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Abstract

In this paper we discuss a new type of continuous functions called almost
slightly νg−continuous functions; its properties and interrelation with other
continuous functions are studied.
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1. Introduction

T.M.Nour introduced slightly semi-continuous functions during the year
1995. After him T.Noiri and G.I.Ghae further studied slightly semi-continuous
functions on 2000. During 2001 T.Noiri individually studied slightly β− con-
tinuous functions. C.W.Baker introduced slightly precontinuous functions.
Erdal Ekici and M. Caldas studied slightly γ−continuous functions. Arse
Nagli Uresin and others studied slightly δ−continuous functions. Recently the
Author of the present paper studied slightly νg−continuous functions. In-
spired with these developements the author introduce in this paper a new
variety of slightly continuous functions called almost slightly νg−continuous
function and study its basic properties; interrelation with other type of such
functions available in the literature. Throughout the paper a space X means
a topological space (X,τ).
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2. Preliminaries

Definition 2.1: A ⊂ X is called
(i) closed[resp: Semi-closed; ν-closed] if its complement is open[resp:semi-open;
ν−open].
(ii) rα−closed if ∃U ∈ αO(X)] ∋ U ⊂ A ⊂ α(U)].
(iii)semi-θ−open if it is the union of semi-regular sets and its complement is
semi-θ−closed.
(iv) Regular closed[resp: α−closed; pre-closed; β−closed] if A = Ao[resp:

((Ao))o ⊆ A; (Ao) ⊆ A; (A)o ⊆ A].
(v) g-closed[resp: rg-closed] if A ⊆ U whenever A ⊆ U and U is open in X.
(vi)sg-closed[resp: gs-closed] if s(A) ⊆ U whenever A ⊆ U and U is semi-
open{open} in X.
(vii)pg-closed[resp: gp-closed; gpr-closed] if p(A) ⊆ U whenever A ⊆ U and U
is pre-open{open; regular-open} in X.
(viii) αg-closed[resp: gα−closed; rgα-closed] if α(A) ⊆ U whenever A ⊆ U
and U is{α−open; rα−open}open in X.
(ix) νg-closed if ν(A) ⊆ U whenever A ⊆ U and U is ν−open in X.
(x) clopen[resp: r-clopen] if it is both open and closed[resp: regular-open and
regular-closed]

Note 1: From the above definitions we have the following interrelations among
the closed sets.

g-closed gs-closed

↓ ↓ ↖
rgα−closed → rg-closed → νg−closed ← sg-closed ← βg-closed

↑ ↑ ↑ ↑ ↑
↗ rα−closed → ν−closed ↘ ↑ ↑

Regular closed → π−closed → closed → α−closed → semi closed → β−closed
↙ ↓ ↘ ↘

πg-closed pre-closed → ω−closed ̸↔ gα−closed
↘ ↘

gp-closed ← pg-closed rω−closed

Definition 2.2: A function f :X→ Y is said to be
(i) continuous[resp: nearly-continuous; rα− continuous; ν− continuous; α−
continuous; semi-continuous; β− continuous; pre-continuous] if inverse image
of each open set is open[resp: regular-open; rα -open; ν -open; α -open; semi-
open; β -open; preopen].
(ii) nearly-irresolute[resp: rα− irresolute; ν− irresolute; α− irresolute; irres-
olute; β−irresolute; pre-irresolute] if inverse image of each regular-open[resp:
rα-open; ν -open; α -open; semi-open; β-open; preopen] set is regular-open[resp:
rα-open; ν -open; α -open; semi-open; β -open; preopen].
(iii) almost continuous[resp: almost rα−continuous; almost ν−continuous; al-
most α−continuous; almost semi-continuous; almost β−continuous; almost
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pre-continuous] if for each x ∈ X and each open set (V, f (x)), there ex-
ists an open[resp: rα-open; ν-open; α-open; semi-open; β-open; preopen] set
(U, x) ∋ f(U) ⊂ (V )o.
(iv) weakly continuous[resp: weakly nearly-continuous; weakly rα−continuous;
weakly ν−continuous; weakly α−continuous; weakly semi-continuous; weakly
β−continuous; weakly pre-continuous] if for each x ∈ X and each open set
(V, f (x)), there exists an open[resp: regular-open; rα-open; ν-open; α-open;
semi-open; β-open; preopen] set (U, x) ∋ f(U) ⊂ V .
(v) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous;
slightly β−continuous; slightly γ−continuous; slightly α−continuous; slightly
r-continuous; slightly ν−continuous] at x ∈ X if for each clopen subset V in Y
containing f(x),∃U ∈ τ(X)[∃U ∈ SO(X);∃U ∈ PO(X);∃U ∈ βO(X); ∃U ∈
γO(X);∃U ∈ αO(X); ∃U ∈ RO(X);∃U ∈ νO(X)] containing x such that
f(U) ⊆ V .
(vi) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous;
slightly β− continuous; slightly γ− continuous; slightly α− continuous; slightly
r-continuous; slightly ν− continuous] if it is slightly-continuous[resp:slightly
semi-continuous; slightly pre-continuous; slightly β− continuous; slightly γ−
continuous; slightly α−continuous; slightly r-continuous; slightly ν−continuous]
at each x ∈ X.
(vii) almost strongly θ−semi-continuous[resp: strongly θ−semi-continuous] if
for each x ∈ X and for each V ∈ σ(Y, f(x)),∃U ∈ SO(X, x) ∋ f(s(U)) ⊂
s(V )[resp: f(s(U)) ⊂ V ].

