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Abstract
In this paper, we deal with a modified slightly form of generating space of

quasi-norm family and extend the Kirk’s type fixed point theorem in this setting
which serves as a unified form of such fixed point theorem both of classical
functional analysis as well as fuzzy functional analysis.
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1 Introduction

J.X.Fan [3] dealt with generating spaces of quasi-metric family while he was
studying on generalizations of Ekeland’s variational principle and Caristi’s
fixed point theorem. Later Chang et al. [2], Jung et al.[4], Lee et al. [8]
studied generating spaces of quasi-metric family. In 2006, Xiao & Zhu [15]
introduced the concept of Generating spaces of Quasi-Norm family ( GSQ-
NF ) and extended Schauder fixed point theorem for continuous mapping in
such spaces. Observing the significance of the generating spaces of quasi-metric
(quasi-norm ) family in unifying the results of classical, probabilistic and fuzzy
settings, we have studied some properties of this spaces and extended Hahn-
Banach theorem in GSQ-NF ([9], [11], [12]).
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In this paper, we extend the celebrated Kirk’s fixed point theorem for non-
expansive mapping in G.S.Q-N.F setting. For this, we introduce the concept
of weakly convergent sequences, weakly Cauchy sequences and weakly com-
pact sets in GSQ-NF. The definitions of diameter, radius, Chebyshev radius,
Chebyshev centre are given in this space. The concept of diametral point,
non-diametral point, normal structure and non-expansive mapping are also
introduced in GSQ-NF.

The organization of the paper is as follows:
Section 2 comprises some preliminary results.
In Section 3, we give definitions of weakly convergent sequences, weakly Cauchy
sequences, and weakly compact sets.
Some geometric properties are studied in section 4.
We establish Kirk-type fixed point theorem in Section 5.

2 Some Preliminary Results

In this section some preliminary results are given which are related to this
paper.

Definition 2.1 [15] Let X be a linear space over E and θ be the origin of
X. Let

Q = { |.|α : α ∈ (0, 1]}

be a family of mappings from X into [0, ∞). (X, Q) is called a generating
space of quasi-norm family and Q a quasi-norm family if the following condi-
tions are satisfied:
(QN-1) |x|α = 0 ∀α ∈ (0, 1] iff x = θ;
(QN-2) |ex|α = |e||x|α for x ∈ X and e ∈ E;
(QN-3) for any α ∈ (0, 1] there exists a β ∈ (0, α] such that

|x+ y|α ≤ |x|β + |y|β for x, y ∈ X;
(QN-4) for any x ∈ X, |x|α is non-increasing and left-continuous for α ∈
(0, 1].
(X, Q) is called a generating space of sub-strong quasi-norm family, strong
quasi-norm family, and semi-norm family respectively, if (QN-3) is strength-
ened to (QN-3u), (QN-3t) and (QN-3e), where
(QN-3u) for any α ∈ (0, 1] there exists β ∈ (0, α] such that

|
n∑
i=1

xi|α ≤
n∑
i=1

|xi|β for any n ∈ Z+, xi ∈ X(i = 1, 2, ...., n);

(QN-3t) for any α ∈ (0, 1] there exists a β ∈ (0, α] such that
|x+ y|α ≤ |x|α + |y|β for x, y ∈ X;

(QN-3e) for any α ∈ (0, 1], it holds that |x+ y|α ≤ |x|α + |y|α for x, y ∈ X.
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Waiving the left-continuity property of |x|α in (QN-4) and taking the family
Q = {|.|α : α ∈ (0, 1)}, in [10], we have dealt with a slightly generalized form
of definition of GSQ-NF [8]. Our definition is as follows:

Definition 2.2 [10] Let X be a linear space over E(Real or Complex) and
θ be the origin of X. Let

Q = { |.|α : α ∈ (0, 1)}

be a family of mappings from X into [0, ∞). (X, Q) is called a generating
space of quasi-norm family and Q, a quasi-norm family, if the following con-
ditions are satisfied:
(QN1) |x|α = 0 ∀α ∈ (0, 1) iff x = θ;
(QN2) |ex|α = |e||x|α ∀ x ∈ X, ∀α ∈ (0, 1) and ∀ e ∈ E;
(QN3) for any α ∈ (0, 1) there exists a β ∈ (0, α] such that

|x+ y|α ≤ |x|β + |y|β for x, y ∈ X;
(QN4) for any x ∈ X, |x|α is non-increasing for α ∈ (0, 1).
(X, Q) is called a generating space of sub-strong quasi-norm family, strong
quasi-norm family, and semi-norm family respectively, if (QN-3) is strength-
ened to (QN-3u), (QN-3t) and (QN-3e), where
(QN-3u) for any α ∈ (0, 1) there exists β ∈ (0, α] such that

|
n∑
i=1

xi|α ≤
n∑
i=1

|xi|β for any n ∈ Z+, xi ∈ X(i = 1, 2, ...., n);

