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We give one example for a one-parameter nonexpansive semigroup. This example shows
that there exists a one-parameter nonexpansive semigroup {T(t) : t ≥ 0} on a closed con-
vex subset C of a Banach space E such that limt→∞‖(1/t)

∫ t
0 T(s)xds− x‖ = 0 for some

x ∈ C, which is not a common fixed point of {T(t) : t ≥ 0}.

1. Introduction

Throughout this paper, we denote by N and R the sets of positive integers and real num-
bers, respectively.

A family {T(t) : t ≥ 0} of mappings on C is called a one-parameter nonexpansive semi-
group on a subset C of a Banach space E if the following hold:

(sg1) for each t ≥ 0, T(t) is a nonexpansive mapping on C, that is,∥∥T(t)x−T(t)y
∥∥≤ ‖x− y‖ ∀x, y ∈ C; (1.1)

(sg2) T(0)x = x for all x ∈ C;
(sg3) T(s+ t)= T(s)◦T(t) for all s, t ≥ 0;
(sg4) for each x ∈ C, the mapping t 	→ T(t)x is continuous.

We know that {T(t) : t ≥ 0} has a common fixed point under the assumption that C is
weakly compact convex and E has the Opial property; see [3, 4, 5, 6, 8, 10, 12] and other
works.

Convergence theorems for one-parameter nonexpansive semigroups are proved in
[1, 2, 9, 11, 13, 15] and other works. For example, Baillon and Brezis in [2] proved the
following theorem; see also [16, page 80].

Theorem 1.1 (Baillon and Brezis [2]). Let C be a bounded closed convex subset of a Hilbert
space E and let {T(t) : t ≥ 0} be a one-parameter nonexpansive semigroup on C. Then, for
any x ∈ C,

1
t

∫ t

0
T(s)xds (1.2)

converges weakly to a common fixed point of {T(t) : t ≥ 0} as t→∞.
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Also, Suzuki and Takahashi in [15] proved the following.

Theorem 1.2 (Suzuki and Takahashi [15]). Let C be a compact convex subset of a Banach
space E and let {T(t) : t ≥ 0} be a one-parameter nonexpansive semigroup on C. Let x1 ∈ C
and define a sequence {xn} in C by

xn+1 = αn
tn

∫ tn

0
T(s)xn ds+

(
1−αn

)
xn (1.3)

for n∈N, where {αn} ⊂ [0,1] and {tn} ⊂ (0,∞) satisfy the following conditions:

0 < liminf
n→∞ αn ≤ limsup

n→∞
αn < 1, lim

n→∞ tn =∞, lim
n→∞

tn+1

tn
= 1. (1.4)

Then {xn} converges strongly to a common fixed point z0 of {T(t) : t ≥ 0}.
The following theorem plays a very important role in the proof of Theorem 1.2.

Theorem 1.3 (Suzuki and Takahashi [15]). Let C be a compact convex subset of a Banach
space E. Let {T(t) : t ≥ 0} be a one-parameter nonexpansive semigroup on C. Then for z ∈
C, the following are equivalent:

(i) z is a common fixed point of {T(t) : t ≥ 0};
(ii)

liminf
t→∞

∥∥∥∥1
t

∫ t

0
T(s)zds− z

∥∥∥∥= 0 (1.5)

holds.

Recently, Suzuki proved in [14] the following result similar to Theorem 1.3. This the-
orem also plays a very important role in the proof of the existence of some nonexpansive
retraction onto the set of common fixed points.

Theorem 1.4 (Suzuki [14]). Let E be a Banach space with the Opial property and let C be
a weakly compact convex subset of E. Let {T(t) : t ≥ 0} be a one-parameter nonexpansive
semigroup on C. Then for z ∈ C, the following are equivalent:

(i) z is a common fixed point of {T(t) : t ≥ 0};
(ii) formula (1.5) holds;

(iii) there exists a subnet of a net

{
1
t

∫ t

0
T(s)zds

}
(1.6)

in C converging weakly to z.

