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Abstract
In this paper we study the variational discretization and mixed finite element

methods for optimal control problem governed by semilinear parabolic equations.
The space discretization of the state variable is done using usual mixed finite el-
ements. The state and the co-state are approximated by the lowest order Raviart-
Thomas mixed finite element spaces and the control is not discreted. Then we derive
a priori error estimates both for the coupled state and the control approximation.
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1 Introduction

Optimal control problems governed by semilinear parabolic equations is an im-
portant problem in engineering applications. The finite element method was un-
doubtedly the most widely used numerical method in computing optimal control
problems. There have been extensive studies in convergence of the finite element
approximation of optimal control problems. For optimal control problems governed
by linear elliptic equations, a priori error estimates of the standard finite element dis-
cretization were established long ago, see, for example, Falk [10]. The authors pre-
sented error estimates of finite element approximations of state constrained convex
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parabolic boundary control problems in [1]. Then, Malanowski in [21] established
a priori error estimates for the finite element approximations to convex constrained
optimal control systems. In [2] the authors considered the finite element approx-
imation of a distributed optimal control problem governed by a semilinear elliptic
partial differential equation, where pointwise constraints on the control were given.
Casas studied the numerical approximation of distributed semilinear optimal con-
trol problems and proved that the L2-error estimates were of order o(h), which was
optimal according to the C0,1(Ω̄)-regularity of the optimal control in [3]. While
the a priori error analysis for finite element discretization of optimal control prob-
lems governed by elliptic equations was discussed in many publications, see, e.g.,
[13, 26], there were only few published results on this topic for parabolic problems.
Meidner and Vexler proposed a priori error estimates for space-time finite element
discretization of parabolic optimal control problems without control constraints in
[22]. The space discretization of the state variable was done using usual conform-
ing finite elements, whereas the time discretization was based on discontinuous
Galerkin methods. Some recent progress in a priori error estimates can be found
in [15, 24], but there were only few published results on this topic for nonlinear
optimal control problems.

In many control problems, the objective functional contains gradient of the state
variables. Thus the accuracy of gradient is important in numerical approximation
of the state equations. Mixed finite element methods are appropriate for the state
equations in such cases since both the scalar variable and its flux variable can be
approximated to the same accuracy by using such methods, see, for example, [16].
However, there was only very limited research work on analyzing such elements for
optimal control problems. Recently, we have derived a priori error estimates, a pos-
teriori error estimates and superconvergence for quadratic optimal control problems
using mixed finite element methods in [4, 5, 6, 7, 8, 18, 19, 20, 27].

In [14], the author first presents the variational discretization concept for optimal
control problems with control constraints, with implicitly utilizes the first order
optimality conditions and the discretization of the state and adjoint equations for the
discretization of the control instead of discretizing the space of admissible controls.

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω
with a norm ‖ · ‖m,p given by ‖ v ‖pm,p=

∑
|α|≤m

‖ Dαv ‖pLp(Ω), a semi-norm | · |m,p

given by | v |pm,p=
∑
|α|=m

‖ Dαv ‖pLp(Ω). We set Wm,p
0 (Ω) = {v ∈ Wm,p(Ω) :

v |∂Ω= 0}. For p = 2, we denote Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω), and
‖ · ‖m=‖ · ‖m,2, ‖ · ‖=‖ · ‖0,2. We denote by Ls(0, T ;Wm,p(Ω)) the Banach space
of all Ls integrable functions from J into Wm,p(Ω) with norm ‖ v ‖Ls(J ;Wm,p(Ω))=( ∫ T

0
||v||sWm,p(Ω)dt

) 1
s

for s ∈ [1,∞), and the standard modification for s = ∞.
The details can be found in [17].

