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Abstract

In this paper we discuss a new type of continuous functions called almost
slightly vg—continuous functions; its properties and interrelation with other
continuous functions are studied.

Keywords: slightly continuous functions; slightly semi-continuous func-
tions; slightly 6—continuous functions; slightly v—continuous functions and
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1. Introduction

T.M.Nour introduced slightly semi-continuous functions during the year
1995. After him T.Noiri and G.I.Ghae further studied slightly semi-continuous
functions on 2000. During 2001 T.Noiri individually studied slightly 5— con-
tinuous functions. C.W.Baker introduced slightly precontinuous functions.
Erdal Ekici and M. Caldas studied slightly y—continuous functions. Arse
Nagli Uresin and others studied slightly 6 —continuous functions. Recently the
Author of the present paper studied slightly rg—continuous functions. In-
spired with these developements the author introduce in this paper a new
variety of slightly continuous functions called almost slightly vg—continuous
function and study its basic properties; interrelation with other type of such
functions available in the literature. Throughout the paper a space X means
a topological space (X,7).
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2. Preliminaries

Definition 2.1: A C X is called

(i) closed[resp: Semi-closed; v-closed] if its complement is open[resp:semi-open;
v—open]. o

(ii) ra—closed if AU € aO(X)] 5 U C A C a(U))].

(iii)semi-f—open if it is the union of semi-regular sets and its complement is
semi-f—closed.

(iv) Regular closed[resp: a—closed; pre-closed; S—closed] if A = A°[resp:

((A2))7 C A; (A°) € A; (A)° C 4].

(v) g-closed|resp: rg-closed] if A C U whenever A C U and U is open in X.
(vi)sg-closed[resp: gs-closed] if s(A) C U whenever A C U and U is semi-
open{open} in X.

(vii)pg-closed[resp: gp-closed; gpr-closed] if p(A) € U whenever A C U and U
is pre-open{open; regular-open} in X.

(viii) ag-closed[resp: ga—closed; rga-closed] if a(A) C U whenever A C U
and U is{a—open; ra—open }open in X.

(ix) vg-closed if v(A) C U whenever A C U and U is v—open in X.

(x) clopen[resp: r-clopen] if it is both open and closed[resp: regular-open and
regular-closed]

Note 1: From the above definitions we have the following interrelations among

the closed sets.
g-closed  gs-closed

! TN
rga—closed — rg-closed — Vg—Closed + sg-closed < fBg-closed

) ) ) ) 0

S ra—closed — v—closed N\ 0 T+
Regular closed — m—closed — closed — a—closed — semi closed — S—closed

v I\ N\
mg-closed pre-closed — w—closed 4 ga—closed
N\ pY
gp-closed «— pg-closed rw—closed

Definition 2.2: A function f:X— Y is said to be

(i) continuous|resp: nearly-continuous; ra— continuous; v— continuous; a—
continuous; semi-continuous; S— continuous; pre-continuous| if inverse image
of each open set is open[resp: regular-open; ra -open; v -open; « -open; semi-
open; (3 -open; preopen].

(ii) nearly-irresolute[resp: ra— irresolute; v— irresolute; a— irresolute; irres-
olute; S—irresolute; pre-irresolute] if inverse image of each regular-open|resp:
ra-open; v -open; « -open; semi-open; $-open; preopen] set is regular-open[resp:
ra-open; v -open; « -open; semi-open; [ -open; preopen].

(iii) almost continuous[resp: almost ra—continuous; almost v—continuous; al-
most a—continuous; almost semi-continuous; almost [S—continuous; almost
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pre-continuous] if for each # € X and each open set (V, f(x)), there ex-
ists an open[resp: ra-open; v-open; a-open; semi-open; [-open; preopen| set
(U,z) 3 flU) C (V).

(iv) weakly continuous|resp: weakly nearly-continuous; weakly ra—continuous;
weakly v—continuous; weakly a—continuous; weakly semi-continuous; weakly
f—continuous; weakly pre-continuous] if for each x € X and each open set
(V, f(x)), there exists an open[resp: regular-open; ra-open; v-open; a-opeun;
semi-open; (-open; preopen] set (U, z) 3 AU) C V.

(v) slightly continuous|resp: slightly semi-continuous; slightly pre-continuous;
slightly 8—continuous; slightly v—continuous; slightly a—continuous; slightly
r-continuous; slightly v—continuous| at = € X if for each clopen subset V in Y
containing f(z),3U € 7(X)[3U € SO(X);3U € PO(X);3U € pO(X);3U €
vO(X);3U € aO(X);3U € RO(X);3U € vO(X)] containing x such that
flU)CV.