So, it is a natural problem whether or not the conclusion of Theorems 1.3 and 1.4 holds
in general. In this paper, we give one example concerning Theorems 1.3 and 1.4. This
example shows that there exists a one-parameter nonexpansive semigroup {T(t) : t ≥ 0}
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on a closed convex subset C of a Banach space E such that

lim
t→∞

∥∥∥∥1
t

∫ t

0
T(s)xds− x

∥∥∥∥= 0 (1.7)

for some x ∈ C, which is not a common fixed point of {T(t) : t ≥ 0}. That is, our answer
of the problem is negative.

2. Example

We give one example concerning Theorems 1.3 and 1.4. See also [7, Example 3.7].

Example 2.1. Put Ω= {−1}∪ [0,∞), let E be the Banach space consisting of all bounded
continuous functions on Ω with supremum norm, and define a subset C of E by

C =
{
x ∈ E :

0≤ x(u)≤ 1 for u∈Ω,∣∣x(u1)− x(u2)
∣∣≤ ∣∣u1−u2

∣∣ for u1,u2 ∈ [0,∞)

}
. (2.1)

Define a nonexpansive semigroup {T(t) : t ≥ 0} as follows. For t ∈ [0,1], define

(
T(t)x

)
(u)=




x(u), if u=−1,

x(u− t), if u≥ t,

x(0)− t+u, if 0≤ u≤ t,

1−αx(1− t+u)≤ x(0)− t+u,

x(0) + t−u, if 0≤ u≤ t,

1−αx(1− t+u)≥ x(0) + t−u,

1−αx(1− t+u), if 0≤ u≤ t,∣∣1−αx(1− t+u)− x(0)
∣∣≤ t−u,

(2.2)

where

αx(1− t+u)= sup
{
x(s) : s∈ {−1}∪ [1− t+u,∞)

}
. (2.3)

For t ∈ (1,∞), there exist m∈N and t′ ∈ [0,1/2) satisfying t =m/2 + t′. Define T(t) by

T(t)= T
(

1
2

)m
◦T(t′). (2.4)

Then 0∈ C is not a common fixed point of {T(t) : t ≥ 0} and

lim
t→∞

∥∥∥∥1
t

∫ t

0
T(s)0ds− 0

∥∥∥∥= 0 (2.5)

holds.

Before proving Example 2.1, we need some lemmas.
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Lemma 2.2. The following hold:

(i) |αx(u1)−αx(u2)| ≤ |u1−u2| for x ∈ C and u1,u2 ∈ [0,∞);
(ii) |αx(u)−αy(u)| ≤ ‖x− y‖ for x, y ∈ C and u∈ [0,∞).

Proof. We first show (i). Without loss of generality, we may assume u1 < u2. For s ∈
[u1,u2], we have |x(s)− x(u2)| ≤ |s−u2| and hence

x(s)≤ x
(
u2
)

+
∣∣s−u2

∣∣≤ αx
(
u2
)

+
∣∣u1−u2

∣∣. (2.6)

For s∈ [u2,∞), we have

x(s)≤ αx
(
u2
)≤ αx

(
u2
)

+
∣∣u1−u2

∣∣. (2.7)

Hence,

αx
(
u1
)≤ αx

(
u2
)

+
∣∣u1−u2

∣∣ (2.8)

holds. Since αx(u2)≤ αx(u1), we obtain

∣∣αx(u1
)−αx

(
u2
)∣∣≤ ∣∣u1−u2

∣∣. (2.9)

We next show (ii). For each ε > 0, there exists s∈ {−1}∪ [u,∞) satisfying x(s) > αx(u)− ε.
We have

αx(u)−αy(u)≤ x(s) + ε− y(s)≤ ‖x− y‖+ ε. (2.10)

Since ε is arbitrary, we have αx(u)−αy(u)≤ ‖x− y‖. Similarly we obtain αy(u)−αx(u)≤
‖x− y‖ and hence |αx(u)−αy(u)| ≤ ‖x− y‖. �

Lemma 2.3. Fix x ∈ C, t ∈ [0,1], and u1, u2 with 0≤ u1 ≤ u2 ≤ t. Then the following hold:

(i) 1− αx(1− t + u1) < (T(t)x)(u2)− u2 + u1 implies that (T(t)x)(u1) = x(0)− t + u1

and (T(t)x)(u2)= x(0)− t+u2;
(ii) 1− αx(1− t + u1) > (T(t)x)(u2) + u2− u1 implies that (T(t)x)(u1) = x(0) + t− u1

and (T(t)x)(u2)= x(0) + t−u2;
(iii) |1− αx(1− t + u1)− (T(t)x)(u2)| ≤ u2− u1 implies that (T(t)x)(u1)= 1− αx(1−

t+u1).