(QN-3t) for any α ∈ (0, 1) there exists a β ∈ (0, α] such that
|x+ y|α ≤ |x|α + |y|β for x, y ∈ X;

(QN-3e) for any α ∈ (0, 1), it holds that |x+ y|α ≤ |x|α + |y|α for x, y ∈ X.

Approaching as in [15], it can be shown that in a GSQ-NF ( X, Q), the
collection {N(ε, α) : ε > 0, α ∈ (0, 1)}, where N(ε, α) = {x : |x|α < ε}
from a neighborhood base of θ ∈ X. Further the associated topology τQ is a
first countable Hausdroff linear topological space. If in addition, (X , Q) is
a generating space of semi-norm family(GSS-N), then (X , τQ) is a locally
convex space.

Definition 2.3 [10] Let (X,Q) be a GSQ-NF.
(i) A sequence {xn}∞n=1 ⊂ X is said
(a) to converge to x ∈ X denoted by lim

n→∞
xn = x if lim

n→∞
|xn − x|α = 0 for

each α ∈ (0, 1);
(b) to be a Cauchy sequence if lim

m, n→∞
|xn − xm|α = 0 for each α ∈ (0, 1).

(ii) A subset B ⊂ X is said to be complete if every Cauchy sequence in B
converges in B.

Definition 2.4 [10] Let (X, Q) be a GSS-NF where Q satisfies
(QN-6): if x(6= θ) ∈ X then |x|α > 0 ∀α ∈ (0, 1). Then (X, Q) is said to be
a generating space of norm family (GSNF).
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Definition 2.5 [10] Let (X,Q) be a GSS-NF.
(a) A subset A of X is said to be bounded if for each α ∈ (0, 1) there exists a
real number M(α) such that |x|α ≤ M(α) ∀ x ∈ A.

(b) A subset A of X is said to be α-level bounded for some α ∈ (0, 1) if
there exists a real number M(α) such that |x|α ≤ M(α) ∀ x ∈ A.

(c) A subset A of X is said to be closed if for any sequence {xn} of points
of A with lim

n→∞
xn = x implies x ∈ A.

(d) A subset A of X is said to be compact if for any sequence {xn} of points
of A has a convergent subsequence which converges to a point in A.

Remark 2.6 In a generating space of quasi-norm family (X,Q), intersec-
tion of two closed sets is a closed set.

Definition 2.7 [9]Let (X,Q) be a generating space of quasi-norm family.
(a) The closure of a subset A of X is denoted by A and is defined by
A = {x : if ∃ a sequence {xn} in A such that lim

n→∞
xn = x}.

(b) The set of all convex combinations of points of a subset A of X is
denoted by convA and is defined by
convA = {λ x+ (1− λ) y ∀ x, y ∈ A ∀λ ∈ [0, 1]}.

Definition 2.8 [10] Let Q1 = { |.|1α : α ∈ (0, 1)} and Q2 = { |.|2α : α ∈ (0, 1)} be
two quasi-norm families on X1 and X2 respectively and T : (X1, Q1) → (X2, Q2)
be an operator. Then T is said to be continuous at x ∈ X1 if for any sequence
{xn} of X1 with xn → x i.e. with lim

n→∞
|xn − x|1α = 0 ∀α ∈ (0, 1) implies

T (xn)→ T (x).
i.e. lim

n→∞
|T (xn)− T (x)|2α = 0 ∀α ∈ (0, 1). If T is continuous at each point of

X1, then T is said to be continuous on X1.

Definition 2.9 [10] Let T : (X1, Q1) → (X2, Q2) be an operator. Then
(a) T is said to be bounded if corresponding to each α ∈ (0, 1), ∃ Mα > 0
such that

|T (x)|2α ≤ Mα|x|11−α ∀x ∈ X1.

(b) T is said to be α− level bounded for some α ∈ (0, 1) if ∃ Mα > 0 such
that
|T (x)|2α ≤ Mα|x|11−α ∀x ∈ X1.