(vi) slightly continuous|resp: slightly semi-continuous; slightly pre-continuous;
slightly S— continuous; slightly v— continuous; slightly a— continuous; slightly
r-continuous; slightly v— continuous] if it is slightly-continuous|resp:slightly
semi-continuous; slightly pre-continuous; slightly 5— continuous; slightly v—
continuous; slightly a—continuous; slightly r-continuous; slightly v—continuous]
at each z € X.

(vii) almost strongly #—semi-continuous|resp: strongly §—semi-continuous] if

for each x € X and for each V' € o(Y,f(x)),3U € SO(X,x) > f(s(U)) C

s(V)[resp: f(s(U)) C V].

Definition 2.3: A function f:X— Y is said to be [almost-] slightly g - contin-
uous [resp: [almost-] slightly sg - continuous; [almost-] slightly pg-continuous;
[almost-] slightly Sg— continuous; [almost-] slightly yg— continuous; [almost-
| slightly ag— continuous; [almost-] slightly rg-continuous] at z € X if for
ecach V€ CO(Vflx)), [resp: V € RCO(Vflz))], U € GO(X,z)[3U €
SGO(X,z); AU € PGO(X,x);IU € BGO(X,z);IU € yGO(X,x); U €
aGO(X,z);3U € RGO(X,z)] 3 f(U) C V, and [almost-] slightly g-continuous
[resp: [almost-] slightly sg-continuous; [almost-] slightly pg-continuous; [almost-
| slightly Sg— continuous; [almost-| slightly vg— continuous; [almost-| slightly
ag— continuous; [almost-]slightly rg-continuous| if it is [almost-]slightly g-
continuous [resp:[almost-|slightly sg-continuous; [almost-] slightly pg-continuous;
[almost-|slightly Sg— continuous; [almost-] slightly vg— continuous; [almost-]
slightly ag— continuous; [almost-] slightly rg-continuous] at each x € X.

Definition 2.4: X is said to be a

(i) compact[resp: nearly-compact; ra— compact; v— compact; a— compact;
semi-compact; f— compact; pre-compact; mildly-compact| space if every open
[resp: regular-open; rav -open; v-open; « -open; semi-open; /3 -open; preopen;
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clopen] cover has a finite subcover.

(ii) countably-compact|resp: countably-nearly-compact; countably - ra— com-
pact; countably - v— compact; countably- a— compact; countably - semi -
compact; countably - f— compact; countably-pre-compact; mildly-countably
compact] space if every countable open[resp: regular-open; rav - oover.

(iii) closed-compact[resp: closed-nearly-compact; closed-r a— compact; closed-
v— compact; closed-a— compact; closed-semi-compact; closed-3—compact;
closed-pre-compact] space if every closed[resp: regular-closed; ra-closed; v -
closed; « -closed; semi-closed; -closed; preclosed]| cover has a finite subcover.
(iv) Lindeloff [resp: nearly-Lindeloff; ra— Lindeloff; v— Lindeloff; a—Lindeloff;
semi-Lindeloff; S— Lindeloff; pre-Lindeloff; mildly-Lindeloff] space if every
open[resp: regular-open; ra -open; v-open; « -open; semi-open; [ -open; pre-
open; clopen| cover has a countable subcover.

(v) Extremally disconnected |briefly e.d] if the closure of each open set is open.