Remark 2.4. One and only one of the assumptions (i), (ii), and (iii) holds.

Proof. We first prove (i). We assume that 1− αx(1− t + u2) > x(0)− t + u2. Then by the
definition of T(t),

(
T(t)x

)(
u2
)=min

{
x(0) + t−u2, 1−αx

(
1− t+u2

)}
. (2.11)

So, we have

(
T(t)x

)(
u2
)−u2 +u1 ≤ 1−αx

(
1− t+u2

)−u2 +u1 ≤ 1−αx
(
1− t+u1

)
(2.12)
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by Lemma 2.2. This is a contradiction. Therefore we obtain 1− αx(1− t + u2) ≤ x(0)−
t+u2. Hence (T(t)x)(u2)= x(0)− t+u2. Since

1−αx
(
1− t+u1

)
<
(
T(t)x

)(
u2
)−u2 +u1 = x(0)− t+u1, (2.13)

we have (T(t)x)(u1)= x(0)− t+u1. Similarly, we can prove (ii). We finally prove (iii). We
assume that 1−αx(1− t+u1) < x(0)− t+u1. Then by Lemma 2.2, we have

1−αx
(
1− t+u2

)≤ 1−αx
(
1− t+u1

)
+u2−u1

< x(0)− t+u1 +u2−u1 = x(0)− t+u2.
(2.14)

Hence (T(t)x)(u2)= x(0)− t+u2. So,

(
T(t)x

)(
u2
)− (1−αx

(
1− t+u1

))
>
(
x(0)− t+u2

)− (x(0)− t+u1
)= u2−u1.

(2.15)

This is a contradiction. Therefore we obtain 1− αx(1− t + u1) ≥ x(0)− t + u1. Similarly
we can prove that 1− αx(1− t + u1) ≤ x(0) + t− u1. Hence (T(t)x)(u1) = 1− αx(1− t +
u1). �

Proof of Example 2.1. It is clear that C is closed and convex. We first prove that T(t)x ∈ C
for all t ∈ [0,1] and x ∈ C. It is clear that

0≤ (T(t)x
)
(−1)= x(−1)≤ 1,

0≤ (T(t)x
)
(u)= x(u− t)≤ 1

(2.16)

for u ∈ [t,∞). For u ∈ [0, t], since 0 ≤ 1− αx(1− t + u) ≤ 1, x(0)− t + u ≤ x(0) ≤ 1 and
x(0) + t− u ≥ x(0) ≥ 0, we have 0 ≤ (T(t)x)(u) ≤ 1. Fix u1,u2 ∈ [0,∞) with u1 < u2. In
the case when t ≤ u1, we have

∣∣(T(t)x
)(
u1
)− (T(t)x

)(
u2
)∣∣= ∣∣x(u1− t

)− x
(
u2− t

)∣∣
≤ ∣∣(u1− t

)− (u2− t
)∣∣= ∣∣u1−u2

∣∣. (2.17)

In the case when u2 ≤ t, by Lemma 2.3, it is easily proved that |(T(t)x)(u1)− (T(t)x)(u2)|
≤ |u1−u2|. In the case when u1 ≤ t ≤ u2, we have

∣∣(T(t)x
)(
u1
)− (T(t)x

)(
u2
)∣∣

≤ ∣∣(T(t)x
)(
u1
)− (T(t)x

)
(t)
∣∣+

∣∣(T(t)x
)
(t)− (T(t)x

)(
u2
)∣∣

≤ ∣∣u1− t
∣∣+

∣∣t−u2
∣∣= ∣∣u1−u2

∣∣.
(2.18)

Therefore we have shown that T(t)x ∈ C for t ∈ [0,1] and x ∈ C. By the definition of
{T(t) : t ≥ 0}, we have T(t)x ∈ C for all t ∈ [0,∞) and x ∈ C. We next show that {T(t) :
t ≥ 0} is a one-parameter nonexpansive semigroup on C.

