disjoint non-empty open sets U and V of Y such that Y = U ∪ V . Since U
and V are clopen sets in Y , they are regular open sets of Y . Again, since f
is almost contra-e-continuous surjection, f−1(U) and f−1(V ) are e-open sets
of X and X = f−1(U) ∪ f−1(V ). This shows that X is not e-connected – a
contradiction. Hence Y is connected.

Definition 4.9 A topological space (X, τ) is said to be
(a) e-compact if every e-open cover of X has a finite subcover.
(b) countably e-compact if every countable cover of X by e-open sets has a
finite subcover.
(c) e-Lindeloff if every e-open cover of X has a countable subcover.

Theorem 4.10 Let f : X → Y is an almost contra-e-continuous surjec-
tion. Then the following statements holds:
(a) If X is e-compact, then Y is S-closed.
(b) If X is e-Lindeloff, then Y is S-Lindeloff.
(c) If X is countably e-compact, then Y is countably S-closed.
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Proof. (a) : Let {Vα : α ∈ I} be any regular closed cover of Y . Since
f is almost contra-e-continuous, then {f−1(Vα) : α ∈ I} is a e-open cover of
X. Again, since X is e-compact, there exist a finite subset I0 of I such that
X = ∪{f−1(Vα) : α ∈ I0} and hence Y = ∪{Vα : α ∈ I0}. Therefore, Y is
S-closed.

Other proofs are being similar to (a) omitted.

Definition 4.11 A topological space (X, τ) is said to be
(a) e-closed compact if every e-closed cover of X has a finite subcover.
(b) countably e-closed compact if every countable cover of X by e-closed sets
has a finite subcover.
(c) e-closed Lindeloff if every cover of X by e-closed sets has a countable
subcover.

Theorem 4.12 For an almost contra-e-continuous surjection f : X → Y ,
the following statements holds :
(a) If X is e-closed compact, then Y is nearly compact.
(b) If X is e-closed Lindeloff, then Y is nearly Lindeloff.
(c) If X is countably e-closed compact, then Y is nearly countable compact.

Proof. (a): Let {Vα : α ∈ I} be any regular open cover of Y . Since f
is almost contra-e-continuous, then {f−1(Vα) : α ∈ I} is an e-closed cover of
X. Again, since X is e-closed compact, there exist a finite subset I0 of I such
that X = {f−1(Vα) : α ∈ I0}. Thus, we have Y = ∪{Vα : α ∈ I0}. Hence Y is
nearly compact.

Others proofs are being similar to (a) omitted.

5 Closed Graphs via e-Open Sets

Recall that for a function f : X → Y , the subset {(x, f(x)) : x ∈ X} ⊂ X ×Y
is called the graph of f and is denoted by G(f).

Definition 5.1 The graph G(f) of a function f : X → Y is said to be
e-closed (resp. contra-e-closed) if for each (x, y) ∈ (X×Y )−G(f), there exist
an U ∈ eO(X, x) and an open (resp. a closed) set V in Y containing y such
that (U × V ) ∩G(f) = ∅.

Lemma 5.2 The graph G(f) of a function f : X → Y is e-closed (resp.
contra-e-closed) in X×Y if and only if for each (x, y) ∈ (X×Y )−G(f) there
exist U ∈ eO(X, x) and an open set (resp. a closed set) V in Y containing y
such that f(U) ∩ V = ∅.
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Proof. We shall prove that f(U) ∩ V = ∅ ⇔ (U × V ) ∩ G(f) = ∅. Let
(U × V ) ∩ G(f) 6= ∅. Then there exist (x, y) ∈ (U × V ) and (x, y) ∈ G(f).
This implies that x ∈ U , y ∈ V and y = f(x) ∈ V . Therefore, f(U) ∩ V 6= ∅.
Hence the result follows.

Theorem 5.3 If a function f : X → Y is contra-e-continuous and Y is
Urysohn, then G(f) is contra-e-closed in X × Y .

Proof. Let (x, y) ∈ (X×Y )−G(f). Then y 6= f(x) and since Y is Urysohn,
there exist open sets P , Q in Y such that f(x) ∈ P , y ∈ Q and cl(P )∩cl(Q) =
∅. Now, since f is contra-e-continuous, there exist U ∈ eO(X, x) such that
f(U) ⊂ cl(P ) which implies that f(U) ∩ cl(Q) = ∅. Hence by above Lemma
5.2, G(f) is contra-e-closed in X × Y .