Definition 2.5: X is said to be a
(i) To[resp: r-To; rav — Ty; v — Ty; o — Tp; semi-Ty; 5 — To; pre-Tp; Ultra Tp
space if for each  # y € X3U € 7(X)[resp: rO(X); raO(X); vO(X); aO(X);
SO(X); pO(X); PO(X); CO(X)] containing either x or y.
(ii) Ti[resp: r-Ty; rao — Ty; v — Ty; a — Ty; semi-Ty; B — Ty; pre-Ty; Ultra
T1] space if for each x # y € X3U,V € 7(X)[resp: rO(X); raO(X); vO(X);
a0(X); SO(X); SO(X); PO(X): CO(X)] such that z € U =V andy € V —U.
(iil) Ty [resp: 1-Ty; rav — Ty v — To;  — Tiy; semi-Ty; B — Ty; pre-Ty; Ultra b
space if for each z # y € X3U,V € 7(X)[resp: rO(X); raO(X); vO(X); aO(X);
SO(X); pO(X); PO(X); CO(X)] such that x e U; y € Vand UNV = ¢.
(iv) Colresp: 1-Co; rav — Cop; v — Cp; @ — Cyy; semi-Cl; 8 — Cy; pre-Cp; Ultra Cp
space if for each z # y € X3U € 7(X)[resp: rO(X); raO(X); vO(X); aO(X);
SO(X); fO(X); PO(X); CO(X)]whose closure contains either x or y
(v) Ci[resp: 1r-Ci; ra — Cy; v — Cy; a — C; semi-Cy;  — Cy; pre-Cy; Ultra
C1] space if for each z # y € X3U,V € 7(X)[resp: 1O(X); raO(X); vO(X);
aO(X); SO(X); pO(X); PO(X); CO(X)]whose closure contains x and y.
(vi)Calresp: 1-Csy; rav — Co; v — Co; av — Cy; semi-Cy; § — Cy; pre-Csy; Ultra
Cs] space if for each z # y € X3U,V € 7(X)[resp: rO(X); raO(X); vO(X);
a0(X); SO(X); SO(X); PO(X); CO(X)]whose closure contains x and y and
unv =e.
(vii) Dy[resp: r-Dy; ra — Do; v — Dy; o — Do; semi-Dy;  — Dy; pre-Dy; Ultra
Dy] space if for each © # y € X3U € D(X)[resp: rD(X); raD(X); vD(X);
aD(X); SD(X); D(X); PD(X); COD(X)] containing either x or y.
(viii) Dy[resp: r-Dy; rav — Dy; v — Dy; oo — Dy semi-Dy; 3 — Dy; pre-Dy; Ultra
D] space if for each z # y € X3U,V € D(X)[resp: rD(X); raD(X); vD(X);
D(X); SD(X); fD(X); PD(X); COD(X)]2z €U -V andy eV —U.
(ix) Dg[resp: 1-Dg; v — Da; v — Da; v — Do semi-Dsg; 5 — Dy; pre-Dy; Ultra
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Ds] space if for each z # y € X3U,V € D(X)[resp: rD(X); raD(X); vD(X);
aD(X); SD(X); fD(X); PD(X); CD(X)] such that x € U; y € V and UNV = ¢.
(x) Ro[resp: r-Ry; rav — Ry; v — Ry; o — Ry; semi-Ry;  — Ro; pre-Ro; Ultra
Ry space if for each € X3U € 7(X)[resp: RO(X); raO(X); vO(X); aO(X);

SO(X): FO(X): PO(X): CO(X)|{a} € Ufvesp: r{a} € Usv{a] C Usale) C
U;s{z} C U] whenever x € U € 7(X)[resp: z € U € RO(X);z € U €
vO(X);z e U € aO(X);z € U € SO(X)]

(xi) Rifresp: 1-Ry; ra — Ry; v — Ry a — Ry; semi-Ry; 8 — Ry pre-Ry; Ul-
tra Ry space if for z,y € X > {z} # {y}[resp:> r{z} # r{y};> ra{z} #
rady}; > v{z} # {yhi > ofa} # af{yhid v{z} # v{y}i> ofz} # o{y}:id
s{z} # s{y}; > Bla} # By} > pla} # ply}; > CO{a} # CO{y} |V € 7(X)
3 disjoint U;V € 7(X) 3> {z} C Ulresp: RO(X) > r{z} C U; RaO(X) >
ra{r} C U;vO(X) 3 v{z} € U; RO(X) 3 ofr} C U;SO(X) > s{z} C
U;30(X) > B{z} € U; PO(X) > p{z} C U;CO(X) > co{r} C U] and
{y} CV [resp: RO(X) > r{y} CV;RaO(X) 3 rafy} C V;vO(X) 3 v{y} C
ViRO(Y) 3 afy} € ViSO(X) 3 s{y} C V3 BO(X) 5 8y} C V: PO(X) 5
p{y} CV;CO(X) 3 co{y} CV].

Lemma 2.1:

(i) Let A and B be subsets of a space X, if A € vO(X) and B € RO(X), then
AN B evO(B).

(ii)Let AC BC X, if A€ vO(B) and B € RO(X), then A € vO(X).

Remark 1: vGO(X, z)[resp: RCO(X,x)] represents vg—open set containing
x[resp: r-clopen set containing x].

Theorem 2.1:
(i) If f is vg.c., then f is al.vg.c.
(i) If f is c.vg.c., then f is al.c.vg.c.

3. Almost Slightly vg—Continuous Functions:

Definition 3.1: A function f:X— Y is said to be almost slightly vg—continuous
function at z € X if for each V- € RCO(Y, f(x)),3U € vGO(X,z) such that
flU) € V and almost slightly rvg—continuous function if it is almost slightly
vg—continuous at each x € X.

Note 2: Here after we call almost slightly vg—continuous function as al.sl.vg.c
function shortly.