In this paper we study a priori error estimates of the variational discretiza-
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tion and mixed finite element methods for optimal control problem governed by
semilinear parabolic equations. We focus our attention on the following semilinear
parabolic optimal control problem:

min
u(t)∈K⊂U

{
1

2

∫ T

0

(
‖ ~p− ~pd ‖2 + ‖ y − yd ‖2 + ‖ u ‖2

)
dt

}
(1)

subject to the state equation

yt(x, t) + div~p(x, t) + φ(y(x, t)) = f(x, t) +Bu(x, t), x ∈ Ω, t ∈ J, (2)
~p(x, t) = −A(x)∇y(x, t), x ∈ Ω, (3)
y(x, t) = 0, x ∈ ∂Ω, t ∈ J, y(x, 0) = y0(x), x ∈ Ω, (4)

where the bounded open set Ω ⊂ R2, is 2 regular convex polygon with boundary
∂Ω, J = (0, T ], f ∈ L2(J ;L2(Ω)), and U = L2(J ;L2(Ω)). For any R > 0 the
function φ(·) ∈ W 2,∞(−R,R), φ′(y) ∈ L2(Ω) for any y ∈ L2(J ;H1(Ω)), and
φ′(y) ≥ 0. Here, A(x) ∈ H1(Ω) and K denotes the admissible set of the control
variable, defined by

K =
{
u(x, t) ∈ L2(J ;L2(Ω)) : u(x, t) ≥ 0 a.e. x ∈ Ω, t ∈ J

}
. (5)

The outline of this paper is as follows. In Section 2, we construct the varia-
tional discretization and mixed finite element discretization for the optimal control
problem (1)-(4). In Section 3, we derive a priori error estimates for the variational
discretization and fully discrete mixed finite element approximation of the semilin-
ear parabolic optimal control problem. Finally, we analyze the conclusion in section
4.

2 Variational Discretization and Mixed Methods
First, we introduce the co-state parabolic equation

−zt − div(A(∇z + ~p− ~pd)) + φ′(y)z = y − yd, x ∈ Ω, (6)

with the conditions

z(x, t) = 0, x ∈ ∂Ω, t ∈ J ; z(x, T ) = 0, x ∈ Ω.

Next, we assume that the two given functions ~pd, yd are continuously differentiable
with respect to t, moreover, yd ∈ L2(J ;H2(Ω)), ~pd ∈ (L2(J ;H2(Ω)))2.

We now describe the variational discretization and mixed finite element ap-
proximation of semilinear parabolic optimal control problem (1)-(4). Let ~V =
H(div) = {~v ∈ (L2(Ω))2, div~v ∈ L2(Ω)} endowed with the norm given by
‖ ~v‖H(div) = (‖~v‖2

0,Ω + ‖div~v‖2
0,Ω)1/2. We denote W = L2(Ω).
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We recast (1)-(4) as the following weak form: find (~p, y, u) ∈ ~V ×W ×K such
that

min
u∈K⊂U

{
1

2

∫ T

0

(
‖~p− ~pd‖2 + ‖y − yd‖2 + ‖u‖2

)
dt

}
(7)

(A−1~p,~v)− (y, div~v) = 0, ∀~v ∈ ~V , (8)
(yt, w) + (div~p, w) + (φ(y), w) = (f +Bu,w), ∀w ∈ W, (9)
y(x, 0) = y0(x), ∀x ∈ Ω. (10)

It is well known (see, e.g., [17]) that the optimal control problem (7)-(10) has
a solution (~p, y, u), and that a triplet (~p, y, u) is the solution of (7)-(10) if and only
if there is a co-state (~q, z) ∈ ~V ×W such that (~p, y, ~q, z, u) satisfies the following
optimality conditions:

(A−1~p,~v)− (y, div~v) = 0, ∀~v ∈ ~V , (11)
(yt, w) + (div~p, w) + (φ(y), w) = (f +Bu,w), ∀w ∈ W, (12)

y(x, 0) = y0(x), ∀x ∈ Ω, (13)

(A−1~q,~v)− (z, div~v) = −(~p− ~pd, ~v), ∀~v ∈ ~V , (14)
−(zt, w) + (div~q, w) + (φ′(y)z, w) = (y − yd, w), ∀w ∈ W, (15)

z(x, T ) = 0, ∀x ∈ Ω, (16)∫ T

0

(B∗z + u, ũ− u)Udt ≥ 0, ∀ũ ∈ K, (17)

where B∗ is the adjoint operator of B and (·, ·)U is the inner product of U . In the
rest of the paper, we shall simply write the product as (·, ·) whenever no confusion
should be caused.