Definition 2.3: A function f :X→ Y is said to be [almost-] slightly g - contin-
uous [resp: [almost-] slightly sg - continuous; [almost-] slightly pg-continuous;
[almost-] slightly βg− continuous; [almost-] slightly γg− continuous; [almost-
] slightly αg− continuous; [almost-] slightly rg-continuous] at x ∈ X if for
each V ∈ CO(V f(x)), [resp: V ∈ RCO(V f(x))], ∃U ∈ GO(X, x)[∃U ∈
SGO(X, x); ∃U ∈ PGO(X, x); ∃U ∈ βGO(X, x);∃U ∈ γGO(X, x);∃U ∈
αGO(X, x);∃U ∈ RGO(X, x)] ∋ f(U) ⊆ V , and [almost-] slightly g-continuous
[resp: [almost-] slightly sg-continuous; [almost-] slightly pg-continuous; [almost-
] slightly βg− continuous; [almost-] slightly γg− continuous; [almost-] slightly
αg− continuous; [almost-]slightly rg-continuous] if it is [almost-]slightly g-
continuous [resp:[almost-]slightly sg-continuous; [almost-] slightly pg-continuous;
[almost-]slightly βg− continuous; [almost-] slightly γg− continuous; [almost-]
slightly αg− continuous; [almost-] slightly rg-continuous] at each x ∈ X.

Definition 2.4: X is said to be a
(i) compact[resp: nearly-compact; rα− compact; ν− compact; α− compact;
semi-compact; β− compact; pre-compact; mildly-compact] space if every open
[resp: regular-open; rα -open; ν-open; α -open; semi-open; β -open; preopen;
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clopen] cover has a finite subcover.
(ii) countably-compact[resp: countably-nearly-compact; countably - rα− com-
pact; countably - ν− compact; countably- α− compact; countably - semi -
compact; countably - β− compact; countably-pre-compact; mildly-countably
compact] space if every countable open[resp: regular-open; rα - oover.
(iii) closed-compact[resp: closed-nearly-compact; closed-r α− compact; closed-
ν− compact; closed-α− compact; closed-semi-compact; closed-β−compact;
closed-pre-compact] space if every closed[resp: regular-closed; rα-closed; ν -
closed; α -closed; semi-closed; β-closed; preclosed] cover has a finite subcover.
(iv) Lindeloff [resp: nearly-Lindeloff; rα− Lindeloff; ν− Lindeloff; α−Lindeloff;
semi-Lindeloff; β− Lindeloff; pre-Lindeloff; mildly-Lindeloff] space if every
open[resp: regular-open; rα -open; ν-open; α -open; semi-open; β -open; pre-
open; clopen] cover has a countable subcover.
(v) Extremally disconnected[briefly e.d] if the closure of each open set is open.