(sg1) Fix t ∈ [0,1], and x, y ∈ C. We will prove that

∣∣(T(t)x
)
(u)− (T(t)y

)
(u)
∣∣≤ ‖x− y‖ ∀u∈Ω. (2.19)
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We have

∣∣(T(t)x
)
(−1)− (T(t)y

)
(−1)

∣∣= ∣∣x(−1)− y(−1)
∣∣≤ ‖x− y‖. (2.20)

For u≥ t, we have

∣∣(T(t)x
)
(u)− (T(t)y

)
(u)
∣∣= ∣∣x(u− t)− y(u− t)

∣∣≤ ‖x− y‖. (2.21)

Fix u with 0≤ u≤ t. In the case when 1− αx(1− t + u)≤ x(0)− t + u and 1− αy(1− t +
u)≤ y(0)− t+u, we have

∣∣(T(t)x
)
(u)− (T(t)y

)
(u)
∣∣= ∣∣(x(0)− t+u

)− (y(0)− t+u
)∣∣

= ∣∣x(0)− y(0)
∣∣≤ ‖x− y‖. (2.22)

In the case when 1− αx(1− t + u) ≤ x(0)− t + u and 1− αy(1− t + u) > y(0)− t + u, we
have

(
T(t)y

)
(u)=min

{
1−αy(1− t+u), y(0) + t−u

}≥ y(0)− t+u. (2.23)

Hence,

(
T(t)x

)
(u)− (T(t)y

)
(u)≤ (x(0)− t+u

)− (y(0)− t+u
)= x(0)− y(0)≤ ‖x− y‖,(

T(t)y
)
(u)− (T(t)x

)
(u)≤ (1−αy(1− t+u)

)− (1−αx(1− t+u)
)

= αx(1− t+u)−αy(1− t+u)≤ ‖x− y‖
(2.24)

hold. Therefore (2.19) holds. Similarly we can prove (2.19) in the other cases. On the
other hand, we have

∥∥T(t)x−T(t)y
∥∥≥ sup

{∣∣(T(t)x
)
(u)− (T(t)y

)
(u)
∣∣ : u∈ {−1}∪ [t,∞)

}
= sup

{∣∣x(u)− y(u)
∣∣ : u∈Ω

}= ‖x− y‖. (2.25)

Hence we have shown that

∥∥T(t)x−T(t)y
∥∥= ‖x− y‖ (2.26)

for t ∈ [0,1] and x, y ∈ C. So, by the definition of {T(t) : t ≥ 0}, (2.26) holds for all t ∈
[0,∞) and x, y ∈ C.

(sg2) It is clear that T(0) is the identity mapping on C.
(sg3) Fix t1, t2 ∈ [0,1/2] and x ∈ C. We will prove that

(
T
(
t1
)◦T(t2)x)(u)= (T(t1 + t2

)
x
)
(u) ∀u∈Ω. (2.27)

We have

(
T
(
t1
)◦T(t2)x)(−1)= (T(t2)x)(−1)= x(−1)= (T(t1 + t2

)
x
)
(−1). (2.28)
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For u≥ t2, we have

(
T
(
t1 + t2

)
x
)(
t1 +u

)= x
((
t1 +u

)− (t1 + t2
))= x

(
u− t2

)= (T(t2)x)(u). (2.29)

For u ∈ [0, t2], since t1 + u ≤ t1 + t2, 1− αx(1− t2 + u) = 1− αx(1− (t1 + t2) + (t1 + u)),
x(0)− t2 +u= x(0)− (t1 + t2) + (t1 +u), and x(0) + t2−u= x(0) + (t1 + t2)− (t1 +u), the
two definitions of (T(t1 + t2)x)(t1 +u) and (T(t2)x)(u) coincide. Therefore

(
T
(
t1 + t2

)
x
)(
t1 +u

)= (T(t2)x)(u). (2.30)

So, for u≥ t1,
(
T
(
t1
)◦T(t2)x)(u)= (T(t2)x)(u− t1

)
= (T(t1 + t2

)
x
)(
t1 +

(
u− t1

))
= (T(t1 + t2

)
x
)
(u).