Example 3.1: X =Y = {a,b,c};7 = {¢,{a},{b},{a,b},X} and 0 =
{#,{a},{b,c},Y}. Let fis identity function, then f is al.sl.rvg.c.
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Example 3.2: X =Y = {a,b,¢c,d}; 7 =0 = {¢,{a}, {b},{d}, {a, b}, {a,d}, {b,d},
{a,b,c},{a,b,d}, X}. Let fbe defined by fla) = b;f(b) = ¢;f(c) = d and
f(d) = a, then f is not sl.vg.c., and not al.sl.rvg.c. Since it is not satisfying the
condition at the points ¢ and d.

Theorem 3.1: The following are equivalent.

(i) fis al.sl.vg.c.

(ii) f'(V) is vg—open for every r-clopen set V in Y.
(iii)f (V) is vg—closed for every r-clopen set V in Y.
(

iv) flvg(A)) € vg(flA)).

Corollary 3.1: The following are equivalent.
(i) fis al.sl.vg.c.

(ii) For each x € X and each r-clopen subset V' € (Y, f(z))3U € vGO(X,z) >
AU) €

Proof: Strightforward from definition 3.1.

Theorem 3.2: Let ¥ = {U, : i € I} be any cover of X by regular open sets
in X. A function fis al.sl.vg.c. iff f,, @ is al.sl.vg.c., for each i € I.

Proof: Let i € I be an arbitrary index and U; € RO(X). Let x € U; and
V € RCO(Y, fy,(x)). For fis alsl.vg.c, 3U € vGO(X,x) > fU) C V. Since
Ui € RO(X), by lemma 2.1 x € UNU; € vGO(U;) and (f;,)U NU; =
fUNU;) C fU) C V. Hence f, is al.sl.vg.c.

Conversely Let z € X and V € RCO(Y,f(x)), Ji € I > x € U;. Since f,
is al.slvg.c,3U € vGO(Uy, z) > fy,(U) C V. By lemma 2.1, U € vGO(X)
and f(U) C V. Hence fis al.sl.rg.c.

Theorem 3.3:

(i) If fis vg—irresolute and g is al.sl.vg.c.[al.sl.c.], then go fis al.sl.vg.c.
(i) If fis vg—irresolute and g is al.vg.c., then go fis al.sl.vg.c.

(iii)If fis vg—continuous and g is al.sl.c., then go fis al.sl.vg.c.

(iv) If fis rg-continuous and g is al.sl.vg.c. [al.sl.c.], then go fis al.sl.vg.c.

Theorem 3.4: If fis vg—irresolute, vg—open and vGO(X) = 7 and g be any
function, then go fis al.sl.vg.c iff g is al.sl.vg.c.

Proof:If part: Theorem 3.3(i)

Only if part: Let A be r-clopen subset of Z. Then (gof)~!(A) is a vg—open sub-
set of X and hence open in X[by assumption]. Since f is vg—open flgo f)~1(A)
= g }(A) is vg—open in Y. Thus g is al.sl.vg.c.
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Corollary 3.2: If fis vg—irresolute, vg—open and vGO(X) = RO(X) and g
be any function, then go fis al.sl.vg.c iff g is al.sl.vg.c.

Corollary 3.3: If fis vg—irresolute, vg—open and bijective, ¢ is a function.
Then ¢ is al.sl.vg.c. iff go fis al.sl.vg.c.

Theorem 3.5: If g: X — X x Y, defined by ¢(z) = (z, f{x))Vx € X be the
graph function of f: X — Y. Then g is al.sl.vg.c iff fis al.sl.vg.c.

Proof: Let V € RCO(Y), then X x V € RCO(X xY). Since g is al.sl.vg.c.,
(V) =YX x V) evGO(X). Thus fis al.sl.ug.c.

Conversely, let z € X and F' € RCO(X x Y, g(z)). Then FFN ({z} xY) €
RCO({z} xY),g(x)). Also {z} x Y is homeomorphic to Y. Hence {y € Y :
(z,y) € F} € RCO(Y). Since fis alslvg.c. {f'(y) : (z,y) € F} €
vGO(X). Further z € U{f '(v) : (z,y) € F} C g *(F). Hence g~*(F) is
vg—open. Thus ¢ is al.sl.vg.c.

Theorem 3.6:
(i) If f: X — IIY) is al.sl.vg.c, then Pyof: X — Y, is al.sl.vg.c for each A € A,

where P, is the projection of IIY) onto Y.
(ii) f: IIX, — ITY) is al.sl.vg.c, iff f, : X\ — Y, is al.sl.vg.c for each A\ € A.

Remark 2:

(i)Composition, Algebraic sum and product of al.sl.vg.c functions is not in
general al.sl.vg.c.