Definition 2.5: X is said to be a
(i) T0[resp: r-T0; rα − T0; ν − T0; α − T0; semi-T0; β − T0; pre-T0; Ultra T0]
space if for each x ̸= y ∈ X∃U ∈ τ(X)[resp: rO(X); rαO(X); νO(X); αO(X);
SO(X); βO(X); PO(X); CO(X)] containing either x or y.
(ii) T1[resp: r-T1; rα − T1; ν − T1; α − T1; semi-T1; β − T1; pre-T1; Ultra
T1] space if for each x ̸= y ∈ X∃U, V ∈ τ(X)[resp: rO(X); rαO(X); νO(X);
αO(X); SO(X); βO(X); PO(X): CO(X)] such that x ∈ U − V and y ∈ V − U .
(iii)T2[resp: r-T2; rα − T2; ν − T2; α − T2; semi-T2; β − T2; pre-T2; Ultra T2]
space if for each x ̸= y ∈ X∃U, V ∈ τ(X)[resp: rO(X); rαO(X); νO(X); αO(X);
SO(X); βO(X); PO(X); CO(X)] such that x ∈ U ; y ∈ V and U ∩ V = ϕ.
(iv) C0[resp: r-C0; rα−C0; ν−C0; α−C0; semi-C0; β−C0; pre-C0; Ultra C0]
space if for each x ̸= y ∈ X∃U ∈ τ(X)[resp: rO(X); rαO(X); νO(X); αO(X);
SO(X); βO(X); PO(X); CO(X)]whose closure contains either x or y
(v) C1[resp: r-C1; rα − C1; ν − C1; α − C1; semi-C1; β − C1; pre-C1; Ultra
C1] space if for each x ̸= y ∈ X∃U, V ∈ τ(X)[resp: rO(X); rαO(X); νO(X);
αO(X); SO(X); βO(X); PO(X); CO(X)]whose closure contains x and y.
(vi)C2[resp: r-C2; rα − C2; ν − C2; α − C2; semi-C2; β − C2; pre-C2; Ultra
C2] space if for each x ̸= y ∈ X∃U, V ∈ τ(X)[resp: rO(X); rαO(X); νO(X);
αO(X); SO(X); βO(X); PO(X); CO(X)]whose closure contains x and y and
U ∩ V = ϕ.
(vii) D0[resp: r-D0; rα−D0; ν −D0; α−D0; semi-D0; β −D0; pre-D0; Ultra
D0] space if for each x ̸= y ∈ X∃U ∈ D(X)[resp: rD(X); rαD(X); νD(X);
αD(X); SD(X); βD(X); PD(X); COD(X)] containing either x or y.
(viii) D1[resp: r-D1; rα−D1; ν −D1; α−D1; semi-D1; β −D1; pre-D1; Ultra
D1] space if for each x ̸= y ∈ X∃U, V ∈ D(X)[resp: rD(X); rαD(X); νD(X);
αD(X); SD(X); βD(X); PD(X); COD(X)]∋ x ∈ U − V and y ∈ V − U .
(ix)D2[resp: r-D2; rα −D2; ν −D2; α −D2; semi-D2; β −D2; pre-D2; Ultra
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D2] space if for each x ̸= y ∈ X∃U, V ∈ D(X)[resp: rD(X); rαD(X); νD(X);
αD(X); SD(X); βD(X); PD(X); CD(X)] such that x ∈ U ; y ∈ V and U∩V = ϕ.
(x) R0[resp: r-R0; rα − R0; ν − R0; α − R0; semi-R0; β − R0; pre-R0; Ultra
R0] space if for each x ∈ X∃U ∈ τ(X)[resp: RO(X); rαO(X); νO(X); αO(X);
SO(X); βO(X); PO(X); CO(X)]{x} ⊆ U [resp: r{x} ⊆ U ; ν{x} ⊆ U ;α{x} ⊆
U ; s{x} ⊆ U ] whenever x ∈ U ∈ τ(X)[resp: x ∈ U ∈ RO(X);x ∈ U ∈
νO(X); x ∈ U ∈ αO(X); x ∈ U ∈ SO(X)]
(xi) R1[resp: r-R1; rα − R1; ν − R1; α − R1; semi-R1; β − R1; pre-R1; Ul-
tra R1] space if for x, y ∈ X ∋ {x} ̸= {y}[resp:∋ r{x} ̸= r{y};∋ rα{x} ≠
rα{y};∋ ν{x} ̸= ν{y};∋ α{x} ̸= α{y};∋ ν{x} ̸= ν{y};∋ α{x} ̸= α{y};∋
s{x} ̸= s{y};∋ β{x} ̸= β{y};∋ p{x} ̸= p{y};∋ CO{x} ̸= CO{y}; ]V ∈ τ(X)
∃ disjoint U ;V ∈ τ(X) ∋ {x} ⊆ U [resp: RO(X) ∋ r{x} ⊆ U ;RαO(X) ∋
rα{x} ⊆ U ; νO(X) ∋ ν{x} ⊆ U ;RO(X) ∋ α{x} ⊆ U ;SO(X) ∋ s{x} ⊆
U ; βO(X) ∋ β{x} ⊆ U ;PO(X) ∋ p{x} ⊆ U ;CO(X) ∋ co{x} ⊆ U ] and
{y} ⊆ V [resp: RO(X) ∋ r{y} ⊆ V ;RαO(X) ∋ rα{y} ⊆ V ; νO(X) ∋ ν{y} ⊆
V ;RO(X) ∋ α{y} ⊆ V ;SO(X) ∋ s{y} ⊆ V ; βO(X) ∋ β{y} ⊆ V ;PO(X) ∋
p{y} ⊆ V ;CO(X) ∋ co{y} ⊆ V ].

Lemma 2.1:
(i) Let A and B be subsets of a space X, if A ∈ νO(X) and B ∈ RO(X), then
A ∩B ∈ νO(B).
(ii)Let A ⊂ B ⊂ X, if A ∈ νO(B) and B ∈ RO(X), then A ∈ νO(X).

Remark 1: νGO(X, x)[resp: RCO(X,x)] represents νg−open set containing
x[resp: r-clopen set containing x].

Theorem 2.1:
(i) If f is νg.c., then f is al.νg.c.
(i) If f is c.νg.c., then f is al.c.νg.c.

3. Almost Slightly νg−Continuous Functions:

Definition 3.1: A function f :X→Y is said to be almost slightly νg−continuous
function at x ∈ X if for each V ∈ RCO(Y, f(x)),∃U ∈ νGO(X, x) such that
f(U) ⊆ V and almost slightly νg−continuous function if it is almost slightly
νg−continuous at each x ∈ X.

Note 2: Here after we call almost slightly νg−continuous function as al.sl.νg.c
function shortly.

Example 3.1: X = Y = {a, b, c}; τ = {ϕ, {a}, {b}, {a, b}, X} and σ =
{ϕ, {a}, {b, c}, Y }. Let f is identity function, then f is al.sl.νg.c.



