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Abstract
In this paper, we improve the result of B.S. Choudhury and N. Metiya,
Nonlinear Analysis 72 (2010). We remove the restriction of continuity on .
Supporting examples are also provided. Two open problems are given at the
end.
Keywords: Cone metric space, Weak contraction, Regular cone, Fized
point.

1 Introduction

The concept of weak contraction in Hilbert space was introduced by Alber and
Guerre-Delabriere [4] and a fixed point theorem was proved. Rhoades [2] has
shown that the result of Alber and Guerre-Delabriere [4] is valid in complete
metric spaces also. We state the result of Rhoades below.
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Theorem 1.1. [2] Let (X,d) be a complete metric space. Let T : X — X
be a mapping satisfying the inequality

where x,y € X and ¢ : [0,00) — [0,00) is a continuous and nondecreasing
function such that p(t) = 0 if and only if t = 0. Then T has a unique fized
point in X.

Mappings T satisfying (1.1.1) are called weak contractions. B. S. Choud-
hury and N. Metiya [1] extended the above result to cone metric spaces intro-
duced by Huang and Zhang [3].

Definition 1.2. [3] Let E be a real Banach space and P a subset of E. P
1s called a cone if
(i) P is nonempty, closed and P # {0},
(ii) a,b € R, a,b >0, x,y € P = ax+by € P,
(iti)) v € P and —x € P =z = 0.

A partial ordering < with respect to a cone P is defined by = < y if and
only if y —z € P for x,y € E. We shall write x < y to indicate that z < y but
x # y, while x < y stands for y — x € Int P where Int P denotes the interior
of P.

The cone P is said to be normal, if there exists a real number K > 0 such
that for all z,y € F,

0<z<y = [z]<K][yl

The least positive number K satisfying the above statement is called normal
constant of P.

The cone P is called regular if every increasing sequence which is bounded
from above is convergent. That is, if {z,} is a sequence such that

T <9< - <7, <--- <y

for some y € E, then there is € E such that || z, —z ||[— 0 as n — 0.
Equivalently, the cone P is regular if and only if every decreasing sequence
which is bounded from below is convergent.

Definition 1.3. [3] Let X be a non empty set. Let the mapping
d: X x X — FE satisfy
(i) 0 < d(z,y) for all x,y € X and d(x,y) =0 if and only if v =y
(i) d(x,y) = d(y,x) forallz,y € X
(i11) d(z,y) < d(x,z) +d(z,y) for al z,y,z € X
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Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.4. [3] Let (X,d) be a cone metric space, {x,} a sequence in
Xandx e X
(i) If for every ¢ € E with 0 < ¢, there exists ng € N such that for all n > nq,
d(z,,x) < ¢, then {x,} is said to be convergent and {x,} converges to x,
and x is the limit of {x,}. This limit is denoted by lim z,, = x or x, — x
as n — oo. "

(ii) If for every ¢ € E with 0 < ¢, there exists ng € N such that for all
n,m > ng, d(T,, Ty) < ¢, then {z,} is called a Cauchy sequence in X.
(iii) If every Cauchy sequence in X is convergent in X, then X is called a

complete cone metric space.

B.S. Choudhury and N. Metiya [1] extended the results of Rhoades [2] to
cone metric spaces as follows.

Theorem 1.5. [1] Let (X, d) be a complete cone metric space with reqular
cone P such that d(z,y) € Int P, for x,y € X withx #y. Let T : X — X be
a mapping satisfying the inequality

d(Tz, Ty) < d(z,y) — p(d(z,y))

for x,y € X, where ¢ : Int PU{0} — Int PU{0} is a continuous and mono-
tone increasing function with

(i) p(t) =0 if and only if t =0,

(ii) o(t) <t fort € Int P,

(#3) either o(t) < d(x,y) or d(z,y) < p(t) fort € Int PU{0} and z,y € X.
Then T has a unique fived point in X .

