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Abstract. In this paper we have used double infinite matriz A = (a;;i) of
real numbers to define the A-frame. Some results on Riesz basis and A-frame
also have been studied. This Work is motivated from the work of Moricz and
Rhoades [7].
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1 Introduction

Let U(F) and V(F) be finite dimensional vector spaces over the field
F of dimension n. The elements (yi,...,y,) € V and (e1,es, -+, €,) is an
ordered basis in U. Then there exists a unique linear transformation such that

Te;=vy;, i=1,---,n. (1.1)

Let us extend the transformation 7" to linear transformation of vectors from
the basis such that

T (Z Oéi6i> = Z OGY; .
=1 =1

It is clear from (1.1) that 7 is completely defined because any element in
U can be expressed as a linear combination of basis vectors uniquely. Also,
if U is n—dimensional and V' is m—dimensional then the class of all linear
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transformations from U — V be nm—dimensional.

Let an ordered bases in U and V be {e;}7_, and {e;}]Z, respectively. Then

the set of all linearly independent [a;;].(i =1,---,m,j=1,---,n) ie,
aip Q2 - Qip
a2
Am1 Amn mxn

be characterized by the mappings
ajep = 0jpe; 1=1,--- mk,j=1--- n.
Now we have the following definitions

Definition 1.1 Let A = (ay;x), (4,1,5,k = 1,2,---), be a double non-negative
infinite matrix of real or complex numbers. Let (X,Y) denote the class of
all such matrices A such that the series A(x;) = D220 20 QiljkTjk CONVETEES
for all double sequences z;; € X and the sequence {A(x;)} will be called
A—means or A—transform of x;. Also Azr = lim;; .., A(x;), whenever it ex-
ists.

Definition 1.2. A double matrix A = (a;;x) is said to be regular if the
matrix transformation A : X — Y is defined on a convergent sequence to a
convergent sequence and limit is preserved i.e., lim; ;o A(zy) = lim; o0 Ty

Definition 1.3. [7] A double matrix A = (au;;) is said to be regular if
the following conditions holds.

(I) lim“_m ZJO'%ZO Qil5k = 17
(II) hmi,l_)oo Z;‘;O |a¢l]’k| = O, (k = 07 17 o ')7
(II) limy oo 22520 [@ajel =0, (j=0,1,---),

(IV) || A[] = sup; ;= >55=0 laal < oo,

2 Frames

The theory for frames and bases has developed very fast over the last
15 years. The concept of frames were introduced by Duffin and Schaeffer [5]in
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the context of non-harmonic Fourier series. A sequence in a Hilbert space H
is a frame if there exist constants C;, Cy > 0 such that

izl < Y |< @2, >? < Cyl|w)?, Vo€ H. (2.1)

Any numbers C, Cy for which (2.1) is valid are called frames bounds. They
are not unique if we can choose C = (5, the frame is called tight and is said
to be exact if it ceases to be a frame by removing any of its elements. The
theory of frames are discussed in variety of sources, including [1,3,4,6,8]. The
purpose of the present paper is to define A—frame for an infinite double non-
negative regular matrix and to study some results on A—frame and Riesz basis.

Let H be a separable Hilbert space with inner product < .,. > and norm
|| =< .,. >2. In the sequel z, and z* denote the set of integers and strictly
positive integers respectively.

Definition 2.1. A family of elements {z,,n € 2t} C H is called a Bessel
sequence if there exists a constant B > 0 such that

SoI< foma > < B||fI?,Vf € H. (2.2)

It is given [1] that {z,,n € 2T} is a Bessel sequence with bound M if and
only if, for every finite sequence of scalors {cy};

1> el <MY 5 (2.3)
k k

Chui and Shi’s [2] remarked that {z,,n € z*} is a Bessel sequence with
bound M if and only if (2.3) is satisfied for every sequence {¢;} € 2.

In the consequence of above discussion we have the following lemma.
Lemma 2.1. {z,,n € z*} is a Bessel sequence if and only if

T:{c,} — ch:cn

is well defined operator from [? into H. In that case T is automatically
bounded, and the adjoint of T" is given by

T H—1? Tf={<fx, >}

An important consequence of above lemma 2.1 that if {z,} is a Bessel
sequence, then ¥, ¢,z, converges unconditionally for all {c,} € [2>. When
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{zn,n € 2T} C H is a frame, the operator T and T™* are well defined, so we
define the frame operator

S:H— H, Sf:TT*f:Z<f,:Cn>:Cn.

Two sequences {z,,n € 2} and {y,,n € 2"} in H are called biorthogonal
if <y, Yn > Omp, where 6, , is the Kronecker delta.

To prove that S is bounded, positive and surjective we have the following
theorem from [1].

Theorem A. Let {x,,n€ 2"} C H
(a) The following are equivalent

(i) {zn,n € 27} is a frame for H with frame bounds C; and Cs.

(ii) S: H — H is a topological isomerphism with norm bounds ||.S]| <
Cy and ||S]| < C L.

(b) In case of either condition in part (a), we obtain that

CiI<S<CI Cy'I<St<Cil,

"Xy 18 a Irame Ior with frame bounds Cq~ an 1 and for a

St is a f for H with f bounds C3 ' and C;' and for all
re H,

f=55"1f= Z <z, Sz, > x,, (2.4)

and
=Y <zz, >S5 ", (2.5)

If {z,,n € 27} is a frame, S is called frame operator, {S~'z,} is called
dual frame of {z,}, (2.4) is the frame decomposition of z and (2.5) is the
dual frame decomposition of x. I is the identity map, S < C5 I means that
< (Cof — S)x,x >> 0 for each x € H.