82 S. Balasubramanian

Example 3.2: X = Y = {a, b, c, d}; τ = σ = {ϕ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d},
{a, b, c}, {a, b, d}, X}. Let f be defined by f(a) = b; f(b) = c; f(c) = d and
f(d) = a, then f is not sl.νg.c., and not al.sl.νg.c. Since it is not satisfying the
condition at the points c and d.

Theorem 3.1: The following are equivalent.
(i) f is al.sl.νg.c.
(ii) f−1(V ) is νg−open for every r-clopen set V in Y.
(iii)f−1(V ) is νg−closed for every r-clopen set V in Y.
(iv) f(νg(A)) ⊆ νg(f(A)).

Corollary 3.1: The following are equivalent.
(i) f is al.sl.νg.c.
(ii) For each x ∈ X and each r-clopen subset V ∈ (Y, f(x))∃U ∈ νGO(X, x) ∋
f(U) ⊆ V .
Proof: Strightforward from definition 3.1.

Theorem 3.2: Let Σ = {Ui : i ∈ I} be any cover of X by regular open sets
in X. A function f is al.sl.νg.c. iff f/Ui

: is al.sl.νg.c., for each i ∈ I.
Proof: Let i ∈ I be an arbitrary index and Ui ∈ RO(X). Let x ∈ Ui and
V ∈ RCO(Y, fUi

(x)). For f is al.sl.νg.c, ∃U ∈ νGO(X, x) ∋ f(U) ⊂ V . Since
Ui ∈ RO(X), by lemma 2.1 x ∈ U ∩ Ui ∈ νGO(Ui) and (f/Ui

)U ∩ Ui =
f(U ∩ Ui) ⊂ f(U) ⊂ V . Hence f/Ui

is al.sl.νg.c.

Conversely Let x ∈ X and V ∈ RCO(Y, f(x)), ∃i ∈ I ∋ x ∈ Ui. Since f/Ui

is al.sl.νg.c, ∃U ∈ νGO(Ui, x) ∋ f/Ui
(U) ⊂ V . By lemma 2.1, U ∈ νGO(X)

and f(U) ⊂ V . Hence f is al.sl.νg.c.

Theorem 3.3:
(i) If f is νg−irresolute and g is al.sl.νg.c.[al.sl.c.], then g ◦ f is al.sl.νg.c.
(i) If f is νg−irresolute and g is al.νg.c., then g ◦ f is al.sl.νg.c.
(iii)If f is νg−continuous and g is al.sl.c., then g ◦ f is al.sl.νg.c.
(iv) If f is rg-continuous and g is al.sl.νg.c. [al.sl.c.], then g ◦ f is al.sl.νg.c.

Theorem 3.4: If f is νg−irresolute, νg−open and νGO(X) = τ and g be any
function, then g ◦ f is al.sl.νg.c iff g is al.sl.νg.c.
Proof:If part: Theorem 3.3(i)
Only if part: Let A be r-clopen subset of Z. Then (g◦f)−1(A) is a νg−open sub-
set of X and hence open in X[by assumption]. Since f is νg−open f(g◦ f)−1(A)
= g−1(A) is νg−open in Y. Thus g is al.sl.νg.c.
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Corollary 3.2: If f is νg−irresolute, νg−open and νGO(X) = RO(X) and g
be any function, then g ◦ f is al.sl.νg.c iff g is al.sl.νg.c.

Corollary 3.3: If f is νg−irresolute, νg−open and bijective, g is a function.
Then g is al.sl.νg.c. iff g ◦ f is al.sl.νg.c.

Theorem 3.5: If g : X → X × Y , defined by g(x) = (x, f(x))∀x ∈ X be the
graph function of f : X → Y . Then g is al.sl.νg.c iff f is al.sl.νg.c.
Proof: Let V ∈ RCO(Y ), then X × V ∈ RCO(X × Y ). Since g is al.sl.νg.c.,
f−1(V ) = f−1(X × V ) ∈ νGO(X). Thus f is al.sl.νg.c.
Conversely, let x ∈ X and F ∈ RCO(X × Y, g(x)). Then F ∩ ({x} × Y ) ∈
RCO({x} × Y ), g(x)). Also {x} × Y is homeomorphic to Y. Hence {y ∈ Y :
(x, y) ∈ F} ∈ RCO(Y ). Since f is al.sl.νg.c.

∪
{f−1(y) : (x, y) ∈ F} ∈

νGO(X). Further x ∈
∪
{f−1(y) : (x, y) ∈ F} ⊆ g−1(F ). Hence g−1(F ) is

νg−open. Thus g is al.sl.νg.c.

Theorem 3.6:
(i) If f : X → ΠYλ is al.sl.νg.c, then Pλ ◦ f : X → Yλ is al.sl.νg.c for each λ ∈ Λ,
where Pλ is the projection of ΠYλ onto Yλ.
(ii) f : ΠXλ → ΠYλ is al.sl.νg.c, iff fλ : Xλ → Yλ is al.sl.νg.c for each λ ∈ Λ.