Theorem 2.10 [10] Let T : (X1, Q1) → (X2, Q2) be a linear operator. If
T is bounded then it is continuous but not conversely.

Definition 2.11 [13] Let X be a topological vector space(TVS). The vector
space of all continuous linear functionals on X is said to the dual space of X
and is denoted by X∗. The addition and scalar multiplication in X∗ are defined
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by:
(T1 + T2)x = T1x+ T2x
and
(λ T )x = α (Tx) ∀ T1, T2, T ∈ X∗ and ∀ x ∈ X and λ is a scalar.

Remark 2.12 [13] If X is locally convex space then X∗ separates points on
X.

Remark 2.13 [13] Let X be a TVS with topology τ whose dual space is
X∗ separates points on X. Then the X∗-topology on X makes X into a locally
convex space whose dual space is X∗. Let it be denoted by τw. Since every
T ∈ X∗ is τ -continuous and since τw is the weakest topology on X with
respect to which every T ∈ X∗ is continuous, we have τw ⊂ τ . In this context
τ is called original topology.

Theorem 2.14 [13] Let E be a convex subset of a locally convex vector
space X. Then the weak closure Ew of E is equal to its original closure E.

Definition 2.15 Let (X1, Q1) and (X2, Q2) be two generating spaces of
quasi-norm families. We denote by L(X1, X2) the set of all linear functions
from X1 to X2. Then L(X1, X2) is a linear space with respect to usual addition
and scalar multiplication of operators. The vector space of all continuous linear
functional on X1 is said to be the dual space of X1 and is denoted by X∗1 .

Note 2.16 As the underlying topological vector space is first countable
and the induced topology is Hausdorff topology the continuity as defined in
Definition 2.8 is same as the continuity with respect to the topological vector
space. So all the results in the topological vector space (X, τQ) are valid in
a generating space of semi-norm family (X, Q). In this case X2 = R and
Q2 = { |.|α = |.| : α ∈ (0, 1]}.

Remark 2.17 Let (X, Q) be a generating space of quasi-norm family and
α ∈ (0, 1). Then any α-level bounded linear functional on X is a continuous
linear functional on X.

Theorem 2.18 [11] Let (X, Q) be a generating space of semi-norm family
and x0 ∈ X such that |x0|1−α 6= 0 for some α ∈ (0, 1). Then there exists an
α-level bounded linear functional f̂α i.e. a continuous linear functional on X
such that
|f̂α|sα = 1 and f̂α(x0) = |x0|1−α.
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3 Weakly Convergent Sequence and Weakly

Compact Set

In this section, we introduce the concept of weakly convergent sequences, weakly
Cauchy sequences and weakly compact set in GSS-NF.

Definition 3.1 Let (X,Q) be a GSS-NF:
(a) A sequence {xn}∞n=1 ⊂ X is said
(i) to weakly convergent to x ∈ X denoted by xn →w x if lim

n→∞
|f(xn)−f(x)| =

0 for each f ∈ X∗. In this case x is called the weak limit of the sequence
{xn};
(ii) to be a weakly Cauchy sequence if lim

m, n→∞
|f(xn) − f(xm)| = 0 for each

f ∈ X∗;
(b) A subset B ⊂ X is said to be weakly complete if every weakly Cauchy
sequence in B weakly converges in B;
(c) A subset A of X is said to be weakly closed if for any sequence {xn} of
points of A with xn →w x implies x ∈ A;
(d) A subset A of X is said to be weakly compact if for any sequence {xn} of
points of A has a weakly convergent subsequence which weakly converges to a
point in A.

Proposition 3.2 Let (X, Q) be a GSS-NF:
(a) The weak limit of a sequence {xn} in X if exists is unique;
(b) Every subsequence of a weakly convergent sequence converges weakly to the
same weak limit;
(c) Every convergent sequence in X is weakly convergent;
(d) Every weakly convergent sequence in X is a weakly Cauchy sequence;
(e) Every weakly compact set in X is weakly closed and closed.

Proof(a). If possible let a sequence {xn} in (X, Q) converges weakly to
two different limits x and y. Then
lim
n→∞

|f(xn)− f(x)| = 0 and

lim
n→∞

|f(xn)− f(y)| = 0 for each f ∈ X∗.