We also have

Theorem B.[1]. Let {z,,n € 2"} C H be a frame for H with frame bounds
C; and Cy. Then for each sequence {C,} € [? such that z = ¥°,, C,z,, con-
verges in H and ||z]|* < Cy]|C||% and for any arbitrary vector v there exists
a moment sequence {y,,n € z} such that v = >°°, 2y, and C;'|[v]|? <
gl < Callo]?
n=1 |yn| > Ga||vf]™.

Theorem C.[1]. A sequence {z,,n € z"} in a Hilbert space H is an ex-
act frame for H if and only if it is bounded unconditional basis for H.
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3 Main Results

Theorem 3.1. Let A = (ay;;) be a double non-negative regular infinite
matrix. Then for any f € L?*(R) the frame condition for A—transform of
(ailjk) 18
CLIAI? < Y0 I< £ Alin) > < Coll £, (3.1)
ilez
where A(¢;;) = 27 k=0 @itk Pk {¢i1} is a sequence of vectors and 0 < Cy <
Cy < oo are frame bounds.

Sl<f A > = X [ 1) A dr

i,l€z i,l€z
2
< AP D2 1A
i€z
2
= [IFIPIAN* 3 [l
i€z

Since A is regular matrix and by the definition of A(¢;;), we get
Yo I< L A(g) =P < CollfI1P. (3.2)

ez

Now for any f € L*(R), let

—1/2
= [Z |< f?A(¢i,l) >|2] f:

i,l€E2
or
-1/2
<f A(pig) > [Z|<ff4¢zz)>| ] < f, A(diy) >
i,l€2
then
Z |< f7A<¢i,l> >’2 S 1.
i€z
Hence, for positive constant «, we get
1PNl ol < a,
or

1
[Z |< f, A(éiy) >|2] |< f, A(éiy) >|2 < a.

i,l€2
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Since A is regular, it gives

S I< £ Algi) > fIF < al.
i€z
Thus,
Cillf]1? < Z |< f, A(¢iy) >|2. (3.3)

i,l€z

Combining (3.2) and (3.3) the proof of theorem is immediate.

Theorem 3.2. {A(¢;;)} is a frame for any f € L*(R) if and only if the
mapping
T: {5i,l} - Z 5i7lA(¢i,l)
iLlez

is a well defined mapping from [? into L*(R). Here 3;; =< f, A(¢i;) > is
A—moment sequence of f € L(R) relative to the frame.

Proof. First we shall prove that if {A(¢;;)} is A—frame and {;;} € 2,
then >, e, Bi1A(¢i;) converges, and

13" BuA(@a)l® < Coll D7 185" (3.4)

i,l€z i,l€z

To prove this let us assume

ik
Fie=>_ BiiAl¢iy)

il=1

then for any j, k > jo, ko, using Schwartz inequality with the frame condition
(3.1) we obtain

7.k
ik — FiomollP =1 S 1Bl Y Coll fik — Fiowo I}
ivl:j0+17k0+1
Which gives
ik ,
1 fik = fiowol? < Co > 18l

i,l=j0+1,ko+1

Now we assume that {A(¢;;)} is a frame. Since {A(¢;;)} is a Bessel se-
quence, T is a bounded operator from [? into L*(R) by (3.4). Now for any
f € L*(R) we define a linear transformation S by the relation

Sf= Z < [, A(dig) > Aldig).

i,l€z
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The transformation is self adjoint and it gives with (3.1) that
CillfI* << Sf, f >< Goll £

This conclude that S is positive, bounded and surjective. Thus S = TT"
is surjective. Hence T' is surjective.

Now suppose that T is a well defined operator from [* onto L*(R). By
(3.4) {A(¢;,)} satisfies the upper frame condition. Now consider that T" be
any bounded operator from a Hilbert space H! into a Hilbert space H. Then
the set Cr = H' © N(T) i.e., the orthogonal complement of null space of T'
in H' is well defined, T is injective on Cr and ran T* is dense in Cr. We
denote Tt the inverse map from ran T to Cp ie., TT : H — Cp. By writing
THf={(T*f)u} for f € H, we get

f=TTf =Y (T"f)iiAliy)-

i€z

We have

It =1<fif>F = |< D (T iiAldi), f >

ilez
< S|@ Nl X 1< A >
< TP gk ., Algur) >I2.
Thus, we obtain |
Y I< 1. Al > 2 eI € B

Taking H = L*(R). The proof is completed in view of Theorem 3.1.

Theorem 3.3 Let any sequence of numbers {f;;} € [? is a moment sequence
of any function f € L*(R) with respect to {A(¢;;)}. If {A(¢i;)} is an exact
A—frame then there exist constants C,Cy > 0 such that

Cy Yy 18" < | > BiaAli)|IP < Ca > 18]
i,lez i,lez ez
Proof. Since {A(¢;,)} is an exact A—frame therefore {S™' A(¢;;)} is a biorthog-
onal sequence. By Theorem 3.2 we conclude that for a given sequence {f;,} €
[? and for any f € L?*(R), the series f = Y, c. 0;1A(¢;,;) has a finite norm.
The proof is completed with (3.1) by using the fact that {A(¢;;)} is bounded.
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