Remark 2:
(i)Composition, Algebraic sum and product of al.sl.νg.c functions is not in
general al.sl.νg.c.
(iii)The pointwise limit of a sequence of al.sl.νg.c functions is not in general
al.sl.νg.c.

Example 3.3: Let X = Y = [0, 1]. Let fn : X → Y is defined as follows
fn(x) = xn for n = 1, 2, 3, .. .., then f defined by f(x) = 0 if 0 ≤ x < 1 and
f(x) = 1 if x = 1. Therefore each fn is al.sl.νg.c but f is not al.sl.νg.c. For
(1
2
, 1] is r-clopen in Y, but f−1((1

2
, 1]) = {1} is not νg−open in X.

However we can prove the following:

Theorem 3.7: The uniform limit of a sequence of al.sl.νg.c functions is
al.sl.νg.c.

Note 3: Pasting lemma is not true for al.sl.νg.c functions. However we have
the following weaker versions.

Theorem 3.8: Let X and Y be topological spaces such that X = A ∪ B
and let f/A and g/B are al.sl.r.c maps such that f (x) = g(x) ∀x ∈ A ∩ B. If
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A,B ∈ RO(X) and RO(X) is closed under finite unions, then the combination
α : X → Y is al.sl.νg.c continuous.

Theorem 3.9: Pasting lemma Let X and Y be spaces such that X = A∪B
and let f/A and g/B are al.sl.νg.c maps such that f (x) = g(x) ∀x ∈ A ∩ B. If
A,B ∈ RO(X) and νGO(X) is closed under finite unions, then the combination
α : X → Y is al.sl.νg.c.
Proof: Let F ∈ RCO(Y ), then α−1(F ) = f−1(F ) ∪ g−1(F ), where f−1(F ) ∈
νGO(A) and g−1(F ) ∈ νGO(B) ⇒ f−1(F ); g−1(F ) ∈ νGO(X) ⇒ f−1(F ) ∪
g−1(F ) = α−1(F ) ∈ νGO(X)[by assumption]. Hence α : X → Y is al.sl.νg.c.

4. Comparisons:

Theorem 4.1: If f is sl.νg.c., then f is al.sl.νg.c.
Proof: Let x ∈ X and V ∈ RCO(Y, f(x)), then x ∈ X and V ∈ CO(Y, f(x)).
Since f is sl.νg.c., ∃ an U ∈ νGO(X, x) ∋ f(U) ⊂ V . Hence f is al.sl.νg.c.

Theorem 4.2: If f is νg.c., then f is sl.νg.c.
Proof: Let x ∈ X and V ∈ CO(Y, f(x)), then x ∈ X and V ∈ σ(Y, f(x)).
Since f is νg.c., f−1(V ) ∈ νGO(X, x) i.e., ∃ an Ux ∈ νGO(X, x) ∋ Ux ⊂ f−1(V )
⇒ f(Ux) ⊂ V . Hence f is sl.νg.c.

Theorem 4.3: If f is c.νg.c., then f is sl.νg.c.
Proof: Let x ∈ X and V ∈ CO(Y, f(x)), then x ∈ X and V is closed in Y con-
taining f(x). Since f is c.νg.c., f−1(V ) ∈ νGO(X, x) i.e., ∃ an Ux ∈ νGO(X, x)
∋ Ux ⊂ f−1(V ) ⇒ f(Ux) ⊂ V . Hence f is sl.νg.c.

Theorem 4.4: If f is al.νg.c., then f is al.sl.νg.c.
Proof: Let x ∈ X and V ∈ RCO(Y, f(x)), then x ∈ X and V ∈ σ(Y, f(x)).
Since f is al.νg.c., f−1(V ) ∈ νGO(X, x) i.e., ∃ an Ux ∈ νGO(X, x) ∋ Ux ⊂
f−1(V ) ⇒ f(Ux) ⊂ V . Hence f is sl.νg.c.

Theorem 4.5: If f is al.c.νg.c., then f is al.sl.νg.c.
Proof: Let x ∈ X and V ∈ RCO(Y, f(x)), then x ∈ X and V is closed
in Y containing f(x). Since f is al.c.νg.c., f−1(V ) ∈ νGO(X, x) i.e., ∃ an
Ux ∈ νGO(X, x) ∋ Ux ⊂ f−1(V ) ⇒ f(Ux) ⊂ V . Hence f is sl.νg.c.

Theorem 4.6:
(i) If f is al.sl.rg.c, then f is al.sl.νg.c.
(ii) If f is al.sl.sg.c, then f is al.sl.νg.c.
(iii) If f is al.sl.g.c, then f is al.sl.νg.c.
(iv) If f is al.sl.s.c, then f is al.sl.νg.c.
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(v) If f is al.sl.ν.c, then f is al.sl.νg.c.
(vi) If f is al.sl.r.c, then f is al.sl.νg.c.
(vii) If f is al.sl.c, then f is al.sl.νg.c.
(viii)If f is al.sl.ω.c, then f is al.sl.νg.c.
(ix) If f is al.sl.rgα.c, then f is al.sl.rg.c.
(x) If f is al.sl.ω-irresolute, then f is al.sl.νg.c.
(xi) If f is al.sl.r.ω.c, then f is al.sl.νg.c.
(xii) If f is al.sl.π.c, then f is al.sl.νg.c.
(xiii)If f is al.sl.α.c, then f is al.sl.νg.c.
(xiv) If f is al.sl.gα.c, then f is al.sl.νg.c.