We also assume that both parabolic equations (2) and (6) have sufficiently regu-
larity and u ∈ L2(J ;W 1,∞(Ω)), y, z ∈ L2(J ;H2(Ω)), ~p, ~q ∈ (L2(J ;H2(Ω)))2.

Let Th be regular triangulation of Ω. They are assumed to satisfy the angle
condition which means that there is a positive constant C such that

C−1h2
τ ≤ |τ | ≤ Ch2

τ , ∀τ ∈ Th,

where |τ | is the area of τ and hτ is the diameter of τ . Let h = maxhτ . In addition
C or c denotes a general positive constant independent of h.

Let ~Vh×Wh ⊂ ~V ×W denote the Raviart-Thomas space [25] of the lowest order
associated with the triangulation Th of Ω, namely, ~V (τ) = {~v ∈ P 2

0 (τ)+x ·P0(τ)},
W (τ) = P0(τ), ∀τ ∈ Th, where Pk denotes the space of polynomials of total degree
at most k, x = (x1, x2) which treated as a vector, and

~Vh := {~vh ∈ ~V : ∀τ ∈ Th, ~vh|τ ∈ ~V (τ)},
Wh := {wh ∈ W : ∀τ ∈ Th, wh|τ ∈ W (τ)}.
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The mixed finite element discretization of (7)-(10) is as follows: compute (~ph, yh,

uh) ∈ ~Vh ×Wh ×K such that

min
uh∈K

{
1

2

∫ T

0

(
‖~ph − ~pd‖2 + ‖yh − yd‖2 + ‖uh‖2

)
dt

}
(18)

(A−1~ph, ~vh)− (yh, div~vh) = 0, ∀~vh ∈ ~Vh, (19)
(yht, wh) + (div~ph, wh) + (φ(yh), wh) = (f +Buh, wh), ∀wh ∈ Wh, (20)
yh(x, 0) = Y (x, 0), ∀x ∈ Ω, (21)

where Y (x, 0) is the elliptic mixed methods projection into the finite dimensional
space Wh of the initial data function y0(x).

The optimal control problem (18)-(21) again has a solution (~ph, yh, uh), and
that a triplet (~ph, yh, uh) is the solution of (18)-(21) if and only if there is a co-state
(~qh, zh) ∈ ~Vh ×Wh such that (~ph, yh, ~qh, zh, uh) satisfies the following optimality
conditions:

(A−1~ph, ~vh)− (yh, div~vh) = 0, (22)
(yht, wh) + (div~ph, wh) + (φ(yh), wh) = (f +Buh, wh), (23)

yh(x, 0) = Y (x, 0), ∀x ∈ Ω, (24)
(A−1~qh, ~vh)− (zh, div~vh) = −(~ph − ~pd, ~vh), (25)

−(zht, wh) + (div~qh, wh) + (φ′(yh)zh, wh) = (yh − yd, wh), (26)
zh(x, T ) = 0, ∀x ∈ Ω, (27)

(B∗zh + uh, ũh − uh) ≥ 0, (28)

where ~v ∈ ~Vh, w ∈ Wh, ũ ∈ K.
We now consider the time discretization of the difference methods. Let4t > 0,

N = T/4t ∈ Z, and tn = n4t, n ∈ Z. Also, let

ψn = ψn(x) = ψ(x, tn), dtψ
n =

ψn − ψn−1

4t
.

We define for 1 ≤ p <∞ the discrete time dependent norms

|||ψ|||Lp(J ;Hs(Ω)) :=

(
N∑
n=1

4t‖ψn‖ps

) 1
p

,

and the standard modification for p =∞.
Then we define the fully discrete finite element solution (~pnh, y

n
h , ~q

n−1
h , zn−1

h , unh) sat-
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isfies

(A−1~pnh, ~v)− (ynh , div~v) = 0, (29)
(dty

n
h , w) + (div~pnh, w) + (φ(ynh), w) = (f +Bunh, w), (30)

y0
h(x) = Y (x, 0), ∀x ∈ Ω, (31)

(A−1~qn−1
h , ~v)− (zn−1

h , div~v) = −(~pnh − ~pd, ~v), (32)
−(dtz

n
h , w) + (div~qn−1

h , w) + (φ′(ynh)zn−1
h , w) = (ynh − yd, w), (33)
zNh (x) = 0, ∀x ∈ Ω, (34)