Now |f(x)− f(y)| ≤ |f(x)− f(xn)|+ |f(xn)− f(y)|
⇒ lim

n→∞
|f(x)− f(y)| ≤ lim

n→∞
|f(x)− f(xn)|+ lim

n→∞
|f(xn)− f(y)| = 0

⇒ |f(x− y)| = 0
⇒ f(x− y) = 0 for each f ∈ X∗.
We claim that x = y, if not, there exists an α ∈ (0, 1) such that |x−y|1−α 6= 0
and by Theorem 2.18, there exists a continuous linear functional fα ∈ X∗ such
that
|fα|sα = 1 and fα(x− y) = |x− y|1−α 6= 0, which is a contradiction.
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Proof(b). Let the sequence {xn} converges weakly to x. Then
lim
n→∞

|f(xn)− f(x)| = 0 for each f ∈ X∗

⇒ lim
nk→∞

|f(xnk
)− f(x)| = 0 for all f ∈ X∗ and for any subsequence {xnk

} of

{xn}.

Proof(c). Let the sequence {xn} converges to x. Then
lim
n→∞

|xn − x|α = 0 ∀α ∈ (0, 1).

If f ∈ X∗ then, since f is continuous
lim
n→∞

|f(xn)− f(x)| = 0.

Hence the the sequence {xn} converges weakly to x.

Proof(d). Proof is straightforward.

Proof(e). Let A ⊂ X be weakly compact and {xn} be a weakly convergent
sequence in A which converges weakly to x. Since A is weakly compact, {xn}
has a weakly convergent subsequence which converges weakly to some point
in A. But all the subsequences of {xn} converges weakly to x, since {xn} is
weakly convergent sequence and converges weakly to x. Hence x ∈ A. So A is
weakly closed.
Let {xn} be a convergent sequence in A which converges to x. Then {xn} is
a weakly convergent sequence which converges weakly to x. Since A is weakly
closed, x ∈ A. So A is closed.

4 Some Geometric Properties in GSQ-NF

In this section, we give the definitions of radius, Chebyshev radius, Chebyshev
center, diametral point and normal structure in GSQ-NF.

Definition 4.1 Let (X,Q) be a generating space of quasi-norm family. A
subset A of X is said to be strongly bounded if there exists a real number M > 0
such that |x|α ≤ M ∀ x ∈ A ∀α ∈ (0, 1).

Proposition 4.2 In a GSQ-NF (X, Q) every strongly bounded subset of
X is bounded.

The converse of the above Proposition is not always true, which is justified
by the following example.

Example 4.3 Let X = R2 be a linear space. For x = (x1, x2) ∈ X define

|x|α =
1

α

√
x21 + x22 ∀α ∈ (0, 1).
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Then clearly

Q = { |.|α : α ∈ (0, 1)}

is a quasi-norm family and (X, Q) is a GSQ-NF.
Let us consider the set A = {x = (x1, x2) ∈ X : x21 + x22 ≤ 1}. Then it is
easy to verify that A is bounded but not strongly bounded.

Proposition 4.4 In a generating space of quasi-norm family (X, Q), ev-
ery compact set is closed and bounded.

Proof. Let A be any compact subset of X. Let {xn} be a sequence in
A such that lim xn = x. Since A is compact, {xn} has a subsequence {xnk

}
converging to some point in A. But lim xn = x implies lim xnk

= x and hence
x ∈ A. So A is closed.
If possible let A be unbounded. Then there exists α0 ∈ (0, 1) and for each
n ∈ N ,∃ xn ∈ A such that |xn|α0 ≥ n. So {xn} is a sequence in A. Since A
is compact, {xn} has a subsequence {xnk

} such that lim xnk
= x ∈ A.

Now |xnk
|α0 = |xnk

− x+ x|α0 ≤ |xnk
− x|β0 + |x|β0 , where 0 < β0 ≤ α0

⇒ |x|β0 ≥ |xnk
|α0 − |xnk

− x|β0 .
Taking limit n→∞ we get
|x|β0 ≥ lim

n→∞
|xnk
|α0 =∞, which is a contradiction. Hence A is bounded.

Definition 4.5 Let (X, Q) be a GSQ-NF and D ,H are two strongly
bounded subsets of X. Set:

(i) δ(D) =
∨

α∈(0,1)
[
∨
{|x− y|α, ∀x, y ∈ D}].

(ii) ru(D) =
∨

α∈(0,1)
[
∨
{|u− x|α, ∀x ∈ D}], (u ∈ H).

(iii) rH(D) =
∧
u∈H
{ru(D)}.

(iv) CH(D) = {u ∈ H : ru(D) = rH(D)}.