Theorem 5.4 If f : X → Y is e-continuous and Y is T1, then G(f) is
contra-e-closed in X × Y .

Proof. Let (x, y) ∈ (X×Y )−G(f). Then y 6= f(x) and since Y is T1 there
exist open set V of Y , such that f(x) ∈ V , y 6∈ V . Since f is e-continuous,
there exist e-open set U of X containing x such that f(U) ⊂ V . Therefore
f(U) ∩ (Y − V ) = ∅ and Y − V is a closed set in Y containing y. Hence by
Lemma 5.2, G(f) is contra-e-closed in X × Y .

Theorem 5.5 If f : X → Y and g : X → Y are contra-e-continuous
functions, where Y is Urysohn, then D = {x ∈ X : f(x) = g(x)} is e-closed
in X.

Proof. Let x ∈ (X − D). Then f(x) 6= g(x). Since Y is Urysohn, there
exist open sets U and V such that f(x) ∈ U and g(x) ∈ V with cl(U) ∩
cl(V ) = ∅. Again, since f and g are contra-e-continuous, then f−1(cl(U)) and
f−1(cl(V )) are e-open sets in X. Let P = f−1(cl(U)) and Q = f−1(cl(V )),
then P and Q are e-open sets of X containing x. Let M = P ∩Q, then M is
e-open in X. Hence f(M) ∩ g(M) = f(P ∩ Q) ∩ g(P ∩ Q) ⊂ f(P ) ∩ g(Q) =
cl(U) ∩ cl(V ) = ∅. Therefore, D ∩M = ∅ and hence x 6∈ e-cl(D). Thus, D is
e-closed in X.

Definition 5.6 The graph G(f) of a function f : X → Y is said to be
strongly contra-e-closed if for each (x, y) ∈ X × Y − G(f), there exist U ∈
eO(X, x) and regular closed set V in Y containing y such that (U×V )∩G(f) =
∅

Lemma 5.7 The graph G(f) of a function f : X → Y is strongly contra-e-
closed in X × Y iff for each (x, y) ∈ (X × Y )−G(f) there exist U ∈ eO(X, x)
and regular closed set V in Y containing y such that f(U) ∩ V = ∅.
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Theorem 5.8 If a function f : X → Y is almost weakly-e-continuous and
Y is Urysohn, then G(f) is strongly contra-e-closed in X × Y .

Proof. Let (x, y) ∈ (X×Y )−G(f). Then y 6= f(x) and since Y is Urysohn
there exist open sets P , Q in Y such that f(x) ∈ P , y ∈ Q and cl(P )∩cl(Q) =
∅. Now, since f is almost weakly-e-continuous, there exist U ∈ eO(X, x) such
that f(U) ⊂ cl(P ). This implies that f(U) ∩ cl(Q) = f(U) ∩ cl(int(Q)) = ∅,
where cl(int(Q)) is regular closed in Y . Hence by above Lemma 5.7, G(f) is
strongly contra-e-closed in X × Y .

Almost-e-continuous functions can be equivalently defined as:

A function f : X → Y is called almost e-continuous if f−1(V ) is e-open in
X for every regular open set V of Y .

Now we state an useful lemma:

Lemma 5.9 A function f : X → Y is almost e-continuous if and only if
for each x ∈ X and each regular open set Q of Y containing f(x), there exists
P ∈ eO(X, x) such that f(P ) ⊂ Q.

Theorem 5.10 If f : X → Y is almost e-continuous and Y is T2, then
G(f) is strongly contra-e-closed.

Proof. Let (x, y) ∈ (X × Y ) − G(f). Then y 6= f(x) and since Y is T2,
there exist open sets P and Q containing y and f(x), respectively, such that
P ∩ Q = ∅; which is equivalent to cl(P ) ∩ int(cl(Q)) = ∅. Again, since f is
almost e-continuous and Q is regular open, by Lemma 5.9, there exists S ∈
eO(X, x) such that f(S) ⊂ Q ⊂ int(cl(Q)). This implies that f(S)∩cl(P ) = ∅
and so by Lemma 5.7, G(f) is strongly contra-e-closed.

Definition 5.11 A subset A of a topological space X is called e-dense if
e-cl(A) = X.

Theorem 5.12 Let f : X → Y and g : X → Y be any two functions. If Y
is Urysohn, f , g are contra-e-continuous functions and f = g on e-dense set
A ⊂ X, then f = g on X.