(2.31)

Fix u with 0≤ u≤ t1. Then we have

1−αT(t2)x
(
1− t1 +u

)= 1− sup
{(
T
(
t2
)
x
)
(s) : s∈ {−1}∪ [1− t1 +u,∞)}

= 1−max
{
x(−1), sup

{
x
(
s− t2

)
: s∈ [1− t1 +u,∞)}}

= 1−αx
(
1− t1− t2 +u

)
.

(2.32)

In the case when 1−αT(t2)x(1− t1 +u) < (T(t2)x)(0)− t1 +u, we have

(
T
(
t1
)◦T(t2)x)(u)= (T(t2)x)(0)− t1 +u. (2.33)

Since

1−αx
(
1− t1− t2 +u

)= 1−αT(t2)x
(
1− t1 +u

)
<
(
T
(
t2
)
x
)
(0)− t1 +u

= (T(t1 + t2
)
x
)(
t1
)− t1 +u,

(2.34)

we have (
T
(
t1 + t2

)
x
)
(u)= x(0)− t1− t2 +u,(

T
(
t1 + t2

)
x
)(
t1
)= x(0)− t1− t2 + t1 = x(0)− t2

(2.35)

by Lemma 2.3. So,

(
T
(
t1
)◦T(t2)x)(u)= (T(t2)x)(0)− t1 +u= (T(t1 + t2

)
x
)(
t1
)− t1 +u

= x(0)− t2− t1 +u= (T(t1 + t2
)
x
)
(u).

(2.36)

Similarly, we can prove that (T(t1) ◦T(t2)x)(u)= (T(t1 + t2)x)(u) in the cases when 1−
αT(t2)x(1− t1 + u) > (T(t2)x)(0) + t1 − u and |1− αT(t2)x(1− t1 + u)− (T(t2)x)(0)| ≤ t1 −
u. Therefore T(t1)◦T(t2)= T(t1 + t2). So, we have, for t ∈ [1/2,1),

T(t)= T
(

1
2

)
◦T
(
t− 1

2

)
, T(1)= T

(
1
2

)
◦T
(

1
2

)
◦T(0). (2.37)



180 Example for nonexpansive semigroup

Fix t1, t2 ∈ [0,∞). Then there exist m1,m2 ∈ N∪ {0} and t′1, t′2 ∈ [0,1/2) satisfying t1 =
m1/2 + t′1 and t2 =m2/2 + t′2. We have

T
(
t1
)◦T(t2)= T

(
1
2

)m1

◦T(t′1)◦T
(

1
2

)m2

◦T(t′2)= T
(

1
2

)m1+m2

◦T(t′1)◦T(t′2)

= T
(

1
2

)m1+m2

◦T
(

min
{
t′1 + t′2,

1
2

})
◦T
(

max
{

0, t′1 + t′2−
1
2

})

= T
(
t1 + t2

)
.

(2.38)

(sg4) For x ∈ C and t ∈ [0,∞), we have

∥∥T(t)x− x
∥∥= sup

{∣∣(T(t)x
)
(u)− x(u)

∣∣ : u∈ [0,∞)
}

= sup
{∣∣(T(t)x

)
(u)− (T(t)x

)
(t+u)

∣∣ : u∈ [0,∞)
}

≤ sup
{∣∣u− (t+u)

∣∣ : u∈ [0,∞)
}= t.