Note 4: By note 1 and from the above theorem we have the following impli-
cation diagram.

al.sl.g.continuous al.sl.gs.continuous

↓ ↓ ↖
al.sl.rgα.continuous → al.sl.rg.continuous → al.sl.νg.continuous ← al.sl.sg.continuous ← al.sl.βg.continuous

↑ ↑ ↑ ↑ ↑
↗ al.sl.rα.continuous → al.sl.ν.continuous ↘ ↑ ↑

al.sl.r.continuous → al.sl.π.continuous → al.sl.continuous → al.sl.α.continuous → al.sl.s.continuous → al.sl.β.continuous

↙ ↓ ↘ ↘
al.sl.πg.continuous al.sl.p.continuous → al.sl.ω.continuous ̸↔ al.sl.gα.continuous

↘ ↘
al.sl.gp.continuous ← al.sl.pg.continuous al.sl.rω.continuous

Theorem 4.7:
(i) If RαO(X) = RO(X) then f is al.sl.rα.c. iff f is al.sl.r.c.
(ii) If νGO(X) = RαO(X) then f is al.sl.rα.c. iff f is al.sl.νg.c.
(iii)If νGO(X) = RO(X) then f is al.sl.rα.c. iff f is al.sl.νg.c.
(iv) If νGO(X) = αO(X) then f is al.sl.α.c. iff f is al.sl.νg.c.
(v) If νGO(X) = SO(X) then f is al.sl.s.c. iff f is al.sl.νg.c.
(vi) If νGO(X) = βO(X) then f is al.sl.β.c. iff f is al.sl.νg.c.

Theorem 4.8: If f is al.sl.νg.c., from a discrete space X into a e.d space Y,
then f is w.s.c.
Proof: Follows from note 3 above and theorem 3[41] of T.M.Nour.

Corollary 4.1: If f is al.sl.νg.c., from a discrete space X into a e.d space Y,
then:
(i) f is w.s.c.
(ii) f is w.β.c.
(iii)f is w.p.c.
Proof: Follows from note 3 above and theorem 4.8.

Theorem 4.9: If f is al.sl.νg.c., and X is discrete and e.d, then f is al.sl.c.
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Proof: Let x ∈ X and V ∈ RCO(Y, f(x)). Since f is al.sl.νg.c, ∃U ∈
νGO(X, x) ∋ f(U) ⊂ V ⇒ U ∈ SR(X, x) ∋ f(U) ⊂ V . Since X is dis-
crete and e.d. U ∈ CO(X). Hence f is al.sl.c.

Corollary 4.2: If f is al.sl.νg.c., and X is νT 1
2
, discrete and e.d, then:

(i) f is al.sl.c.
(ii) f is al.sl.α.c.
(iii)f is al.sl.s.c.
(iv) f is al.sl.β.c.
(v) f is al.sl.p.c.
Proof: Follows from note 3 above and theorem 4.9.

Theorem 4.10: If f is al.sl.νg.c., from a discrete space X into a e.d space Y,
then f st.θ.s.c.
Proof: Let x ∈ X and V ∈ σ(Y, f(x)), then s(V ) ⊂ (V )o ∈ RO(Y ). Since
Y is e.d, s(V ) ∈ CO(Y ). Since f is al.sl.νg.c, f is al.sl.s.c, ∃U ∈ SO(X, x) ∋
f(s(U)) ⊂ s(V ), so f is a.st.θ.s.c.

Theorem 4.11: If f is al.sl.νg.c from a discrete space X into a T3 space Y,
then f st.θ.s.c.
Proof: Let x ∈ X and V ∈ σ(Y, f(x)). Since Y is Ultra regular, ∃W ∈
CO(Y ) ∋ f(x) ∈ W ⊂ V . Since f is al.sl.νg.c, ∃U ∈ SO(X, x) ∋ f(s(U)) ⊂ W
and f(s(U)) ⊂ V . Thus f is st.θ.s.c.

Example 4.1: Example 3.1 above f is al.sl.νg.c; al.sl.sg.c; al.sl.gs.c; al.sl.rα.c;
al.sl.ν.c; al.sl.s.c. and al.sl.β.c; but not al.sl.g.c; al.sl.rg.c; al.sl.gr.c; al.sl.pg.c;
al.sl.gp.c; al.sl.gpr.c; al.sl.gα.c; al.sl.αg.c; al.sl.rgα.c; al.sl.r.c; al.sl.p.c; al.sl.α.c;
and al.sl.c;

Example 4.2: Example 3.2 above f is al.sl.rα.c; and al.sl.gpr.c; but not
al.sl.νg.c; al.sl.sg.c; al.sl.gs.c; al.sl.ν.c; al.sl.s.c; al.sl.β.c; al.sl.g.c; al.sl.rg.c;
al.sl.gr.c; al.sl.pg.c; al.sl.gp.c; al.sl.gα.c; al.sl.αg.c; al.sl.rgα.c; al.sl.r.c; al.sl.p.c;
al.sl.α.c; and al.sl.c;

Remark 4.1: al.sl.rα.c; al.sl.gpr.c; and al.sl.νg.c. are independent to each
other.