The number δ(D) is called the diameter of D , ru(D) is called the radius of
D relative to u, rH(D) and CH(D) are called respectively the Chebyshev radius
and the Chebyshev center of D relative to H. When H = D the notations
r(D) and C(D) are used for rH(D) and CH(D) respectively.

Proposition 4.6 Let (X, Q) be a GSQ-NF and D ⊂ X. Then for any
u ∈ D,
δ(D) ≥ ru(D) ≥ r(D).

Proof. The proof is straightforward.
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Definition 4.7 Let (X, Q) be a GSQ-NF and D is a strongly bounded
subset of X. A point u ∈ D is said to be a diametral point if ru(D) = δ(D).
If u is not a diametral point of D, then it is called a fuzzy non-diametral point
of D.

Definition 4.8 Let (X, Q) be a GSQ-NF. A nonempty strongly bounded, con-
vex subset K of X is said to have normal structure if each strongly bounded, con-
vex subset S of K with δ(S) > 0 contains a non-diametral point.

Definition 4.9 Let (X, Q) be a GSQ-NF and D ,H are two bounded
subsets of X.
For α ∈ (0, 1) set:

(i) δα(D) =
∨
{|x− y|α, ∀x, y ∈ D}.

(ii) rαu(D) =
∨
{|u− x|α, ∀x ∈ D}, (u ∈ H).

(iii) rαH(D) =
∧
u∈H
{rαu(D)}.

(iv) Cα
H(D) = {u ∈ H : rαu(D) = rαH(D)}.

The numbers δα(D), rαu(D), rαH(D) and Cα
H(D) are called respectively the

α-diameter of D, α-radius of D relative to u, the Chebyshev α-radius and the
Chebyshev α-center of D relative to H.
When H = D, then the notations rα(D) and Cα(D) are used for rαH(D) and
Cα
H(D) respectively.

Proposition 4.10 Let (X, Q) be a GSQ-NF. Then for any subset strongly
bounded subset D of X with u ∈ X, ru(D) =

∨{rαu(D) : α ∈ (0 , 1)}.

Proof. The proof is straightforward.

Remark 4.11 From the above relation it is obvious that
ru(D) ≥ rαu(D) ∀ α ∈ (0, 1).

Proposition 4.12 Let (X, Q) be a GSQ-NF and D be a strongly bounded
subset of X. If δ (D) > r(D) then ∃α0 ∈ (0, 1) such that
δα0(D) > rα(D) ∀α ∈ (0, 1).

Proof. Let δ (D) > r(D).

Then δ(D) =
∨

α∈(0,1)
[
∨
{|x− y|α, ∀x, y ∈ D}] >

∧
u∈D
{ru(D)} = r(D).

Thus ∃α0 ∈ (0, 1) and u0 ∈ D such that∨{|x− y|α0 , ∀x, y ∈ D} > ru0(D) ≥ rαu0(D) ∀ α ∈ (0, 1)
≥ rα(D) ∀α ∈ (0, 1)

⇒ δα0(D) > rα(D) ∀α ∈ (0, 1).
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Remark 4.13 Let (X, Q) be a GSQ-NF and α ∈ (0, 1). Let K be a
nonempty, strongly bounded, convex subset of X having normal structure. Then
for each convex subset S of K with δ(S) > 0, ∃αS ∈ (0, 1) such that
δαs(S) > rα(S) ∀α ∈ (0, 1).

5 Kirk’s Fixed Point Theorem

In this section, we define non-expansive mapping and establish Kirk’s fixed
point theorem.

Definition 5.1 Let (X, Q) be a GSQ-NF and T : X → X. The operator
T is said to be non-expansive if
|Tx− Ty|α ≤ |x− y|α ∀α ∈ (0, 1), ∀ x, y ∈ X.

Definition 5.2 Let (X, Q) be a GSQ-NF and T : X → X. A nonempty,
closed, convex subset D of X is said to be T -invariant if T (D) ⊂ D.

Definition 5.3 Let (X, Q) be a GSQ-NF and T : X → X. A nonempty,
closed, convex subset D of X is said to be minimal T -invariant if T (D) ⊂ D
and D has no nonempty, closed, convex subset which is T -invariant.

Theorem 5.4 Let (X, Q) be a generating space of semi-norm family. Let
K be a nonempty, weakly compact, convex subset of X. Then for any mapping
T : K → K there exists a nonempty, closed, convex subset of K which is
minimal T -invariant.