Proof. Since f , g are contra-e-continuous and Y is Urysohn, using Theo-
rem 5.5, D = {x ∈ X : f(x) = g(x)} is e-closed in X. Also, we have f = g
on e-dense set A ⊂ X. Now, since A ⊂ D and A is e-dense in X, we have
X = e-cl(A) ⊂ e-cl(D) = D. Hence f = g on X.

Theorem 5.13 Let f : X → Y be a function and g : X → X × Y be the
graph function of f . Then f is contra-e-continuous if g is contra-e-continuous.
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Proof. Let G be an open set of Y , then X × U is an open set of X × Y .
Since g is contra-e-continuous, we get f−1(G) = g−1(X × U) is an e-closed of
X. Therefore f is contra-e-continuous.

Definition 5.14 A filter base F on a topological space X is said to e-
converge to a point x ∈ X if for each V ∈ eO(X, x), there exists F ∈ F
such that F ⊂ V .

Theorem 5.15 Every function ψ : X → Y , where Y is compact with e-
closed graph is e-continuous.

Proof. Let ψ be not e-continuous at x ∈ X. Then there exists an open
set S in Y containing ψ(x) such that ψ(T ) 6⊂ S for every T ∈ eO(X, x). It
is obvious to verify that G = {T ⊂ X : T ∈ eO(X, x)} is a filterbase on X
that e-converges to x. Now we shall show that YG = {ψ(T ) ∩ (Y − S) : T ∈
eO(X, x)} is a filterbase on Y . Here for every T ∈ eO(X, x), ψ(T ) 6⊂ S, i.e.
ψ(T )∩(Y −S) 6= ∅. So ∅ 6∈ YG. Let G,H ∈ YG. Then there are T1, T2 ∈ G such
that G = ψ(T1) ∩ (Y − S) and H = ψ(T2) ∩ (Y − S). Since G is a filterbase,
there exists a T3 ∈ G such that T3 ⊂ T1∩T2 and so W = ψ(T3)∩ (Y −S) ∈ YG
with W ⊂ G ∩H. It is clear that G ∈ YG and G ⊂ H imply H ∈ YG. Hence
YG is a filterbase on Y . Since Y − S is closed in compact space Y , S is itself
compact. So, YG must adheres at some point y ∈ Y −S. Here y 6= ψ(x) ensures
that (x, y) 6∈ G(ψ). Thus Lemma 5.2 gives us an U ∈ eO(X, x) and a open set
V in Y containing y such that ψ(U) ∩ V = ∅, i.e. (ψ(U) ∩ (Y − S)) ∩ V = ∅
— a contradiction.

Theorem 5.16 If a surjection ψ : X → Y possesses an e-closed graph,
then Y is T1.

Proof. Let p1, p2 ∈ Y with p1 6= p2. Since ψ is a surjection, there exists an
x1 ∈ X such that ψ(x1) = p1 and ψ(x1) 6= p2. Therefore (x1, p2) 6∈ G(ψ) and so
by Lemma 5.2, there exist U1 ∈ eO(X, x1) and open set V1 in Y containing p2

such that ψ(U1)∩V1 = ∅. Then p1 ∈ ψ(U1) but p1 6∈ V1. Similarly, there exists
an x2 ∈ X such that ψ(x2) = p2 and ψ(x2) 6= p1. Therefore (x2, p1) 6∈ G(ψ) and
so by Lemma 5.2, there exist U2 ∈ eO(X, x2) and open set V2 in Y containing
p1 such that ψ(U2) ∩ V2 = ∅. Then p2 ∈ ψ(U2) but p2 6∈ V2. Hence V1 and V2

are two open sets containing p1 and p2 respectively but p1 6∈ V1 and p2 6∈ V2.
So Y is T1.

Theorem 5.17 If an open surjection ψ : X → Y possesses an e-closed
graph, then Y is e-T2.
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Proof. Let p1, p2 ∈ Y with p1 6= p2. Since ψ is a surjection, there exists an
x1 ∈ X such that ψ(x1) = p1 and ψ(x1) 6= p2. Therefore (x1, p2) 6∈ G(ψ) and
so by Lemma 5.2, there exist U1 ∈ eO(X, x1) and open set V in Y containing
p2 such that ψ(U)∩V = ∅. Since ψ is e-open, ψ(U) and V are disjoint e-open
sets containing p1 and p2. So Y is e-T2.
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