Example 4.3: Example 3.1 above f is al.sl.νg.c and al.sl.rα.c; but not al.sl.gpr.c

Example 4.4: Example 3.2 above f is al.sl.rα.c; and al.sl.gpr.c; but not
al.sl.νg.c
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Theorem 4.12:
(i) If f is sl.rg.c, then f is al.sl.νg.c.
(ii) If f is sl.sg.c, then f is al.sl.νg.c.
(iii) If f is sl.g.c, then f is al.sl.νg.c.
(iv) If f is sl.s.c, then f is al.sl.νg.c.
(v) If f is sl.ν.c, then f is al.sl.νg.c.
(vi) If f is sl.r.c, then f is al.sl.νg.c.
(vii) If f is sl.c, then f is al.sl.νg.c.
(viii)If f is sl.ω.c, then f is al.sl.νg.c.
(ix) If f is sl.rgα.c, then f is al.sl.rg.c.
(x) If f is sl.ω-irresolute, then f is al.sl.νg.c.
(xi) If f is sl.r.ω.c, then f is al.sl.νg.c.
(xii) If f is sl.π.c, then f is al.sl.νg.c.
(xiii)If f is sl.α.c, then f is al.sl.νg.c.
(xiv) If f is sl.gα.c, then f is al.sl.νg.c.
Proof: Follows from Note 3[12] and above theorem.

Note 5: By note 1 and from the above theorem we have the following impli-
cation diagram.

sl.g.continuous sl.gs.continuous

↓ ↓ ↖
sl.rgα.continuous → sl.rg.continuous → al.sl.νg.continuous ← sl.sg.continuous ← sl.βg.continuous

↑ ↑ ↑ ↑ ↑
↗ sl.rα.continuous → sl.ν.continuous ↘ ↑ ↑

sl.r.continuous → sl.π.continuous → sl.continuous → sl.α.continuous → sl.s.continuous → sl.β.continuous

↙ ↓ ↘ ↘
sl.πg.continuous sl.p.continuous → sl.ω.continuous ̸↔ sl.gα.continuous

↘ ↘
sl.gp.continuous ← sl.pg.continuous sl.rω.continuous

5. Covering and Separation Properties:

Theorem 5.1: If f is al.sl.νg.c.[resp: al.sl.rg.c] surjection and X is νg−compact,
then Y is compact.
Proof: Let {Gi : i ∈ I} be any open cover for Y. Then each Gi is open in Y
and hence each Gi is r-clopen in Y. Since f is al.sl.νg.c., f−1(Gi) is νg−open
in X. Thus {f−1(Gi)} forms a νg−open cover for X and hence have a finite
subcover, since X is νg−compact. Since f is surjection, Y = f(X) =

∪n
i=1Gi.

Therefore Y is compact.

Corollary 5.1: If f is al.sl.ν.c.[resp: al.sl.r.c] surjection and X is νg−compact,
then Y is compact.
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Theorem 5.2: If f is al.sl.νg.c., surjection and X is νg−compact[νg−lindeloff]
then Y is mildly compact[mildly lindeloff].
Proof: Let {Ui : i ∈ I} be r-clopen cover for Y. For each x ∈ X, ∃αx ∈
I ∋ f(x) ∈ Uαx and ∃Vx ∈ νGO(X, x) ∋ f(Vx) ⊂ Uαx . Since the family
{Vi : i ∈ I} is a cover of X by νg−open sets of X, there exists a finite subset I0 of
I ∋ X ⊂ {Vx : x ∈ I0}. Therefore Y ⊂

∪
{f(Vx) : x ∈ I0} ⊂

∪
{Uαx : x ∈ I0}.

Hence Y is mildly compact.

Corollary 5.2:
(i) If f is al.sl.rg.c[resp: al.sl.ν.c.; al.sl.r.c] surjection and X is νg− compact
[νg− lindeloff] then Y is mildly compact [mildly lindeloff].
(ii) If f is al.sl.νg.c.[resp: al.sl.rg.c; al.sl.ν.c.; al.sl.r.c] surjection and X is lo-
cally νg−compact [resp:νg−Lindeloff; locally νg−lindeloff], then Y is locally
compact[resp: Lindeloff; locally lindeloff].
(iii)If f is al.sl.νg.c.[al.sl.r.c.], surjection and X is locally νg−compact[resp:
νg−lindeloff; locally νg−lindeloff] then Y is locally mildly compact{resp: lo-
cally mildly lindeloff}.

Theorem 5.3: If f is al.sl.νg.c., surjection and X is s-closed then Y is mildly
compact[mildly lindeloff].
Proof: Let {Vi : Vi ∈ RCO(Y ); i ∈ I} be a cover of Y, then {f−1(Vi) : i ∈ I}
is νg−open cover of X[by Thm 3.1] and so there is finite subset I0 of I, such
that {f−1(Vi) : i ∈ I0} covers X. Therefore {(Vi) : i ∈ I0} covers Y since f is
surjection. Hence Y is mildly compact.