(B∗znh + unh, ũ− unh) ≥ 0, (35)

where ~v ∈ ~Vh, w ∈ Wh, ũ ∈ K.
For ϕ ∈ Wh, we shall write

φ(ϕ)− φ(ρ) = −φ̃′(ϕ)(ρ− ϕ) = −φ′(ρ)(ρ− ϕ) + φ̃′′(ϕ)(ρ− ϕ)2, (36)

where

φ̃′(ϕ) =

∫ 1

0

φ′(ϕ+ s(ρ− ϕ))ds,

φ̃′′(ϕ) =

∫ 1

0

(1− s)φ′′(ρ+ s(ϕ− ρ))ds

are bounded functions in Ω̄ [23].

3 A Priori Error Estimates

In the rest of the paper, we shall use some intermediate variables. For any control
function ũ ∈ K, we first define the state solution (~p(ũ), y(ũ), ~q(ũ), z(ũ)) associated
with ũ that satisfies

(A−1~p(ũ), ~v)− (y(ũ), div~v) = 0, ∀~v ∈ ~V , (1)
(yt(ũ), w) + (div~p(ũ), w) + (φ(y(ũ)), w) = (f +Bũ, w), ∀w ∈ W, (2)

y(ũ)(x, 0) = y0(x), ∀x ∈ Ω, (3)

(A−1~q(ũ), ~v)− (z(ũ), div~v) = −(~p(ũ)− ~pd, ~v), ∀~v ∈ ~V , (4)
−(zt(ũ), w) + (div~q(ũ), w) + (φ′(y(ũ))z(ũ), w) = (y(ũ)− yd, w), ∀w ∈ W,(5)

z(ũ)(x, T ) = 0, ∀x ∈ Ω. (6)

Then, we define the discrete time state solution (~pn(ũ), yn(ũ), ~qn−1(ũ), zn−1(ũ)) of
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the system (1)-(6) associated with ũ ∈ K that satisfies

(A−1~pn(ũ), ~v)− (yn(ũ), div~v) = 0, ∀~v ∈ ~V , (7)
(ynt (ũ), w) + (div~pn(ũ), w) + (φ(yn(ũ)), w) = (f +Bũ, w), ∀w ∈ W, (8)

y0(ũ)(x) = y0(x), ∀x ∈ Ω, (9)

(A−1~qn−1(ũ), ~v)− (zn−1(ũ), div~v) = −(~pn(ũ)− ~pd, ~v), ∀~v ∈ ~V , (10)
−(znt (ũ), w) + (div~qn−1(ũ), w) + (φ′(yn(ũ))zn−1(ũ), w) (11)

= (yn(ũ)− yd, w), ∀w ∈ W, zN(ũ)(x) = 0, ∀x ∈ Ω. (12)

According to the assumption on the domain Ω, we can easily observe that Ω is
2 regular. The domain Ω is said to be 2 regular if the Dirichlet problem

Lλϕ = −div(A(x)∇ϕ) + λϕ = F, x ∈ Ω, (13)
ϕ = 0, x ∈ ∂Ω, (14)

is uniquely solvable for F ∈ L2(Ω) and if ‖ϕ‖2 ≤ ‖F‖0 for all F ∈ L2(Ω).
For any ũ ∈ K, we define an elliptic projection (~P n(ũ), Y n(ũ), ~Qn(ũ), Zn(ũ))

of the solution of the differential problem into the finite dimensional space ~Vh×Wh

to be the map (~P (ũ), Y (ũ), ~Q(ũ), Z(ũ)) : {0, t1, t2, ..., tn = T} → ~Vh ×Wh given
by

(A−1(~pn(ũ)− ~P n(ũ)), ~v)− (yn(ũ)− Y n(ũ), div~v) = 0, ∀~v ∈ ~Vh, (15)

(div(~pn(ũ)− ~P n(ũ)), w) + λ(yn(ũ)− Y n(ũ), w) = 0, ∀w ∈ Wh, (16)

(A−1(~qn(ũ)− ~Qn(ũ)), ~v)− (zn(ũ)− Zn(ũ), div~v) = 0, ∀~v ∈ ~Vh, (17)