In this paper, we improve Theorem 1.5 by relaxing the continuity condition
on ¢. We also provide supporting examples. T'wo open problems are also given
at the end of this paper.

2 Main Results

Theorem 2.1. Let (X, d) be a complete cone metric space with reqular cone
P such that d(x,y) € Int P, for z,y € X with x # y. Let T : X — X be a
mapping satisfying the inequality

for xz,y € X, where ¢ : Int PU{0} — Int PU{0} is a monotone increasing
function with
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(i) ©(t) =0 if and only if t =0,

(ii) o(t) <t fort € Int P,

(i1) either o(t) < d(x,y) or d(z,y) < p(t) fort € Int PU{0} and z,y € X.
Then T has a unique fixed point in X .

Proof. Let o € X. We construct the sequence {x,} by x, =Tz, 1,n > 1
If x,,11 = x, for some n, then trivially 7" has a fixed point.
Assume that z,.1 # x, forn e N
By the given condition, we have

ATy, Trp) < d(@n, Tp) — p(d(zn, 2p0e1)), n=10,1,2,---
Hence o(d(zn, Tni1)) < d(Tp, Tny1) — d(Tps1, Tpyo), n=0,1,2,---
Consequently,

Z o(d(zi; ziv1)) < d(xo, 1) — d(Tpt1, Tnta)
i=0
S d(fL‘O, Il)

So that Y p(d(zs, x41)) < 00 in P.
i=0
Hence

o(d(x;,xit1)) > 0asi— ooin P (2.1.1)

Also 0 < p(d(xp, Tny1)) < d(xp, Tpa1) — d(Tpi1, Toaz)

=0 <d(zp, Tpni1) — d(Tpi1, Tni2)

= d(Tn; Tny1) > d(Tpi1, Tnio)
Thus the sequence{d(x,, x,+1)} is a decreasing sequence and hence converges,
since P is regular.

Now, by (2.1.1), {¢(d(zn, Tn+1))} decreases to 0 as n — oo.

Suppose {d(zn, ,+1)} decreases to [. Then

o(l) < p(d(zp, xp11)) decreases to 0 as n — 0o
= ¢(l)=0 = 1=0. Therefore {d(x,,z,+1)} — 0 as n — co.
Let ¢ € E with 0 < ¢ be arbitrary. Since {d(z,,Z,41)} — 0 as n — oo, there
exists m € N such that

A er) < 9((c/2) (212
Let B(zy,c) ={zr € X : d(z,z,,) < ¢}

Clearly ,,, € B(xp, ) and 241 € B(xpy, c).
Suppose for k > 1, 241 € B(zm, c) we have two cases by property (iii) of ¢

Case (i): d(xm, Tmir) < p(c/2)
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Then

ATk, TTr) + d(Txpm, x0m,)

d(xm-i-ka zm) - @(d<xm+k7 xm)) + d(Txmv xm)
p(c/2) + p(c/2)

c/2+c/2=c

d(xm+k+la xm)

A IN A IA

Hence 1541 € B(xp, ).

Case (ii): ¢(c¢/2) < d(Tm, Tmir) < € (2.1.3)
Now
AT, Tmskt1) < AT, Tig1) + A Zimg1s Tosir1)
< d(@m, Timg1) + AT, TTpk)
< AT, Trng1) + ATy Tigk) — O(d( X, Tigr))
< @(p(c/2)) + d(@m, Tmir) — p(p(c/2))  (by (2.1.3))
< AT, Tmak) K €

Therefore 1541 € B(xp, €).

Thus, by induction, z,, € B(zy,c) for n > m

Consequently, {z,} is a Cauchy sequence . By the completeness of X, there
exists ¢ € X such that x,, — x as n — oo.

Now
d(xps1,Tx) = d(Tz,,Tx)
S d(ZL'mZL') - ()O(d(xn’x))
< d(xp,x)

On letting n — oo we have d(z,Tx) <0
Therefore d(z,Tz) =0ie Tox =x
Hence x is the fixed point of T.