(iii) The pointwise limit of a sequence of al.sl.vg.c functions is not in general
al.sl.vg.c.

Example 3.3: Let X =Y = [0, 1]. Let f, : X — Y is defined as follows
fo(x) =, forn =12 3, .. .., then fdefined by f[z) =0if 0 <z < 1 and
flz) = 1if x = 1. Therefore each f, is al.sl.vg.c but f is not al.sl.vg.c. For
(4,1] is r-clopen in Y, but f*((,1]) = {1} is not vg—open in X.

However we can prove the following:

Theorem 3.7: The uniform limit of a sequence of al.sl.vg.c functions is
al.sl.vg.c.

Note 3: Pasting lemma is not true for al.sl.vg.c functions. However we have
the following weaker versions.

Theorem 3.8: Let X and Y be topological spaces such that X = AU B
and let f/4 and g, are al.sl.r.c maps such that f(x) = g(x) Vo € AN B. If
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A, B € RO(X) and RO(X) is closed under finite unions, then the combination
a: X — Y is al.sl.vg.c continuous.

Theorem 3.9: Pasting lemma Let X and Y be spaces such that X = AUB
and let f/, and g, are al.sl.vg.c maps such that f(x) = g(x) Vo € AN B. If
A, B € RO(X) and vGO(X) is closed under finite unions, then the combination
a: X —Yisalslvg.c.

Proof: Let F € RCO(Y), then a~Y(F) = f1(F) U g *(F), where f(F) €
vGO(A) and ¢} (F) € vGO(B) = f'(F);¢g'(F) € vGO(X) = f(F)U
g1 (F)=a Y(F) € vGO(X)|by assumption]. Hence a : X — Y is al.sl.vg.c.

4. Comparisons:

Theorem 4.1: If f is sl.vg.c., then f is al.sl.vg.c.
Proof: Let x € X and V € RCO(Y, f(z)), then x € X and V € CO(Y, f(z)).
Since f is sl.vg.c., Jan U € vGO(X,z) > fi{U) C V. Hence f is al.sl.vg.c.

Theorem 4.2: If f is vg.c., then f is sl.rvg.c.

Proof: Let z € X and V € CO(Y, f(z)), then x € X and V € o(Y, flz)).
Since f is vg.c., f (V) € vGO(X,z) ie., Jan U, € vGO(X,z) > U, C f (V)
= f(U,) C V. Hence f is sl.vg.c.

Theorem 4.3: If f is c.rvg.c., then f is sl.vg.c.
Proof: Let x € X and V € CO(Y, f(x)), then z € X and V is closed in Y con-
taining f(x). Since f is c.vg.c., f (V) € vGO(X, z) i.e., Fan U, € vGO(X, z)
>5U, C (V)= f(U,) C V. Hence f is sl.vg.c.

Theorem 4.4: If f is al.vg.c., then f is al.sl.vg.c.

Proof: Let z € X and V € RCO(Y, flx)), then x € X and V € o(Y, flz)).
Since f is al.vg.c., f (V) € vGO(X,z) ie., 3 an U, € vGO(X,z) > U, C
(V)= fU,) C V. Hence f is sl.vg.c.

Theorem 4.5: If f is al.c.vg.c., then f is al.sl.vg.c.

Proof: Let x € X and V € RCO(Y,f(z)), then x € X and V is closed
in Y containing f(x). Since f is al.cvg.c., f (V) € vGO(X,z) ie., 3 an
U, € vGO(X,z) 5 U, Cc f (V) = f(U,) C V. Hence f is sl.ug.c.

Theorem 4.6:

(i) If f is al.sl.rg.c, then f is al.sl.vg.c.
(ii) If f is al.sl.sg.c, then f is al.sl.vg.c.
(iii) If f is al.sl.g.c, then f is al.sl.vg.c.
(iv) If f is al.sl.s.c, then f is al.sl.vg.c.
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(v) If f is al.sl.v.c, then f is al.sl.vg.c.
(vi) If f is al.sl.r.c, then f is al.sl.vg.c.

(vii) If f is al.sl.c, then f is al.sl.vg.c.

(viii)If f is al.sl.w.c, then f is al.sl.vg.c.

(ix) If f is al.sl.rga.c, then f is al.sl.rg.c.

(x) If f is al.sl.w-irresolute, then f is al.sl.vg.c.

(xi) If f is al.sl.r.w.c, then f is al.sl.vg.c.

(xii) If f is al.sl.w.c, then f is al.sl.vg.c.

(xiii)If f is al.sl.a.c, then f is al.sl.vg.c.

(xiv) If f is al.sl.gav.c, then f is al.sl.vg.c.