(2.39)

Therefore we obtain

∥∥T(t1)x−T
(
t2
)
x
∥∥= ∥∥T(∣∣t1− t2

∣∣)x− x
∥∥≤ ∣∣t1− t2

∣∣ (2.40)

for x ∈ C and t1, t2 ∈ [0,1]. Therefore T(·)x is continuous for all x ∈ C.
We prove that

⋂
t≥0

F
(
T(t)

)= {vs : s∈
[

0,
1
2

]}
∪
{
ws : s∈

[
0,

1
2

]}
, (2.41)

where

vs(u)=

1− s if u=−1,

s if u∈ [0,∞),

ws(u)=


s if u=−1,

1
2

if u∈ [0,∞).

(2.42)

Fix s∈ [0,1/2] and t ∈ [0,1]. Then we have

∣∣1−αvs(1− t+u)− vs(0)
∣∣= ∣∣1− (1− s)− s

∣∣= 0≤ t−u,

∣∣1−αws(1− t+u)−ws(0)
∣∣=

∣∣∣∣1− 1
2
− 1

2

∣∣∣∣= 0≤ t−u,
(2.43)

for u∈ [0, t]. So

(
T(t)vs

)
(u)= 1−αvs(1− t+u)= s= vs(u),

(
T(t)ws

)
(u)= 1−αws(1− t+u)= 1

2
=ws(u).

(2.44)
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Hence, T(t)vs = vs and T(t)ws = ws. Therefore, vs and ws are common fixed points of
{T(t) : t ≥ 0}. Conversely, we assume that x ∈ C is a common fixed point of {T(t) : t ≥ 0}.
Put s= x(0). Then we have

x(t+u)= (T(t)x
)
(t+u)= x(t+u− t)= x(u) (2.45)

for all u∈ [0,∞) and t ∈ [0,1]. So, x(u)= x(0)= s hold for all u∈ [0,∞). We also have

s= x(0)= (T(1)x
)
(0)= 1−αx(1− 1 + 0)= 1−αx(0)=min

{
1− x(−1), 1− s

}
. (2.46)

Hence x(−1)≤ 1− s and s≤ 1/2. If s= 1/2, then x =wx(−1). If s < 1/2, then x(−1)= 1− s
and hence x = vs. Therefore we have shown (2.41).

Define a function f from R into [0,1] by

f (u)=




0, if u≥ 0,

−u, if − 1≤ u≤ 0,

u+ 2, if − 2≤ u≤−1,

0, if u≤−2.

(2.47)

We finally show that

(
T(t)0

)
(u)=


0, if u=−1,

f (u− t), if u∈ [0,∞).
(2.48)

Fix t ∈ [0,1] and u∈ [0, t]. Then we have

1−α0(1− t+u)= 1≥ 0 + t−u (2.49)

and hence

(
T(t)0

)
(u)= 0 + t−u= t−u= f (u− t) (2.50)

because −1≤ u− t ≤ 0. Therefore

(
T(1)0

)
(s)=


0, if s=−1 or s≥ 1,

1− s, if 0≤ s≤ 1.
(2.51)

Since

1−αT(1)0(1− t+u)= 1− (1− (1− t+u)
)= 1− t+u

= (T(1)0
)
(0)− t+u,

(2.52)

we have (
T(t+ 1)0

)
(u)= (T(t)◦T(1)0

)
(u)= (T(1)0

)
(0)− t+u

= 1− t+u= f
(
u− (1 + t)

)
.

(2.53)
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Therefore

(
T(2)0

)
(s)=




0, if s=−1 or s≥ 2,

2− s, if 1≤ s≤ 2,

s, if 0≤ s≤ 1.

(2.54)

Since

∣∣1−αT(2)0(1− t+u)− (T(2)0
)
(0)
∣∣= |1− 1− 0| = 0≤ t−u, (2.55)

we have (
T(t+ 2)0

)
(u)= (T(t)◦T(2)0

)
(u)

= 1−αT(2)0(1− t+u)= 0= f
(
u− (2 + t)

)
.

(2.56)

Similarly, for k ∈N with k > 2, we can prove

(
T(t+ k)0

)
(u)= 0= f

(
u− (k+ t)

)
. (2.57)

Therefore we have shown (2.48). So, (2.5) clearly holds. This completes the proof. �
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