(div(~qn(ũ)− ~Qn(ũ)), w) + λ(zn(ũ)− Zn(ũ), w) = 0, ∀w ∈ Wh. (18)

Let λ > 0, such that λ is sufficiently large so that the bilinear form associated with
Lλ(·) is coercive over H1

0 (Ω). In fact, let λ be chosen so that [9]:

(A−1ξ, ξ) + λ(η, η) ≥ C
(
‖ξ‖2

0 + ‖η‖2
0

)
, ∀ξ ∈ ~V , ∀η ∈ W. (19)

The projection (15)-(18) is associated with the operator Lλ. Let

τn1 = yn(uh)− Y n(uh), σn1 = ~pn(uh)− ~P n(uh), (20)

τn2 = zn(uh)− Zn(uh), σn2 = ~qn(uh)− ~Qn(uh). (21)

Estimates for τn1 , τn2 , σn1 , and σn2 are given in [11]. We state them here without a
proof.

Lemma 3.1 For t ∈ J and for h sufficiently small, there is a positive constant C
independent of h such that

‖σn1 ‖0 + ‖τn1 ‖0 + ‖τn1 ‖0,∞ ≤ Ch, (22)
‖σn2 ‖0 + ‖τn2 ‖0 + ‖τn2 ‖0,∞ ≤ Ch, (23)
‖divσn1 ‖0 + ‖divσn2 ‖0 ≤ Ch. (24)
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Estimates for τn1t, τ
n
2t, σ

n
1t, and σn2t are given in [12]. We state them here without a

proof.

Lemma 3.2 For t ∈ J and for h sufficiently small, there is a positive constant C
independent of h such that

‖σn1t‖0 + ‖τn1t‖0 + ‖τn1t‖0,∞ ≤ Ch, (25)
‖σn2t‖0 + ‖τn2t‖0 + ‖τn2t‖0,∞ ≤ Ch, (26)
‖divσn1t‖0 + ‖divσn2t‖0 ≤ Ch. (27)

With the aid of Lemmas 3.1-3.2, we can also derive the following error esti-
mates:

Theorem 3.3 There is a positive constant C > 0, independent of h, such that

|||~p(uh)− ~ph|||L∞(J ;H(div)) + |||y(uh)− yh|||L∞(J ;L2(Ω)) ≤ C(4t+ h), (28)
|||~q(uh)− ~qh|||L∞(J ;H(div)) + |||z(uh)− zh|||L∞(J ;L2(Ω)) ≤ C(4t+ h). (29)

Set some intermediate errors:

en1 = ~pn − ~pn(uh), rn1 = yn − yn(uh), (30)
en2 = ~qn − ~qn(uh), rn2 = zn − zn(uh). (31)

From (11)-(16) and (7)-(12), we derive the following error equations:

(A−1en1 , ~v)− (rn1 , div~v) = 0, ∀~v ∈ ~Vh, (32)
(ynt − dtyn(uh), w) + (diven1 , w) + (φ̃′(yn)rn1 , w) (33)

= (B(un − unh), w), ∀w ∈ Wh,

(A−1en−1
2 , ~v)− (rn−1

2 , div~v) = −(en1 , ~v), ∀~v ∈ ~Vh, (34)
−(znt − dtzn(uh), w) + (diven−1

2 , w) + (φ′(yn)rn−1
2 , w)

+(φ̃′′(yn)rn1 z
n−1(uh), w) = (rn1 , w), ∀w ∈ Wh. (35)

Theorem 3.4 There is a constant C > 0, independent of h and4t, such that

|||~p− ~p(uh)|||L∞(J ;H(div)) + |||y − y(uh)|||L∞(J ;L2(Ω))

≤ C(4t+ h+ |||u− uh|||L2(J ;L2(Ω))), (36)
|||~q − ~q(uh)|||L∞(J ;H(div)) + |||z − z(uh)|||L∞(J ;L2(Ω))

≤ C(4t+ h+ |||u− uh|||L2(J ;L2(Ω))). (37)

Proof. Part I. Choose ~v = en1 and w = rn1 as the test functions and add the two
relations of (32)-(33), then we obtain that