Corollary 5.3: If f is al.sl.rg.c[resp: al.sl.ν.c.; al.sl.r.c.] surjection and X is
s-closed then Y is mildly compact[mildly lindeloff].

Theorem 5.4: If f is al.sl.νg.c.,[resp: al.sl.rg.c.; al.sl.ν.c.; al.sl.r.c.] surjection
and X is νg−connected, then Y is connected.
Proof: If Y is disconnected, then Y = A ∪ B where A and B are disjoint r-
clopen sets in Y. Since f is al.sl.νg.c. surjection, X = f−1(Y ) = f−1(A)∪f−1(B)
where f−1(A) f−1(B) are disjoint νg−open sets in X, which is a contradiction
for X is νg−connected. Hence Y is connected.

Corollary 5.4:The inverse image of a disconnected space under a al.sl.νg.c.,[resp:
al.sl.rg.c.; al.sl.ν.c.; al.sl.r.c.] surjection is νg−disconnected.

Theorem 5.5: If f is al.sl.νg.c.[resp: al.sl.rg.c.; al.sl.ν.c.], injection and Y is
UTi, then X is νgi i = 0, 1, 2.
Proof: Let x1 ̸= x2 ∈ X. Then f(x1) ̸= f(x2) ∈ Y since f is injective. For Y
is UT2∃Vj ∈ RCO(Y ) ∋ f(xj) ∈ Vj and ∩Vj = ϕ for j = 1,2. By Theorem 3.1,
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xj ∈ f−1(Vj) ∈ νGO(X) for j = 1,2 and ∩f−1(Vj) = ϕ for j = 1,2. Thus X is νg2.

Theorem 5.6: If f is al.sl.νg.c.[resp: al.sl.rg.c.; al.sl.ν.c.], injection; closed and
Y is UTi, then X is νggi i = 3, 4.
Proof:(i) Let x ∈ X and F be disjoint closed subset of X not containing x,
then f(x) and f(F ) are disjoint closed subset of Y, since f is closed and injection.
Since Y is ultraregular, f(x) and f(F ) are separated by disjoint r-clopen sets U
and V respectively. Hence x ∈ f−1(U); F ⊆ f−1(V ), f−1(U); f−1(V ) ∈ νGO(X)
and f−1(U) ∩ f−1(V ) = ϕ. Thus X is νgg3.

(ii) Let Fj and f(Fj) are disjoint closed subsets of X and Y respectively for j
= 1,2, since f is closed and injection. For Y is ultranormal, f(Fj) are separated
by disjoint r-clopen sets Vj respectively for j = 1,2. Hence Fj ⊆ f−1(Vj) and
f−1(Vj) ∈ νGO(X) and ∩f−1(Vj) = ϕ for j = 1,2. Thus X is νgg4.

Theorem 5.7: If f is al.sl.νg.c.[resp: al.sl.rg.c.; al.sl.ν.c.], injection and
(i) Y is UCi[resp: UDi] then X is νgCi[resp: νgDi] i = 0, 1, 2.
(ii)Y is URi, then X is νgRi i = 0, 1.

Theorem 5.8: If f is al.sl.νg.c.[resp: al.sl.ν.c.; al.sl.rg.c; al.sl.r.c] and Y is
UT2, then the graph G(f ) of f is νg−closed in the product space X × Y .
Proof: Let (x1, x2) ̸∈ G(f) ⇒ y ̸= f(x) ⇒ ∃ disjoint r-clopen sets V and W
∋ f(x) ∈ V and y∈ W . Since f is al.sl.νg.c., ∃U ∈ νGO(X) ∋ x ∈ U and
f(U) ⊂ W . Therefore (x, y) ∈ U×V ⊂ X×Y −G(f). Hence G(f ) is νg−closed
in X × Y .

Theorem 5.9: If f is al.sl.νg.c.[resp: al.sl.ν.c.; al.sl.rg.c; al.sl.r.c] and Y is UT2,
then A = {(x1, x2)|f(x1) = f(x2)} is νg−closed in the product space X ×X.
Proof: If (x1, x2) ∈ X × X − A, then f(x1) ̸= f(x2) ⇒ ∃ disjoint Vj ∈
RCO(Y ) ∋ f(xj) ∈ Vj, and since f is al.sl.νg.c., f−1(Vj) ∈ νGO(X, xj)
for each j = 1,2. Thus (x1, x2) ∈ f−1(V1) × f−1(V2) ∈ νGO(X × X) and
f−1(V1)× f−1(V2) ⊂ X ×X − A. Hence A is νg−closed.

Theorem 5.10: If f is al.sl.r.c.[resp: al.sl.c.]; g is al.sl.νg.c[resp: al.sl.rg.c;
al.sl.ν.c]; and Y is UT2, then E = {x ∈ X : f(x) = g(x)} is νg−closed in X.

Conclusion: In this paper we defined almost slightly-νg−continuous func-
tions, studied its properties and their interrelations with other types of almost
slightly-continuous functions.
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