Note 4: By note 1 and from the above theorem we have the following impli-

cation diagram.
al.sl.g.continuous  al.sl.gs.continuous

' RN

al.sl.rga.continuous — al.sl.rg.continuous — al.Sl.Vg.Cont INUOUS <« al.sl.sg.continuous « al.sl.3g.continuous
) 0 0 ) )

N al.sl.ra.continuous — al.sl.v.continuous N\ T 0
al.sl.r.continuous — al.sl.7r.continuous — al.sl.continuous — al.sl.a.continuous — al.sl.s.continuous — al.sl.3.continuous
e N\ N\
al.sl.wg.continuous al.sl.p.continuous — al.sl.w.continuous ¢ al.sl.ga..continuous
N\ hY
al.sl.gp.continuous < al.sl.pg.continuous al.sl.rw.continuous

Theorem 4.7:

(i) If ReO(X) = RO(X) then f is al.sl.ra.c. iff f is al.sl.r.c.
(i) If vGO(X) = RaO(X) then f is al.sL.ra.c. iff f is al.sl.vg.c.
(iii) If vGO(X) = RO(X) then f is al.sl.ra.c. iff f is al.sl.vg.c.
(iv) If vGO(X) = aO(X) then f is al.sl.a.c. iff f is al.sl.vg.c.
(
(

~—

v) If vGO(X) = SO(X) then f is al.sl.s.c. iff f is al.sl.vg.c.
vi) If vtGO(X) = SO(X) then f is al.sl.f.c. iff f is al.sl.vg.c.

Theorem 4.8: If f is al.sl.vg.c., from a discrete space X into a e.d space Y,
then f is w.s.c.
Proof: Follows from note 3 above and theorem 3[41] of T.M.Nour.

Corollary 4.1: If f is al.sl.vg.c., from a discrete space X into a e.d space Y,
then:

(i) f is w.s.c.

(ii) f is w.f.c.

(iil)f is w.p.c.

Proof: Follows from note 3 above and theorem 4.8.

Theorem 4.9: If f is al.sl.vg.c., and X is discrete and e.d, then f is al.sl.c.
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Proof: Let x € X and V € RCO(Y,f(x)). Since f is alsl.vg.c, U €
vGO(X,z) 2 lU) Cc V. = U € SR(X,z) > U) C V. Since X is dis-
crete and e.d. U € CO(X). Hence f is al.sl.c.

Corollary 4.2: If f is al.sl.vg.c., and X is VT%, discrete and e.d, then:
(i) f is al.sl.c.

(ii) f is al.sl.av.c.

(iii)f is al.sl.s.c.

(iv) f is al.sl.5.c.

(v) f is al.sl.p.c.

Proof: Follows from note 3 above and theorem 4.9.

Theorem 4.10: If f is al.sl.vg.c., from a discrete space X into a e.d space Y,
then f st.f.s.c.

Proof: Let z € X and V € o(Y, f(z)), then s(V) c (V)° € RO(Y). Since
Y is e.d, s(V) € CO(Y). Since f is alsl.vg.c, f is al.sls.c, U € SO(X,x) >

fls(U)) C s(V), so f is a.st.0.s.c.

Theorem 4.11: If f is al.sl.rvg.c from a discrete space X into a T3 space Y,

then f st.f.s.c.

Proof: Let z € X and V € o(Y, f(x)). Since Y is Ultra regular, IW €
O(Y) > flx) e W C V. Since f is al.sl.vg.c, U € SO(X,x) 3 f(s(U)) Cc W

and f(s(U)) C V. Thus f is st.0.s.c.

Example 4.1: Example 3.1 above f is al.sl.rvg.c; al.sl.sg.c; al.sl.gs.c; al.sl.ra.c;
al.sl.v.c; al.sl.s.c. and al.sl.3.c; but not al.sl.g.c; al.sl.rg.c; al.sl.gr.c; al.sl.pg.c;
al.sl.gp.c; al.sl.gpr.c; al.sl.ga.c; al.sl.ag.c; al.sl.rga.c; al.sl.r.c; al.sl.p.c; al.sl.a.c;
and al.sl.c;

Example 4.2: Example 3.2 above f is al.sl.ra.c; and al.sl.gpr.c; but not
al.sl.vg.c; alslsg.c; al.sl.gs.c; alsl.v.c; alsl.s.c; al.sl.f.c; alsl.g.c; al.sl.rg.c;
al.sl.gr.c; al.sl.pg.c; al.sl.gp.c; al.sl.ga.c; al.sl.ag.c; al.sl.rga.c; al.sl.r.c; al.sl.p.c;
al.sl.a.c; and al.sl.c;

Remark 4.1: alslra.c; al.sl.gpr.c; and al.sl.vg.c. are independent to each
other.