(A−1en1 , e
n
1 ) + (φ̃′(yn)rn1 , r

n
1 ) = (B(un − unh), rn1 )− (ynt − dtyn(uh), r

n
1 ).
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By using δ-Cauchy inequality, we can find an estimate as follows

‖en1‖2
0 + ‖rn1‖2

0 ≤ C
(
(4t)2 + h2 + ‖un − unh‖2

0

)
+ δ‖rn1‖2

0, (38)

for any small δ > 0. This leads to

‖en1‖0 + ‖rn1‖0 ≤ C(4t+ h+ ‖un − unh‖0). (39)

Now, take w = diven1 as a test function in (33), then we get

‖diven1‖2
0 = (B(un − unh), diven1 )

−(ynt − dtyn(uh), diven1 )− (φ̃′(ynh)rn1 , diven1 )

≤ C‖ynt − dtyn(uh)‖2
0 + C‖un − unh‖2

0 + C‖rn1‖2
0 + δ‖diven1‖2

0, (40)

then, using the estimate (39), we have

‖diven1‖0 ≤ C‖ynt − dtyn(uh)‖0 + C‖un − unh‖0 + C‖rn1‖0

≤ C(4t+ h+ ‖un − unh‖0). (41)

Then (36) follows from (38) and (41).
Part II. Similarly, choose ~v = en−1

2 and w = rn−1
2 as the test functions and add the

two relations of (34)-(35), then we obtain that

(A−1en−1
2 , en−1

2 ) + (φ′(yn)rn−1
2 , rn−1

2 ) = (rn1 , r
n−1
2 ) + (znt − dtzn(uh), r

n−1
2 )

−(en1 , e
n−1
2 )− (φ̃′′(yn)zn−1(uh)r

n
1 , r

n−1
2 ).

Then, using δ-Cauchy inequality, we can find an estimate as follows

‖en−1
2 ‖2

0 + ‖rn−1
2 ‖2

0 ≤ C ((4t)2 + h2 + ‖un − unh‖2
0)

+δ(‖rn−1
2 ‖2

0 + ‖en−1
2 ‖2

0), (42)

or equivalently,

‖en−1
2 ‖0 + ‖rn−1

2 ‖0 ≤ C(4t+ h+ ‖un − unh‖0). (43)

Taking w = diven−1
2 as a test function in (35) and using δ-Cauchy inequality, then

we get

‖diven−1
2 ‖2

0 = (rn1 , diven−1
2 )− (φ′(yn)rn−1

2 , diven−1
2 )

+(znt − dtzn(uh), diven−1
2 )− (φ̃′′(yn)zn−1(uh)r

n
1 , diven−1

2 )

≤ C‖znt − dtzn(uh)‖2
0 + C‖rn1‖2

0 + C‖rn−1
2 ‖2

0 + δ‖diven−1
2 ‖2

0, (44)

then, using the estimate (39) and (43), we verify that

‖diven−1
2 ‖0 ≤ C(4t+ h+ ‖un − unh‖0). (45)

This implies (37).
Now we combine the bounds given by Theorems 3.3-3.4 to come up with the

following main results.
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Theorem 3.5 Let (~p, y, ~q, z, u) ∈ (~V ×W )2×K and (~ph, yh, ~qh, zh, uh) ∈ (~Vh×
Wh)

2 × K be the solutions of (11)-(17) and (22)-(28), respectively. Assume that
∀n = [0, 1, · · · , N ], B∗zn + un ∈ H1(Ω). Then, we have

|||u− uh|||L2(J ;L2(Ω)) ≤ C(4t+ h), (46)
|||~p− ~ph|||L∞(J ;H(div)) + |||y − yh|||L∞(J ;L2(Ω)) ≤ C(4t+ h), (47)
|||~q − ~qh|||L∞(J ;H(div)) + |||z − zh|||L∞(J ;L2(Ω)) ≤ C(4t+ h). (48)

4 Conclusions
In this paper, we derive a priori error estimates of the variational discretization and
mixed finite element methods for semilinear parabolic optimal control problem.
Our priori error estimates for the optimal control problems governed by semilinear
paraboli equations by the variational discretization and fully discrete mixed finite
element methods seem to be new.
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