Proof. Let us consider the family M of all nonempty, closed and convex
subsets of K which are T -invariant and order this family by set inclusion. For
K1, K2 ∈ µ, K1 ≤ K2 provided K2 ⊂ K1.
Let us consider a chain C of nonempty, closed and convex subsets of K. Since
C is a chain it has finite intersection property. Further every member of M
, being closed and convex, is weakly closed subset of the weakly compact set
K and hence weakly compact. So ∩∞i=1Ki is nonempty closed and convex and
which is the upper bound of C. By Zorn’s Lemma, M has a maximal element
which is the minimal T -invariant.

Lemma 5.5 Let (X, Q) be a generating space of semi-norm family and
T : X → X. Then if K ⊂ X is a nonempty, closed, convex and minimal
T -invariant set, then

K = convT (K).
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Proof. Let K ⊂ X is a T -invariant set, then T (K) ⊂ K. Since K
is convex, convT (K) ⊂ K and convT (K) ⊂ K, since K is closed. Now
T (convT (K)) ⊂ T (K) ⊂ convT (K). So clearly convT (K) is T -invariant
and it is also closed and convex. Since K is the minimal T -invariant set, K =
convT (K).

Theorem 5.6 (Kirk’s) Let (X, Q) be a generating space of semi-norm fam-
ily and K be a nonempty, weakly compact, convex subset of X. If K has a
normal structure then for any non-expansive mapping T : K → K has a fixed
point.

Proof. By Theorem 5.4, there exists a nonempty, closed, convex subset K0

of K which is minimal T -invariant and by Lemma 5.5

K0 = convT (K0).

We claim that δ(K0) = 0. If not let δ(K0) > 0. Since K has a normal struc-
ture, K0 has a non-diametral point. Since δ(K0) > 0, K0 has more than one
element.
Let u ∈ C(K0) i.e. ru(K0) = r(K0) > 0.
Since T is non-expansive,
|Tu− Tv|α ≤ |u− v|α ∀α ∈ (0, 1), ∀ u ∈ K0

⇒ |Tu− Tv|α ≤ |u− v|α ≤ r(K0) ∀α ∈ (0, 1)
⇒ T (K0) ⊂ B(Tu, r(K0)) = {x ∈ X : |Tu− x|α ≤ r(K0) ∀α ∈ (0, 1)}.
Next we shall show that
K0 = convT (K0) ⊂ B(Tu, r(K0)).
Let z ∈ convT (K0) then z = λ x + (1 − λ) y for some x, y ∈ T (K0) and
λ ∈ [0, 1].
Now |Tu− z|α = |λ Tu+ (1− λ)Tu− λ x− (1− λ) y|α
≤ |λ||Tu− x|β + |(1− λ)||Tu− y|β for some β ∈ (0, α]

⇒ |Tu− z|α ≤ λ r(K0) + (1− λ)r(K0) = r(K0).
Hence z ∈ B(Tu, r(K0)) and convT (K0) ⊂ B(Tu, r(K0)).
Let x ∈ convT (K0) then there exists a sequence {xn} of points of convT (K0)
i.e. of B(Tu, r(K0)) such that lim

n→∞
xn = x.

Now |Tu− x|α ≤ |Tu− xn|β + |xn − x|β for some β ∈ (0, α], ∀ n ∈ N
⇒ |Tu− x|α ≤ r(K0) + |xn − x|β ∀ n ∈ N .
Taking limit n → ∞ we get |Tu − x|α ≤ r(K0) ∀α ∈ (0, 1) which implies
x ∈ B(Tu, r(K0)).
Hence K0 = convT (K0) ⊂ B(Tu, r(K0)),
which shows that rTu(K0) = r(K0) and hence Tu ∈ C(K0). This proves that
C(K0) is T -invariant, which contradicts the fact that K0 is the minimal T -
invariant.
Hence δ(K0) = 0 and since K0 is nonempty it is a singleton set and is fixed
under T .
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6 Conclusion

Generating spaces of quasi-norm family ( GSQ-NF) has the strength of unifying
results on classical, fuzzy and probabilistic functional analysis. Not much
study has yet been made in fixed point in this setting. In this paper, we
have attempted to extend the fixed point theory of nonexpansive mappings in
GSQ-NF. For this we have introduced Chebyshev radius, Chebyshev centre,
diametral point, non-diametral point, normal structure in GSQ-NF. Finally
we have extended the Kirk’s fixed point theorem in GSS-NF.
We have a lot of scope for studying fixed point theorems in this settings.
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