Uniqueness: If y is another fixed point of T, then

d(z,y)

d(Tz,Ty)

< dz,y) — e(d(z,y))
= (,D(d(l',y)) S 0 so that z = Y

Therefore T" has a unique fixed point.

The following two examples are in support of our result.
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Example 2.2. Let X = [0,1]; E = R? with usual norm, is a real Banach
space. Let P = {(z,y) € E : z,y > 0}. Then P is a regular cone and the
partial ordering < with respect to the cone P, is the usual component wise
partial ordering in F.

Defined: X x X - E by d(z,y)=(lx—y|,|z—y]|) for z,y € X.
Then (X, d) is a complete cone metric space with d(z,y) € Int P for x,y € X
and z # y.

Let us define ¢ : Int PU {0} — Int P U {0} as follows:

¢(0) =0
For t = (o, B) € Int P. Let v = min {a, 8} > 0
et)=(1/2(n+1),1/2(n+1)) if 1/(n+1)<vy<1/n, n>1
and o(t) =(n/2,n/2) if n<y<n+1l, n>1

Clearly ¢(t) < t for t € Int P. ¢ is not continuous, since ¢ is a step
function. ¢ satisfies all the required properties of Theorem 2.1.

Define T: X — X by Tax = x/2
Now d(Tz, Ty) = d(/2,y/2) = (|2 —y | /2| 2y /2)

i) 1/(n+1)<|z—y|<1/n
= d(z,y) —pld(z,y) =z -y | |v—y]) = (1/2(n+1),1/2(n + 1))
>(la—yl /22—yl /2)
Thus
d(Tz, Ty) < d(x,y) — o(d(z,y)) for z,y € X (2.1.4)

(ii) if n <] x —y |< n+ 1, we can show similarly that (2.1.4) holds.
Also 0 is the unique fixed point of T.

The following example is a generalized version of example 2.2.

Example 2.3. Let X = [0,1]; F = R? with usual norm is a real Banach
space. Let P = {(z,y) € E : z,y > 0}. Then P is a regular cone and the
partial ordering < with respect to the cone P, is the usual component wise
partial ordering in E. Let m > 0.

Defined: X x X — Ebyd(z,y)=(|xz—y|, m|z—y]|) for z,y € X.
Then (X, d) is a complete cone metric space with d(x,y) € Int P for z,y € X
and x # y.

Let us define ¢ : Int PU {0} — Int P U {0} as follows:
p(0) =0
For t = (o, B) € Int P, let v = min {a, f/m} > 0.
o(t)=(1/2(n+1), m/2(n+1)) if 1/(n+1)<y<1/n, n>1
and ¢(t) = (n/2, mn/2) if n<y<n+1, n>1
Clearly p(t) < t for t € Int P. ¢ is not continuous, since ¢ is a step
function. ¢ satisfies all the required properties of Theorem 2.1.
Define T: X — X by Tx = x/2
Now d(Tz, Ty) = d(z/2, y/2) =(|z —y [ /2, m|z—y]|/2))
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() 1/(n+1) <[z -y |<1/n

= d(z, y) —ldz, y)) =z -y |, m|[z—y]) = (1/2(n+1), m/2(n+1))
=z -y |12+ 1), m(|z—y|-1/2(n+1)))
(lz—yl/2, m|[z—yl/2)=dTz, Ty)

AV

Thus
d(Tz, Ty) <d(z, y) — (d(z, y)) for z,yeX (2.1.5)

(ii) if n <| z —y |[< n+ 1, we can show similarly that (2.1.5) holds.
Also 0 is the unique fixed point of T

Open Problems

(i) Is Theorem 2.1 valid without (7i7)?

(ii) Is Theorem 2.1 valid if the restriction d(z,y) € Int P for x,y € X,z # vy
is removed?
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