Example 4.3: Example 3.1 above f is al.sl.rvg.c and al.sl.ra.c; but not al.sl.gpr.c

Example 4.4: Example 3.2 above f is al.sl.ra.c; and al.sl.gpr.c; but not
al.sl.vg.c
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Theorem 4.12:
i) If f is sl.rg.c, then f is al.sl.vg.c.
ii) If f is sl.sg.c, then f is al.sl.vg.c.
iii) If f is sl.g.c, then f is al.sl.vg.c.
iv) If f is sl.s.c, then f is al.sl.vg.c.
v) If f is sl.v.c, then f is al.sl.vg.c.
vi) If f is sl.r.c, then f is al.sl.vg.c.

vii) If f is sl.c, then f is al.sl.vg.c.

viii)If f is sl.w.c, then f is al.sl.vg.c.

ix) If f is sl.rga.c, then f is al.sl.rg.c.

x) If f is sl.w-irresolute, then f is al.sl.vg.c.

(xi) If f is sl.r.w.c, then f is al.sl.vg.c.

(xii) If f is sl.w.c, then f is al.sl.vg.c.

(xiii)If f is sl.a.c, then f is al.sl.vg.c.

(xiv) If f is sl.gav.c, then f is al.sl.vg.c.

Proof: Follows from Note 3[12] and above theorem.

(
(
(
(
(
(
(
(
(
(

Note 5: By note 1 and from the above theorem we have the following impli-

cation diagram.
sl.g.continuous  sl.gs.continuous

' TN
sl.rga.continuous — sl.rg.continuous — al-SI.Vg.Contlnuous <+ sl.sg.continuous <« sl.Bg.continuous
T 0 T 0 )

' slra.continuous — sl.v.continuous N\ 1T 1T
sl.r.continuous — sl.7r.continuous — sl.continuous — sl.a.continuous — sl.s.continuous — sl.3.continuous
e N N\
sl.rg.continuous sl.p.continuous — sl.w.continuous ¢ sl.ga.continuous
N\ N\
sl.gp.continuous < sl.pg.continuous sl.rw.continuous

5. Covering and Separation Properties:

Theorem 5.1: If fis al.sl.vg.c.[resp: al.sl.rg.c| surjection and X is vg—compact,
then Y is compact.

Proof: Let {G, : i € I} be any open cover for Y. Then each G; is open in Y
and hence each G; is r-clopen in Y. Since fis al.sl.vg.c., f1(G;) is vg—open
in X. Thus {f '(G;)} forms a vg—open cover for X and hence have a finite
subcover, since X is vg—compact. Since f is surjection, Y = (X) = |J._, G..
Therefore Y is compact.

Corollary 5.1: If fis al.sl.v.c.[resp: al.sl.r.c| surjection and X is vg—compact,
then Y is compact.
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Theorem 5.2: If fis al.sl.vg.c., surjection and X is vg—compact[rg—lindeloff]
then Y is mildly compact[mildly lindeloff].

Proof: Let {U; : i € I} be r-clopen cover for Y. For each z € X,3a, €
I 5 flz) € Uy, and 3V, € vGO(X,x) > f(V,) C U,,. Since the family
{V; 1i € I} isacover of X by vg—open sets of X, there exists a finite subset I, of
I>5X Cc{V,:z € Iy}. Therefore Y C J{f(V,) : z € Iy} C | U{U., : = € Iy}
Hence Y is mildly compact.

Corollary 5.2:

(i) If fis al.sl.rg.c[resp: al.sl.v.c.; al.sl.r.c] surjection and X is vg— compact
[vg— lindeloff] then Y is mildly compact [mildly lindeloff].

(ii) If fis al.sl.vg.c.resp: al.sl.rg.c; al.sl.v.c.; al.sl.r.c] surjection and X is lo-
cally vg—compact [resp:vg—Lindeloff; locally vg—lindeloft], then Y is locally
compact[resp: Lindeloff; locally lindeloff].

(iii)If fis al.sl.rg.c.[alslr.c.], surjection and X is locally rvg—compact|resp:
vg—lindeloff; locally vg—lindeloff] then Y is locally mildly compact{resp: lo-
cally mildly lindeloff}.

Theorem 5.3: If fis al.sl.vg.c., surjection and X is s-closed then Y is mildly
compact[mildly lindeloff].

Proof: Let {V;:V; € RCO(Y);i € I} be a cover of Y, then {f'(V;) : i € I}
is vg—open cover of X[by Thm 3.1] and so there is finite subset Iy of I, such
that {f1(V;) : i € Iy} covers X. Therefore {(V;) : i € Iy} covers Y since f is
surjection. Hence Y is mildly compact.

Corollary 5.3: If fis al.sl.rg.c[resp: al.sl.v.c.; al.sl.r.c.] surjection and X is
s-closed then Y is mildly compact[mildly lindeloff].

Theorem 5.4: If fis al.sl.vg.c.,[resp: al.sl.rg.c.; al.sl.v.c.; al.sl.r.c.] surjection
and X is vg—connected, then Y is connected.
Proof: If Y is disconnected, then Y = AU B where A and B are disjoint r-
clopen sets in Y. Since f is al.sl.vg.c. surjection, X = f1(Y) = f 1 (A)Uf '(B)
where f1(A) f(B) are disjoint vg—open sets in X, which is a contradiction
for X is vg—connected. Hence Y is connected.

Corollary 5.4:The inverse image of a disconnected space under a al.sl.vg.c.,[resp:
al.sl.rg.c.; al.sl.v.c.; al.sl.r.c.] surjection is vg—disconnected.

Theorem 5.5: If fis al.sl.vg.c.[resp: al.sl.rg.c.; al.sl.v.c.], injection and Y is
UT;, then X isvg; i =0, 1, 2.

Proof: Let 21 # x5 € X. Then flz1) # flxg) € Y since f is injective. For Y
is UT,3V; € RCO(Y) 3 f(x;) € V; and NV; = ¢ for j = 1,2. By Theorem 3.1,
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z; € f1(V;) € vGO(X) for j = 1,2 and Nf ' (V;) = ¢ for j = 1,2. Thus X is vgy.

Theorem 5.6: If fis al.sl.vg.c.[resp: al.sl.rg.c.; al.sl.v.c.], injection; closed and
Y is UT;, then X is vgg; 1 = 3, 4.

Proof:(i) Let x € X and F' be disjoint closed subset of X not containing x,
then flx) and f(F') are disjoint closed subset of Y, since f is closed and injection.
Since Y is ultraregular, f(x) and f(F') are separated by disjoint r-clopen sets U
and V respectively. Hence z € f1(U); F C f1(V), £ (U); £ (V) € vGO(X)
and f~1(U)N f~YV) = ¢. Thus X is vggs.

(i) Let F; and f(F;) are disjoint closed subsets of X and Y respectively for j
= 1,2, since f is closed and injection. For Y is ultranormal, f{(F}) are separated
by disjoint r-clopen sets V; respectively for j = 1,2. Hence F; C f~ 1(VJ) and
FHV;) € vGO(X) and Nf~Y(V;) = ¢ for j = 1,2. Thus X is vgg,.

Theorem 5.7: If fis al.sl.vg.c.[resp: al.sl.rg.c.; al.sl.v.c.], injection and
(1) Y is UC;[resp: UD;] then X is vgCj[resp: vgD;] i =0, 1, 2.
(i)Y is UR;, then X is vgR; i = 0, 1.

Theorem 5.8: If fis al.sl.vg.c.[resp: alslv.c.; al.sl.rg.c; al.sl.r.c] and Y is
UT,, then the graph G(f) of f is vg—closed in the product space X x Y.
Proof: Let (z1,22) & G(f) = y # flvr) = 3 disjoint r-clopen sets V and W
> flx) € V and ye W. Since f is al.sl.vg.c., 3U € vGO(X) 3 x € U and
flU) € W. Therefore (z,y) € UxV C X xY —G(f). Hence G(f) is vg—closed
in X xY.

Theorem 5.9: If fis al.sl.vg.c.[resp: al.sl.v.c.; al.sl.rg.c; al.sl.r.c] and Y is UTs,
then A = {(x1, z2)|f(x1) = flza)} is vg—closed in the product space X x X.
Proof: If (z1,22) € X x X — A, then flz1) # flxs) = 3 disjoint V; €
RCO(Y) > flz;) € V;, and since f is alsluvg.c., f1(V;) € vGO(X, ;)
for each j = 1,2. Thus (z1,72) € f'(Vi) x f'(Va) € vGO(X x X) and
1) x £H(V,) € X x X — A. Hence A is vg—closed.

Theorem 5.10: If fis al.sl.r.c.[resp: alsl.c]; g is al.sl.vg.clresp: alslrg.c;
al.sl.v.c); and Y is UTy, then F = {z € X : flz) = g(x)} is vg—closed in X.

Conclusion: In this paper we defined almost slightly-rvg—continuous func-
tions, studied its properties and their interrelations with other types of almost
slightly-continuous functions.
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